首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amblyseius fallacis Garman has been selected for pyrethroid resistance and mass reared for experimental release as a biological control agent for tetranychid mites on a number of crops in Canada. Several releases of this predator onto apple and peach trees have failed to result in the establishment of A. fallacis, or in the biological control of Panonychus ulmi Koch. Here, we test the hypothesis that the change of host-plant at the time of release is a critical factor in the establishment of A. fallacis for biological control of P. ulmi. Functional and numerical response studies were undertaken on two populations of A. fallacis: a wild strain collected from the canopy foliage of an apple orchard near Vineland, Ontario; and a second strain reared on bean plants in a commercial insectary with Tetranychus urticae as prey. Each population consumed significantly more P. ulmi and produced significantly more eggs when on leaf disks from the plant species they were reared on, than on leaf disks from the novel host plant. A further experiment was conducted to determine if establishment and biological control of mass-reared A. fallacis could be affected by rearing a population for a short term on apple leaves prior to release on apple trees. Three release treatments were made into potted apple trees in a glasshouse, using predators commercially mass-reared on bean and T. urticae: A. fallacis released directly; A. fallacis reared in the laboratory for four weeks on bean and T. urticae; A. fallacis reared on apple leaves and T. urticae for four weeks. They were compared with a control treatment lacking predator release. Contrary to results of the functional and numerical response studies, no difference was observed between release treatments. All release treatments adding A. fallacis resulted in a similar, if limited, degree of biological control of P. ulmi. These results indicated that there may be short-term effects of host plant on the establishment of A. fallacis and biological control of P. ulmi, which in our study were observed as an initial reduction of the predatory response. However, in a test, the predators appeared to overcome these short-term effects and successfully established on the new host-plant to control P. ulmi.  相似文献   

2.
The spatial distribution of three phytophagous mites,Panonychus ulmi (Koch),Tetranychus urticae Koch andAculus schlechtendali (Nalepa), and two predacious mites,Zetzellia mali (Ewing) andAmblyseius fallacis (Garman), and the effect of pyrethroid lambdacyhalothrin applications on mite spatial dispersion were investigated over a 3-year period in an apple orchard in Ontario. The index of dispersion and the slope of Taylor's power law were used to evaluate dispersion patterns of mites. Panonychus ulmi showed that between-tree spatial variation decreased with an increase of population densities, whereas between-leaf variation increased with population densities. With all other four species it appeared that between-tree variation is much greater than between-leaf variation at all field population density levels. The values ofb by Taylor's power law suggested that all five species of mites are aggregated, but that in generalP. ulmi andT. urticae (b=1.427–1.872) are more aggregated than their predators (b=1.254–1.393). Taylor's regression technique suggests that pyrethroid applications causedP. ulmi, T. urticae, Z. mali andA. fallacis to be less aggregated whileA. schlechtendali was more aggregated. The impact of changes in mite spatial distribution following pyrethroid applications on sampling plans is discussed.  相似文献   

3.
The phytophagous mite Panonychus ulmi Koch has become a significant problem in Ontario vineyards. We attempted to introduce and establish populations of the predatory mite Typhlodromus pyri Scheuten for P. ulmi biological control. Grape leaves were transferred from a vineyard containing T. pyri in early summer 1998, by picking leaves from a donor vineyard and attaching them onto leaves in the release vineyard where T. pyri were extremely rare. Two release treatments were used with rates of 8.5 (1×) and 25.5 (3×) mobiles per vine. In the first season, T. pyri established in similar densities in both release treatments, which were significantly higher than controls. However, there were no differences among treatments in P. ulmi densities in 1998 as a result of predator release. During summer 1999, significantly fewer P. ulmi mite-days were observed in release plots compared to the control. Amblyseius fallacis (Garman) was common throughout the release vineyard in 1998 and in 1999, but appeared on the vines too late in the season to maintain low P. ulmi densities. T. pyri appeared to out-compete A. fallacis in 1999 because A. fallacis densities were significantly lower in plots where T. pyri had been released than in control plots. We conclude that T. pyri can be effective for P. ulmi biological control in Ontario vineyards and may be introduced by transferring leaves. In Europe, transferring prunings has been the standard method of inoculating T. pyri into new vineyards. Here we show that transferring leaves is another practical method.  相似文献   

4.
Emission rates of volatile organic compounds (VOCs) from Pirus malus L. subsp. mitis (Wallr.) var. Golden Delicious and var. Starking attacked by the phytophagous mite Panonychus ulmi Koch, and their attractiveness to the predatory mites Amblyseius andersoni Chant and Amblyseius californicus McGregor, were studied during three years. A large variability was found in the emission of individual VOCs depending on the infestation, the apple tree variety and the date. There were larger total VOC emission rates and larger total VOC leaf concentrations in apple trees attacked by phytophagous mites, especially in the var. Starking. In infested trees of this variety, there were also more predatory mites. An olfactometer assay showed that predatory mites preferentially chose branches infested by Panonychus ulmi (85% went to infested branches vs 15% to uninfested control branches) indicating that volatiles may be used as cues to find their prey.  相似文献   

5.
We sampled mites in three apple orchards in Nova Scotia, Canada, that had been inoculated with pyrethroid-resistant Typhlodromus pyri and had a history of Tetranychus urticae outbreaks. The objective of this study was to monitor populations of T. urticae and phytoseiid predators on the ground and in trees and to track dispersal between the two habitats. Pesticides were the chief cause of differences in mite dynamics between orchards. In two orchards, application of favourably selective acaricides (abamectin, clofentezine) in 2002, coupled with predation by T. pyri in trees and Neoseiulus fallacis in ground cover, decreased high T. urticae counts and suppressed Panonychus ulmi. By 2003 phytoseiids kept the tetranychids at low levels. In a third orchard, application of pyrethroids (cypermethrin, lambda-cyhalothrin), plus an unfavourably selective acaricide (pyridaben) in 2003, suppressed phytoseiids, allowing exponential increases of T. urticae in the ground cover and in tree canopies. By 2004 however, increasing numbers of T. pyri and application of clofentezine strongly reduced densities of T. urticae in tree canopies despite high numbers crawling up from the ground cover. Another influence on T. urticae dynamics was the distribution of the phytoseiids, T. pyri and N. fallacis. When harsh pesticides were avoided, T. pyri were numerous in tree canopies. Conversely, only a few N. fallacis were found there, even when they were present in the ground cover and on tree trunks. Low numbers were sometimes due to pyrethroid applications or to scarcity of prey. Another factor was likely the abundance of T. pyri, which not only competes with N. fallacis, but also feeds on its larvae and nymphs. The scarcity of a specialist predator of spider mites in trees means that control of T. urticae largely depends on T. pyri, a generalist predator that is not particularly effective in regulating T. urticae. The Canadian Crown's right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

6.
The functional response of adult females of the predatory mites Euseius (Amblyseius) finlandicus and Amblyseius andersoni to larvae and adult females of the fruit tree red spider mite Panonychus ulmi was determined on apple and peach leaf disks in the laboratory at 25°C and 16:8 (L:D). For adult females of P. ulmi the predation efficiency of E. finlandicus was higher on peach than on apple, whereas that of A. andersoni was higher on apple than on peach. Efficiency of predation on larvae of P. ulmi by either predator did not differ significantly between apple and peach. On both plants, A. andersoni had a higher predation rate than E. finlandicus on larvae of P. ulmi. It is concluded that in the laboratory the host plant has a substantial effect on predation efficiency of A. andersoni and E. finlandicus when they preyed on adults but not when they preyed on larvae of P. ulmi.  相似文献   

7.
In three separate tests, 100 adult female Neoseiulus fallacis (Garman) (plus immatures) were released at five point locations across 1.6-m rows of strawberries to control twospotted spider mites, Tetranychus urticae Koch. Beginning in April, during 6–12 weeks, predators controlled pests locally and dispersed downwind by 20–30 m. Up to 100 m2 around each release point was colonized, and the entire 2.5 ha field was covered by predators by September. Distances dispersed by N. fallacis were similar within and across rows, suggesting that dispersal was primarily by aerial rather than by ambulatory means. Factors that affected dispersal were temperature, wind direction, density of spider mites, and mowing and flailing of foliage. An exponential model of dispersal was fitted to the data. On average, the area dispersed by N. fallacis doubled every 70 degree-days. From these results, a strategy of minimum release is suggested. To establish N. fallacis over a field in a single season, ca. 100 adult females per 1–2 m of row can be released before 1 July, after T. urticae have achieved 2–5 female adults per leaf. Releases should be 50 m apart and to the upwind side of the field. Selective sprays may be needed to suppress spider mites until predators gain control and disperse over the field.  相似文献   

8.
Herbicide strips are used in apple orchards to promote tree growth and survival, to increase yield and to reduce the risk of rodent damage to tree bark. However, herbicide strips, particularly wider ones, may cause problems including soil erosion, reduced organic matter, leaching of nitrates into ground water and increased incidence of plant diseases and pests, including two-spotted spider mites, Tetranychus urticae Koch. In this 2 year study we monitored mite dynamics in apple trees and used sticky bands on tree trunks to determine rates of T. urticae immigration into Nova Spy apple trees in plots with wide (2 m) or narrow (0.5 m) herbicide strips. Use of wider herbicide strips promoted two risk factors that could trigger outbreaks of tetranychid mites. First, concentrations of leaf N in apple trees were higher and those of P and K were lower with the wide strips. Such changes in nutritional quality of leaves would increase the potential for more rapid population growth of T. urticae, and to a lesser extent, the European red mite, Panonychus ulmi (Koch). Second, there were higher rates of T. urticae immigration from the ground cover vegetation into the trees. In 2006, and for most of 2007, densities of T. urticae were higher with wide herbicide strips, whereas densities of P. ulmi were not enhanced. However, by late August to early September in 2007, densities of both tetranychids were lower with wide herbicide strips. This is because both risk factors were counterbalanced, and eventually negated, by the enhanced action of phytoseiid predators, mostly Typhlodromus pyri Scheuten. From July through September 2006, ratios of phytoseiids to tetranychids were always several-fold lower with wide herbicide strips but in 2007, from mid-July onwards, predator–prey ratios were usually several-fold higher with wide strips. However, this numerical response of phytoseiids to prey density can only occur where the pesticide program in orchards is not too harsh on phytoseiids. Hence the impact of width of herbicide strip is contingent on the composition and size of the phytoseiid complex and the impact of pesticides on predation.  相似文献   

9.
Prey preference of three phytoseiid species,Typhlodromus pyri Scheuten,Amblyseius potentillae (Garman) andA. finlandicus (Oudemans) which occur in Dutch orchards, was analysed with respect to two economically important phytophagous mites, the European red spider mitePanonychus ulmi (Koch), and the apple rust miteAculus schlechtendali (Nalepa). Two types of laboratory experiments were carried out: (1) olfactometer tests to study the response when volatile kairomones of both prey species were offered simultaneously; and (2) predation tests in mixtures of the two prey species and comparison with calculated predation rates, using a model provided with parameters estimated from experiments with each prey species alone. In addition, the diet of field-collected predators was analysed using electrophoresis. For each predator species the results of the different tests were consistent, in thatT. pyri andA. potentillae preferredP. ulmi overA. schlechtendali, whereasA. finlandicus preferredA. schlechtendali overP. ulmi.  相似文献   

10.
A population simulation model that was developed for the fruit tree red spider mite (Panonychus ulmi Koch) and its phytoseiid predator (Amblyseius potentillae Garman) (Rabbinge, 1976) was adapted to Metaseiulus occidentalis Nesbitt and Tetranychus urticae Koch. The model uses life-table data for T. urticae and M. occidentalis and M. occidentalis' numerical and functional responses. The assumptions made in the model were tested by comparing the model outcome with the results of an independent greenhouse experiment. Sensitivity analyses were also done to evaluate the implicit assumptions of the model and to determine the relative importance of the rates and parameters used. Results of the sensitivity analysis showed that time of release is critical for rapid control of the prey population. Predator-prey release ratios and frequency of releases are relatively less important. Differences in functional and numerical response and predator dispersal rate also seem relatively less important than proper timing of releases.
Zusammenfassung Ein Simulationsmodell, das für die Populationen der Obstbaumspinnmilbe (Panonychus ulmi Koch) und ihren Feind (Amblyseius potentillae Garman) entwickelt worden war (Rabbinge, 1976), wurde Metaseiulus occidentalis Nesbitt und Tetranychus urticae Koch angepasst. Das Modell verwendet Life-table Daten für T. urticae und M. occidentalis sowie die numerischen und funktionalen Reaktionen von M. occidentalis. Die im Modell gemachten Annahmen wurden getestet, indem das Modellergebnis mit den Resultaten eines unabhängigen Gewächshausversuchs verglichen wurde. Die Sensitivitätsanalyse zeigte, dass der Zeitpunkt der Freilassung entscheidend ist für eine rasche Begrenzung der Wirtspopulation. Das Räuber-Wirtverhältnis und die Häufigkeit der Freilassung sind weniger wichtig. Unterschiede in der numerischen und funktionalen Reaktion und die Ausbreitungsgeschwindigkeit scheinen ebenfalls weniger wichtig zu sein als der richtige Zeitpunkt der Freilassung.
  相似文献   

11.
Résumé L'étude en laboratoire de la biologie du développement deAmblyseius andersoni, Neoseiulus fallacis, Galendromus longipilus etTyphlodromus pyri a permis de calculer les seuils de développement et le taux intrinsèque d'accroissement naturel à 20°C lorsque ces espèces sont nourries avecTetranychus urticae. Le taux de fécondité spécifique à l'age des 4 espèces a été déterminé en utilisant comme proie soitT. urticae, soitPanonychus ulmi. PourA. andersoni et pourT. pyri, P. ulmi constitue une nourriture meilleure queT. urticae, contrairement àN. fallacis etG. longipilus, dont le taux d'accroissement est supérieur quand ils se nourrissent deT. urticae. PourG. longipilus, P. ulmi constitue même une nourriture nettement suboptimale. Pour les femelles de toutes les espèces on a pu mettre en évidence la faculté d'adapter le taux de fécondité et la durée d'oviposition au nombre des proies disponibles. En termes de fécondité, cela permet à ces espèces de réaliser presque tout leur potentiel, indépendamment de la ration quotidienne de nourriture.   相似文献   

12.
Contact activities of flucycloxuron on immature stages of the two-spotted spider mite (Tetranychus urticae (Koch)) and the European red mite (Panonychus ulmi (Koch)) gradually decrease in the successive developmental stages. The levels of contact activity of flucycloxuron on larvae and protonymphs ofT. urticae andP. ulmi are of the same order. Deutonymphs ofT. urticae are less susceptible to contact activity than the similar stage ofP. ulmi. In adultT. urticae, the transovarial ovicidal activity was used as an indicator for cuticular penetration. More than 90% of the maximal penetration into adult mites occurs within 8 h. Reversibility of the transovarial activity was not observed after 24 h, but did occur after a subsequent 48 h stay on untreated leaves. The ovo-larvicidal activity of flucycloxuron onP. ulmi after treatment of apple leaves is strongly negatively influenced by leaf age, partly by lower retention of the spray liquid on the leaves. Leaf penetration was measured by application of flucycloxuron on leaf uppersides and assessment of the transovarial activity in mites (P. ulmi orT. urticae) infested on the undersides, one day after treatment. In this test system, leaf penetration was found to be strongly species dependent. Penetration was high in cucumber, moderate in French beans, cotton, roses and strawberry, but low in apple and pepper. Leaf penetration in French bean plants is drastically reduced at increasing leaf age. The overall positive effect of increase in relative air humidity on leaf penetration, is statistically highly significant (P=0.001) for French beans and almost significant (P=0.08) for cucumbers. WithT. urticae on French bean it was found that in this test flucycloxuron needs more than one day for maximal leaf penetration. Although in apple leaves penetration from uppersides was low, penetration from undersides was much higher. The surfactants Arkopal N 130, Silwet L-77 and X2-5309 enhance penetration from leaf under-sides.  相似文献   

13.
Field surveys were conducted from 2004 to 2007 to determine the species composition and relative abundance of natural enemies associated with colonies of either the citrus red mite, Panonychus citri, or the two spotted spider mite, Tetranychus urticae, in Valencian citrus orchards (eastern Spain). Fourteen species were recorded, six phytoseiid mites and eight insect predators. Two of them are reported for the first time on citrus in Spain and two more are first reports as predators associated with T. urticae. The community of predators associated with T. urticae and P. citri was almost identical, and the Morisita–Horn index of similarity between both natural enemy complexes was close to one, suggesting that predators forage on both pest species. Quantifying the presence of many known spider mites predators in Valencian citrus orchards is an important first step towards spider mite control. A challenge for future studies will be to establish conservation and/or augmentation management strategies for these predators, especially to improve T. urticae biological control.  相似文献   

14.
The predacious phytoseiid mite Neoseiulus fallacis (Garman) is an important agent for the biological control of spider mites in deciduous fruit orchards in North America and Canada. It would be helpful to monitor the fate of released individuals to improve the results of introductions of the predators in biological control trials. We have used two types of genetic markers, pyrethroid resistance and allozymes, for indirect estimation of the survival of N. fallacis introduced in an apple orchard in Ontario, Canada. Mite samples were submitted to toxicological tests. The polymorphism of four enzymes was studied in individual females using an isoelectric focusing technique. A mite sample was taken from the field, mass-reared in the laboratory, and selected for permethrin resistance. This strain was released on several apple trees treated with permethrin, and mite samples were collected from the same trees 10 to 90 days later. The genetic composition and the insecticide resistance level of this sample were compared to those of two other samples from trees where mites had not previously been released, either in the same orchard or in a neighboring block. A control susceptible strain was compared using mites collected earlier from trees on the same site but outside the present experiment. The mites collected from the release trees and those from the strain used for the releases were found to be genetically closely related, as judged from a small genetic distance, and from similar levels of insecticide resistance in both samples. The control samples from the nonrelease trees were genetically distant from these and displayed low resistance levels. These results indicate that the released genotypes established and persisted in the release trees for the period of the experiment. The utility of the two approaches in assessing the fate of released natural enemies is discussed.  相似文献   

15.
Generalist predatory mites are the common phytoseiid fauna in many agroecosystems, but little attention has been paid to their potential as biological control agents. In this study, we determined the functional responses of adult females of the generalist predator Neoseiulus barkeri Hughes on eggs, larvae, and adults of the two-spotted spider mite, Tetranychus urticae Koch, in the laboratory. Predation experiments were conducted on pepper leaf discs over a 24 h period at 25±1°C, 70–80% RH and 16L:8D photoperiod. Prey densities ranged 5 to 80 eggs, or 5 to 40 larvae, or 1 to 8 female adults of T. urticae per disc. The predation rate of N. barkeri adult females on T. urticae eggs was the same as on its larvae, but the predation rate on adult females was much lower. The role of generalist predatory mites in integrated and biological control of greenhouse pests was discussed.  相似文献   

16.
Plant-inhabiting predatory mites in the family Phytoseiidae are known to disperse passively on air currents. In this article ww analyse observations on the behaviour that initiates aerial dispersal, the so-called take-off behaviour. When starved for 24 hours at 25°C and 35% RH, about 80% of the females of Phytoseiulus persimilis Athias-Henriot became airborne during 10 minute exposure to wind velocities of 2 ms-1 or higher. However, take-off was suppressed when females were exposed to volatile chemicals emanating from leaves that had been infested by two-spotted spider mites (Tetranychus urticae Koch) during one day preceding the experiments. This result is the first unambiguous proof that phytoseiid mites exert control over take-off. Interestingly, the females of the predator strain under study did not show the characteristic upright posture that was hypothesized to be important for take-off in two other species of phytoseiid mites (Amblyseius fallacis Garman and Metaseiulus occidentalis (Nesbitt)). These observations shed new light on the behaviour involved in controlling take-off. It is suggested that take-off control is exerted mainly via the grasp of the claws and the adhesive empodia in a way reminiscent of that described for aphids.  相似文献   

17.
Aerial dispersal of European red mite, Panonychus ulmi (Koch), in commercial apple orchards was estimated by trapping windborne mites. Studies were conducted at four orchards in eastern New York during 1989 and 1990 and at three orchards in western New York during 1989. In each orchard mites were trapped in three locations; the interior of the orchard, at the border of the orchard and in a field or woodlot beyond the orchard. Large numbers of mites were captured, even when the numbers of mites on apple foliage were well below levels where mite injury to leaves was visible (less than five per leaf). The log numbers of mites trapped were linearly related to the log density of mites on leaves and this relationship was consistent for each year and region the study was conducted. The trap captures among the three locations in and outside an orchard were highly correlated. The implications these findings may have on metapopulation dynamics and resistance to acaricide dynamics are discussed.  相似文献   

18.
Osakabe M  Hongo K  Funayama K  Osumi S 《Oecologia》2006,150(3):496-505
Competitive displacement is considered the most severe consequence of interspecific competition; if a superior competitor invades the habitat of an inferior species, the inferior species will be displaced. Most displacements previously reported among arthropods were caused by exotic species. The lack of investigation of displacement among native species may be due to their apparently harmonious coexistence, even if it is equivalent to an outcome of interspecific association. A seasonal change in the species composition of spider mites, from Panonychus ulmi to Tetranychus urticae, is observed in apple trees worldwide. Previous laboratory experiments have revealed amensal effects of T. urticae on P. ulmi via their webs. Using manipulation experiments in an orchard, we tested whether this seasonal change in species composition occurred as the result of interspecific competition between these spider mites. Invasion by T. urticae prevented an increase in P. ulmi densities throughout the experimental periods. Degree of overlap relative to the independent distribution on a leaf-surface basis (ω S) changed from positive to negative with increasing density of T. urticae. T. urticae invasion drove P. ulmi toward upper leaf surfaces (competitor-free space). The niche adjustment by P. ulmi occurred between leaf surfaces but not among leaves. Our findings show that asymmetrical competition between T. urticae and P. ulmi plays an important role in this unidirectional displacement and that the existence of refuges within a leaf produces the apparently harmonious coexistence of the mites and obscures their negative association.  相似文献   

19.
The phytoseiid miteAmblyseius barkeri (Hughes) (=Amblyseius mckenziei Sch. & Pr.) was used for biological control ofThrips tabaci Lind. in 7 commercial glasshouses with cucumber (a total of 5780 m2). Predatory mites were introduced 3–4 times in densities ranging from 40 to 300/m2 at each release. In 6 of the 7 glasshouses, control of thrips was satisfactory throughout the growing season. Thrips densities were kept below 15 individuals per leaf. In 1 glasshouse, thrips damage was seen on the fruits at densities of 25 thrips per leaf, but the thrips population was quickly reduced and remained at low densities for the next 3 months.   相似文献   

20.
The two spotted spider mite, Tetranychus urticae Koch, is an important herbivore pest of apple trees in Northwest China. This spider mite and another less damaging spider mite, Eotetranychus pruni Oudemans, are attacked by a common and often effective phytoseiid predator, Euseius finlandicus (Oudemans). Functional relationships were studied in the field to evaluate the impact of E. pruni and E. finlandicus on T. urticae. The results from this study showed that the predator-mediated apparent competition strongly affected the population dynamics of T. urticae. The addition of the apparent competitor E. pruni alone had little impact on T. urticae densities. Although the release of the predator E. finlandicus alone could result in reduction in T. urticae densities, the greatest reduction in T. urticae densities occurred in plots where both the predator E. finlandicus and apparent competitor E. pruni were released. In apple orchards, the early introduction of both the apparent competitor E. pruni and predator E. finlandicus would evidently increase the population size of the predator E. finlandicus and consequently significantly enhance the control of T. urticae populations. It is concluded from the study that the predator and apparent competitor release might be an appropriate control for the target species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号