首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus IMB3 was grown at 45°C on media containing 2, 4 and 6 % (w/v) pulverized barley straw and supplemented with 2% (v/v) cellulase. Maximum ethanol concentrations produced were 2, 3 and 3.6g/l, respectively. When the pulverized straw was replaced by NaOH pretreated straw (at 2, 4 and 6% (w/v); based on original untreated straw), ethanol concentrations increased to maxima of 3.9, 8, and 12g/l, respectively. The ethanol yields amount to 20g ethanol from 100g of straw.  相似文献   

2.
The ability of residual biomass from the thermotolerant ethanol-producing yeast strain Kluyveromyces marxianus IMB3 to function as a biosorbent for uranium has been examined. It was found that the biomass had an observed maximum biosorption capacity of 120?mg U/g dry weight of biomass. The calculated value for the biosorption maximum, obtained by fitting the data to the Langmuir model was found to be 130?mg U/g dry weight biomass. Maximum biosorption capacities were examined at a number of temperatures and both the observed and calculated values obtained for those capacities increased with increasing temperature. Decreasing the pH of the biosorbate solution resulted in a decrease in uptake capacity. When biosorption reactions were carried out using sea-water as the diluent it was found that the maximum biosorption capacity of the biomass increased significantly. Using transmission electron microscopy, uranium crystals were shown to be concentrated on the outer surface of the cell wall, although uranium deposition was also observed in the interior of the cell.  相似文献   

3.
The maximum ethanol concentration produced from glucose in defined media at 45°C by the thermotolerant yeast Kluyveromyces marxianus IMB3 was 44 g L−1. Acclimatisation of the strain through continuous culture at ethanol concentrations up to 80 g L−1, shifted the maximum ethanol concentration at which growth was observed from 40 g L−1 to 70 g L−1. Four isolates were selected from the continuous culture, only one of which produced a significant increase in final ethanol concentration (50 ± 0.4 g L−1), however in subsequent fermentations, following storage on nutrient agar plates, the maximum ethanol concentration was comparable with the original isolate. The maximum specific ethanol production rates (approximately 1.5 g (gh)−1) were also comparable with the original strain except for one isolate (0.7 g (gh)−1). The specific ethanol productivity decreased with ethanol concentration; this decrease correlated linearly (rval 0.92) with cell viability. Due to the transience of induced ethanol tolerance in the strain it was concluded that this was not a valid method for improving final ethanol concentrations or production rates. Received 18 July 1997/ Accepted in revised form 19 February 1998  相似文献   

4.
In cellulosic ethanol production, use of simultaneous saccharification and fermentation (SSF) has been suggested as the favorable strategy to reduce process costs. Although SSF has many advantages, a significant discrepancy still exists between the appropriate temperature for saccharification (45-50 °C) and fermentation (30-35 °C). In the present study, the potential of temperature-shift as a tool for SSF optimization for bioethanol production from cellulosic biomass was examined. Cellulosic ethanol production of the temperature-shift SSF (TS-SSF) from 16 w/v% biomass increased from 22.2 g/L to 34.3 g/L following a temperature shift from 45 to 35 °C compared with the constant temperature of 45 °C. The glucose conversion yield and ethanol production yield in the TS-SSF were 89.3% and 90.6%, respectively. At higher biomass loading (18 w/v%), ethanol production increased to 40.2 g/L with temperature-shift time within 24 h. These results demonstrated that the temperature-shift process enhances the saccharification ratio and the ethanol production yield in SSF, and the temperature-shift time for TS-SSF process can be changed according to the fermentation condition within 24 h.  相似文献   

5.
Summary The thermotolerant yeast strain, Kluyveromyces marxianus 1MB 3, was shown to be capable of limited growth on cellobiose containing media at 45°C. Growth, sugar utilization and ethanol production were shown to increase in the presence of exogenously added thermostable fungal -glucosidase. During active growth of the organism on cellobiose-containing media, -glucosidase activity was detected in cell lysate preparations with only minor amounts of activity present in the extracellular culture filtrate. The results suggest that limitations in ethanol production by this organism during growth on cellobiose containing media may be overcome by addition of exogenously added -glucosidase which results in increased substrate access to the biocatalytic unit.  相似文献   

6.
A thermotolerant alcohol-producing yeast strain, Kluyveromyces marxianus IMB3 was shown to grow on sucrose (10% [w/v]) containing media at 45 °C. Under such conditions the organism reached stationary phase within 20 hours and yielded ethanol concentrations in the region of 33g/L. During growth on sucrose containing media the organism was found to produce a cell- associated activity capable of hydrolysing sucrose. This activity was shown to have a Km of 5.0mM when sucrose was used as the substrate. In addition the enzyme was shown to have a pH optimum of 5.0 and a temperature optimum of 50–55 °C and under those conditions the enzyme was shown to be relatively thermostable.  相似文献   

7.
8.
The fermentation characteristics of the novel, thermotolerant, isolate Kluyveromyces marxianus var marxianus were determined to evaluate its aptitude for use in an ethanol production process. Sustainable growth was not observed under anaerobic conditions, even in the presence of unsaturated fatty acid and sterol. A maximum ethanol concentration of 40 g L−1 was produced at 45°C, with an initial specific ethanol production rate of 1.7 g g−1 h−1. This was observed at ethanol concentrations below 8 g L−1 and under oxygen-limited conditions. The low ethanol tolerance and low growth under oxygen-limited conditions required for ethanol production implied that a simple continuous process was not feasible with this yeast strain. Improved productivity was achieved through recycling biomass into the fermenter, indicating that utilising an effective cell retention method such as cell recycle or immobilisation, could lead to the development of a viable industrial process using this novel yeast strain. Received 14 February 1998/ Accepted in revised form 19 May 1998  相似文献   

9.
A total of 58 yeast strains from 12 genera were assayed for their ability to grow and ferment carbohydrates in standard Durham tube test at 40, 43, and 46 degrees C. Based on the kinetic parameters for glucose fermentation in shaken flask cultures, the strain Fabospora fragilis CCY51-1-1 was chosen for further studies. It reached about 56.0 and 35.0 g ethanol/L from approximately 140 g glucose/L at 43 and 46 degrees C in less than 48 h, respectively. Trichoderma reesei cellulase preparation (400 FPU/L) had not distinct effect on the ethanol yield and biomass production by the selected strain in the first 12 h fermentation at 46 degrees C. Later a negligible decrease in both yields was observed. It was found that Fabospora fragilis did not grow or produce ethanol at 46 degrees C as tho initial ethanol concentration overcame 40 g/L.  相似文献   

10.
The thermotolerant ethanol producing Kluyveromyces marxianus IMB3 yeast was used in eight 60m3 fermenters for industrial ethanol production in India using sugarcane molasses. Ethanol ranged between 6.0–7.2% (w/v) with added advantages of elimination of cooling during fermentation and shorter fermentation periods of 20h. © Rapid Science Ltd. 1998  相似文献   

11.
A flocculating strain of Kluyveromyces marxianus was used for alcoholic fermentation in a continuous bioreactor working with zero residual concentration in effluent. Specific kinetic parameters were improved by increasing dilution rate, which is similar to results obtained with ultrafiltration systems. Specific biomass accumulation rate had always a value greater than 92.5% of specific biomass growth rate and was independent of the dilution rate. Productivity is shown to be 12.5 times greater than in conventional continuous operation and is directly proportional to dilution rate. Maximum biomass concentration also presents a linear relationship with dilution rate. The largest obtained biomass concentration is 8 times greater than in a conventional continuous fermentor.  相似文献   

12.
To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification–fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 °C and 37 °C, while the activity of cellulolytic enzymes is highest at around 50 °C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus β-glucosidase on the cell surface, which successfully converts a cellulosic β-glucan to ethanol directly at 48 °C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of β-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface.  相似文献   

13.
Kluyveromyces marxianus is a promising nonconventional yeast for biobased chemical production due to its rapid growth rate, high TCA cycle flux, and tolerance to low pH and high temperature. Unlike Saccharomyces cerevisiae, K. marxianus grows on low-cost substrates to cell densities that equal or surpass densities in glucose, which can be beneficial for utilization of lignocellulosic biomass (xylose), biofuel production waste (glycerol), and whey (lactose). We have evaluated K. marxianus for the synthesis of polyketides, using triacetic acid lactone (TAL) as the product. The 2-pyrone synthase (2-PS) was expressed on a CEN/ARS plasmid in three different strains, and the effects of temperature, carbon source, and cultivation strategy on TAL levels were determined. The highest titer was obtained in defined 1% xylose medium at 37°C, with substantial titers at 41 and 43°C. The introduction of a high-stability 2-PS mutant and a promoter substitution increased titer four-fold. 2-PS expression from a multi-copy pKD1-based plasmid improved TAL titers a further five-fold. Combining the best plasmid, promoter, and strain resulted in a TAL titer of 1.24 g/L and a yield of 0.0295 mol TAL/mol carbon for this otherwise unengineered strain in 3 ml tube culture. This is an excellent titer and yield (on xylose) before metabolic engineering or fed-batch culture relative to other hosts (on glucose), and demonstrates the promise of this rapidly growing and thermotolerant yeast species for polyketide production.  相似文献   

14.
Summary The batch fermentation kinetics of a novel thermotolerant strain of the yeast Kluveromyces marxianus were evaluated between 30°C and 48°C. The most significant effects of elevated temperature were reductions in overall biomass and ethanol yields. Decreases in the concentration of ethanol attained, and the presence of unutilized substrate suggested increased ethanol inhibition at the higher temperatures studied.  相似文献   

15.
Gulati  Monika  Dhamija  S.S.  Gera  R.  Yadav  B.S. 《Biotechnology Techniques》1997,11(5):343-346
Six monogenic mutants of K. marxianus, affected in their ability to tolerate ethanol, were assigned to 6 loci etr1 through etr6, probably the hot spots for ethyl methane sulfonate as these loci were found mutated in each of the non-monogenic mutants as well. Differential ethanol tolerance of allelic hexagenic mutants suggests that even more than 6 genes may be involved in controlling ethanol tolerance in K. marxianus.  相似文献   

16.
The lignocellulosic materials are considered promising renewable resources for ethanol production, but improvements in the processes should be studied to reduce operating costs. Thus, the appropriate enzyme loading for cellulose saccharification is critical for process economics. This study aimed at evaluating the concentration of cellulase and β-glucosidase in the production of bioethanol by simultaneous saccharification and fermentation (SSF) of sunflower meal biomass. The sunflower biomass was pretreated with 6 % H2SO4 (w/v), at 121 °C, for 20 min, for hemicellulose removal and delignificated with 1 % NaOH. SSF was performed with Kluyveromyces marxianus ATCC 36907, at 38 °C, 150 rpm, for 72 h, with different enzyme concentrations (Cellulase Complex NS22086-10, 15 and 20 FPU/gsubstrate and β-Glucosidase NS22118, with a cellulase to β-glucosidase ratio of 1.5:1; 2:1 and 3:1). The best condition for ethanol production was cellulase 20 FPU/gsubstrate and β-glucosidase 13.3 CBU/gsubstrate, resulting in 27.88 g/L ethanol, yield of 0.47 g/g and productivity of 0.38 g/L h. Under this condition the highest enzymatic conversion of cellulose to glucose was attained (87.06 %).  相似文献   

17.
Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a single process, is a promising strategy for effective ethanol production from lignocellulosic materials because of the resulting reduction in utilities, the substrate and other raw materials and simplification of operation. CBP requires a highly engineered microbial strain capable of hydrolyzing biomass with enzymes produced on its own and producing high-titer ethanol. Recently, heterologous production of cellulolytic enzymes has been pursued with yeast hosts, which has realized direct conversion of cellulose to ethanol. Specifically, the development of cell surface engineering, which provides a display of cellulolytic enzymes on the yeast cell surface, facilitates effective biomass hydrolysis concomitantly with ethanol production. On the other hand, the difference in optimum temperature between saccharification and fermentation is a drawback of efficient ethanol production in the simultaneous saccharification and fermentation (SSF). The application of thermotolerant yeast strains engineered to the SSF process would overcome the drawback by performing hydrolysis and fermentation at elevated temperature. In this review, we focus on the recent advances in the application of thermotolerant yeast to CBP and SSF of lignocellulosic material to ethanol. The development of thermotolerant and ethanologenic yeast strains with the ability to hydrolyze lignocellulosic materials is emphasized for high-temperature CBP.  相似文献   

18.
19.
Targeted gene replacement in the thermotolerant yeast Kluyveromyces marxianus KCTC 17555 has been hampered by its propensity to non-homologous end joining (NHEJ). To enhance homologous recombination (HR) by blocking NHEJ, we identified and disrupted the K. marxianus KU80 gene. The ku80 deletion mutant strain (Kmku80?) of K. marxianus KCTC 17555 did not show apparent growth defects under several conditions with the exception of exposure to tunicamycin. The targeted disruption of the three model genes, KmLEU2, KmPDC1, and KmPDC5, was increased by 13–70 % in Kmku80?, although the efficiency was greatly affected by the length of the homologous flanking fragments. In contrast, the double HR frequency was 0–13.7 % in the wild-type strain even with flanking fragments 1 kb long. Therefore, Kmku80? promises to be a useful recipient strain for targeted gene manipulation.  相似文献   

20.
In the simultaneous saccharification and fermentation to ethanol of 100 g l(-1) microcrystalline cellulose, the cellobiose-fermenting recombinant Klebsiella oxytoca P2 outperformed a range of cellobiose-fermenting yeasts used in earlier work, despite producing less ethanol than reported earlier for this organism under similar conditions. The time taken by K. oxytoca P2 to produce up to about 33 g l(-1) ethanol was much less than for any other organism investigated, including ethanol-tolerant strains of Saccharomyces pastorianus, Kluyveromyces marxianus and Zymomonas mobilis. Ultimately, it produced slightly less ethanol (maximum 36 g l(-1)) than these organisms, reflecting its lower ethanol tolerance. Significant advantages were obtained by co-culturing K. oxytoca P2 with S. pastorianus, K. marxianus or Z. mobilis, either isothermally, or in conjunction with temperature-profiling to raise the cellulase activity. Co-cultures produced significantly more ethanol, more rapidly, than either of the constituent strains in pure culture at the same inoculum density. K. oxytoca P2 dominated the early stages of the co-cultures, with ethanol production in the later stages due principally to the more ethanol tolerant strain. The usefulness of K. oxytoca P2 in cellulose simultaneous saccharification and fermentation should be improved by mutation of the strain to increase its ethanol tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号