首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proliferation of Chinese hamster fibroblasts (CHF) and NIH 3T3 cells was studied at different flow rates immediately above the cells. It is shown that there is a limiting density of saturation of the perfused culture that accounts for 1.7 x 10(6) - 2.0 x 10(6) cells/cm2 for NIH 3T3 cells, and for 6 x 10(6) - 7 x 10(6) cells/cm2 for CHF. The growth curves and the distribution of cells with respect to the phases of the cell cycle during cultivation with and without perfusion are presented. Based on the results obtained it is assumed that the limit of saturation density of perfused CHF culture is due to the mass transfer of the growth-inhibiting metabolites inside the multilayer structures. The assumption seems to hold true for NIH 3T3 cells, too, even though the multilayer character of growth of this culture is less pronounced than in CHF.  相似文献   

2.
Chinese hamster fibroblasts (CHF) and NIH 3T3 cells were cultured on a glass substrate at different distances from the porous membrane separating the cells from the perfusing medium. It is shown that with perfusion of medium above the membrane there is no movement of the medium near the cells. In both the types of culture, the cells grow in multilayers, however the multilayer character of growth in CHF is more pronounced than in NIH 3T3 cells. The saturation density of the cultures depends on the cell-membrane separation, and at separations of no more than 0.2 mm exceeds the saturation density in the monolayer by 8-10 fold. The dependences of the saturation density on separation are different for CHE and NIH 3T3 cells, indicating qualitative differences in the inhibition of cell growth in monolayers between these cultures. The results obtained indicate that the inhibition of cell growth in monolayer is due to mass exchange limitations, rather than to intercellular contact interactions.  相似文献   

3.
Swiss mouse 3T3 cells and rat liver-derived RLCW cells were grown in monolayers and perfused with culture medium. A flow-rate dependent increase in the growth rate was observed both by 3H-thymidine uptake and by a rise in cell numbers. The characteristics of the response were dependent on the recirculating volume and on whether serum was present in the culture medium. In RLC cultures perfused with serum-supplemented medium the growth promoting effect decreased with increasing density of the cells. In the absence of serum, recirculation of NCTC medium had no effect on RLCs but increased growth was observed in recirculated MEM. In 3T3 cultures, a linear response was observed over a limited density range in the presence of 10% serum-supplemented medium indicating that substances present in the serum substantially modify the behaviour of the monolayer to perfusion. In serum-free medium the effect of perfusion on 3T3 cultures was confined to a small density range and was consistent with the more rapid removal of a diffusible inhibitor from the pericellular environment by recirculating the medium. Treatment of the perfusing medium with immobilised proteinases (trypsin, chymotrypsin, protease) did not alter the response except in the presence of putrescine.  相似文献   

4.
Swiss mouse 3T3 cells and rat liver-derived RLCW cells were grown in monolayers and perfused with culture medium. A flow-rate dependent increase in the growth rate was observed both by 3H-thymidine uptake and by a rise in cell numbers. The characteristics of the response were dependent on the recirculating volume and on whether serum was present in the culture medium. In RLC cultures perfused with serum-supplemented medium the growth promoting effect decreased with increasing density of the cells. In the absence of serum, recirculation of NCTC medium had no effect on RLCs but increased growth was observed in recirculated MEM. In 3T3 cultures, a linear response was observed over a limited density range in the presence of 10% serum-supplemented medium indicating that substances present in the serum substantially modify the behaviour of the monolayer to perfusion. In serum-free medium the effect of perfusion on 3T3 cultures was confined to a small density range and was consistent with the more rapid removal of a diffusible inhibitor from the pericellular environment by recirculating the medium. Treatment of the perfusing medium with immobilised proteinases (trypsin, chymotrypsin, protease) did not alter the response except in the presence of putrescine.  相似文献   

5.
A novel perfusion culture system for efficient production of IgG2a monoclonal antibody (mAb) by hybridoma cells was developed. A ceramic membrane module was constructed and used as a cell retention device installed in a conventional stirred-tank reactor during the perfusion culture. Furthermore, the significance of the control strategy of perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was investigated. With the highest increasing rate (deltaD, vvd per day, vvdd) of perfusion rate, the maximal viable cell density of 3.5 x 10(7) cells/mL was obtained within 6 days without any limitation and the cell viability was maintained above 95%. At lower deltaD's, the cell growth became limited. Under nutrient-limited condition, the specific cell growth rate (mu) was regulated by deltaD. During the nonlimited growth phase, the specific mAb production rate (qmAb) remained constant at 0.26 +/- 0.02 pg/cell x h in all runs. During the cell growth-limited phase, qmAb was regulated by deltaD within the range of 0.25-0.65 vvdd. Under optimal conditions, qmAb of 0.80 and 2.15 pg/cell x h was obtained during the growth-limited phase and stationary phase, respectively. The overall productivity and yield were 690 mg/L x day and 340 mg/L x medium, respectively. This study demonstrated that this novel perfusion culture system for suspension mammalian cells can support high cell density and efficient mAb production and that deltaD is an important control parameter to regulate and achieve high mAb production.  相似文献   

6.
Summary The adhesion and proliferation of mammalian fibroblasts (Flow 7000) on the surface of hydrophilic (copolymer ofN-vinyl-2-pyrrolidone and methyl methacrylate) and hydrophobic [polymethylmethacrylate (PMMA) stereocomplex] hydrogels with a wide range in water content were studied morphologically and quantitatively. It was demonstrated that cell proliferation on hydrogels by a static culture method decreased as the water content of the gels increased. However, it is remarkable that the cell proliferation on PMMA hydrogels with a high water content is equivalent to that on glass Petri dishes. The results obtained in the proliferation of cells on the surface of these hydrogels closely correspond to the state of cell adhesion. When fresh medium or air was perfused from the popposite side of the PMMA hydrogel membrane on which the cells were proliferating (perfusion method), the cells continued to grow into a higher density than with the conventional static culture method. In the case of fresh medium perfusion, the amount of proliferated cell was dependent on both the permeability of the membrane and the density of the membrane “scaffolding”. Virus multiplication in the cultured cells increased in proportion to the cell density, whereas the cell function was similar in both culture methods.  相似文献   

7.
The metabolic pattern and cell culture kinetics of high-cell-density perfusion cultures were compared under two different oxygen transfer conditions: oxygen limiting and not limiting. When oxygen was a limiting factor during perfusion culture, both specific glucose uptake and lactate production rates increased, compared to non-oxygen-limited condition, by about 60% and 30%, respectively. The specific glutamine uptake rate under oxygen-limited conditions was almost 4.0 times higher than that under non-oxygen-limited conditions. The activity of lactate dehydrogenase (LDH) released into the medium by the dead cells can be used as an indicator for the metabolic and physiological conditions related to oxygen limitation. There was a 3.2 times higher specific rate of LDH activity released by dead cells in oxygen-limited cultures than those in non-oxygen-limited cultures. The specific production rate of monoclonal antibody was not significantly affected by the oxygen transfer conditions during the rapid cell growth period, but it rapidly increased toward the end of perfusion cultures. The higher perfusion rate may have limited further cell growth during high-cell-density perfusion culture, because cell damage was caused by the hydrodynamic shear within a hollow fiber microfiltration cartridge installed to withdraw the spent medium and the waste metabolites. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
【目的】探讨葡萄糖作为外加碳源对热带海洋小球藻(Chloralla sp.HN08)生物质生产和脂、光合色素、碳水化合物及可溶性蛋白等细胞主要成份含量的影响。【方法】分析比较小球藻HN08在光合自养和兼养(添加10 g/L葡萄糖)2种营养方式下的生长速率、细胞密度、光合放氧速率、油脂相对含量,以及可溶性总糖、淀粉和可溶性蛋白的含量。【结果】结果表明,在光照条件下葡萄糖(10 g/L)能促进小球藻(Chloralla sp.HN08)生长,提高细胞终密度,而异养条件下藻细胞逐渐衰亡。兼养条件下,细胞相对生长速率及细胞终密度分别是自养条件下的6.8倍和1.3倍。兼养藻细胞中可溶性糖、淀粉、油脂含量显著高于(P0.05)光合自养细胞,然而可溶性蛋白质和光合色素含量显著低于(P0.05)光合自养细胞。添加葡萄糖的小球藻液的光饱和点和呼吸速率均高于光自养条件下的细胞,但2种培养条件下藻液的净光合速率无显著差异(P0.05)。【结论】光照条件下,添加葡萄糖可显著提高小球藻HN08相对生长速率和细胞终密度,促进油脂与淀粉的积累。  相似文献   

9.
Radial-flow perfusion bioreactor systems have been designed and evaluated to enable direct cell seeding into a three-dimensional (3-D) porous scaffold and subsequent cell culture for in vitro tissue reconstruction. However, one of the limitations of in vitro regeneration is the tissue necrosis that occurs at the central part of the 3-D scaffold. In the present study, tubular poly-L-lactic acid (PLLA) porous scaffolds with an optimized pore size and porosity were prepared by the lyophilization method, and the effect of different perfusion conditions on cell seeding and growth were compared with those of the conventional static culture. The medium flowed radially from the lumen toward the periphery of the tubular scaffolds. It was found that cell seeding under a radial-flow perfusion condition of 1.1 mL/cm2 x min was effective, and that the optimal flow rate for cell growth was 4.0 mL/cm2 x min. At this optimal rate, the increase in seeded cells in the perfusion culture over a period of 5 days was 7.3-fold greater than that by static culture over the same period. The perfusion cell seeding resulted in a uniform distribution of cells throughout the scaffold. Subsequently, the perfusion of medium and hence the provision of nutrients and oxygen permitted growth and maintenance of the tissue throughout the scaffold. The perfusion seeding/culture system was a much more effective strategy than the conventional system in which cells are seeded under a static condition and cultured in a bioreactor such as a spinner flask.  相似文献   

10.
cGMP and cAMP concentrations were studied in cultures of two strains of normal human diploid lung fibroblasts, WI38 and KL-2, under various conditions which alter growth rate. Higher levels of cAMP were found in fibroblasts grown in medium with low (0.1 – 1.0%) serum concentration and thus exhibiting a decreased rate of growth. A rise in cAMP also preceded the decreased growth rate when medium was not changed for 4 days or longer (starvation). The reinitiation of cell growth by addition of fresh medium containing the standard 10% serum to either starved or serum-restricted cells was preceded by a rapid drop in cAMP level. Cellular cAMP levels increased to a moderate extent as sparse cultures first increased in density, but did not continue to rise as the culture approached saturation density. cGMP levels were inversely related to cell density: much higher cellular cGMP levels were found at low density than at higher cell density, whether cells were rapidly proliferating under standard growth conditions or had their growth arrested by omission of medium change or restriction of serum. Thus, under these conditions the steady state levels of cGMP appear to be related to cell density rather than rate of cell proliferation. However, a transient but appreciable increase in cGMP did occur upon the addition of fresh medium containing 10% serum to starved or serum-restricted cells, a condition leading to reinitiation of cell proliferation. Smaller but significant increases in cGMP were also evident following routine addition of fresh medium with serum to growing cells fed every other day and following mild EDTA-trypsin treatment of confluent WI38 fibroblasts. Thus, at least dual control mechanisms appear to be involved in the regulation of cGMP levels. Comparison of mid- and late-passage WI38 cells revealed no significant differences either in the levels of cGMP at sparse densities or in the density-dependent change in levels. These results suggest that levels of both cAMP and cGMP are influenced by cell density and also by conditions which alter the rate of cell proliferation.  相似文献   

11.
小球藻高密度培养及油脂提取条件的优化   总被引:1,自引:0,他引:1  
【目的】高密度培养小球藻及优化油脂提取条件。【方法】通过进行单因素实验研究不同培养基组成及环境因子对其细胞生长影响,并采用超声波提取法进行正交实验对藻粉油脂提取条件进行研究。【结果】对椭圆小球藻Y4进行异养培养,最适培养条件为:葡萄糖50 g/L,硝酸钾2 g/L,适宜的培养温度、摇床转速和接种量分别为29°C、180 r/min和20%。在此基础上,进行了1 L发酵罐培养实验,获得了干重18.25 g/L的生物量。通过对油脂提取条件进行优化,Y4的油脂提取率由优化前的25.0%提高到60.2%,提高了35.2%。【结论】优化了小球藻的培养条件及油脂提取条件,促进了小球藻的开发和利用。  相似文献   

12.
Human mesenchymal stem cells (hMSCs) have unique potential to develop into functional tissue constructs to replace a wide range of tissues damaged by disease or injury. While recent studies have highlighted the necessity for 3-D culture systems to facilitate the proper biological, physiological, and developmental processes of the cells, the effects of the physiological environment on the intrinsic tissue development characteristics in the 3-D scaffolds have not been fully investigated. In this study, experimental results from a 3-D perfusion bioreactor system and the static culture are combined with a mathematical model to assess the effects of oxygen transport on hMSC metabolism and proliferation in 3-D constructs grown in static and perfusion conditions. Cells grown in the perfusion culture had order of magnitude higher metabolic rates, and the perfusion culture supports higher cell density at the end of cultivation. The specific oxygen consumption rate for the constructs in the perfusion bioreactor was found to decrease from 0.012 to 0.0017 micromol/10(6) cells/h as cell density increases, suggesting intrinsic physiological change at high cell density. BrdU staining revealed the noneven spatial distribution of the proliferating cells in the constructs grown under static culture conditions compared to the cells that were grown in the perfusion system. The hypothesis that the constructs in static culture grow under oxygen limitation is supported by higher Y(L/G) in static culture. Modeling results show that the oxygen tension in the static culture is lower than that of the perfusion unit, where the cell density was 4 times higher. The experimental and modeling results show the dependence of cell metabolism and spatial growth patterns on the culture environment and highlight the need to optimize the culture parameters in hMSC tissue engineering.  相似文献   

13.
Based upon the results of scale-down intermittent perfusion processes, a cell-once-through (COT) perfusion concept was applied to a dual bioreactor system coupled to a Centritech Lab II centrifuge for culture of recombinant Chinese hamster ovary (rCHO) cells for monoclonal antibody production. In this new culture mode, i.e., the COT perfusion process, total spent medium was transferred to the centrifuge and a fixed percentage was removed. Approximately 99% of the viable cells are transferred to another bioreactor filled with fresh medium by single operation of the Centritech Lab II centrifuge system for about 30 min. Accordingly, a significant reduction of the cell-passage frequency to the centrifuge led to minimization of cell damage caused by mechanical shear stress, oxygen limitation, nutrient limitation, and low temperature outside the bioreactor. The effects of culture temperature shift and fortified medium on cell growth and recombinant antibody production in the COT perfusion process were investigated. Although the suppressive effects of low culture temperature on cell growth led to a loss of stability in a long-term COT perfusion culture system, the average antibody concentration at 33 degrees C was 157.8 mg/L, approximately 2.4-fold higher than that at 37 degrees C. By the use of a fortified medium at 37 degrees C, rCHO cells were maintained at high density above 1.2 x 10(7) cells/mL, and antibody was produced continuously in a range of 260-280 mg/L in a stable long-term COT perfusion culture. The proposed new culture mode, the COT perfusion approach, guarantees the recovery of rCHO cells damaged by lowered temperature or high lactate and ammonium concentration. It will be an attractive choice for minimization of cell damage and stable long-term antibody production with high cell density.  相似文献   

14.
The influence of desialylation of human transcortin on transport of the transcortin-cortisol complex into the liver cells and its intracellular distribution was investigated in perfused rat liver. Under experimental conditions used the half-time of cortisol in perfusion medium was decreased more than 200 times in presence of asialotranscortin compared to that of native transcortin. Experiments with [3H]cortisol and [131I]asialotranscortin demonstrated a simultaneous uptake of cortisol and asialotranscortin by the hepatocytes. Distribution of [3H]cortisol and [131I]asialotranscortin in subcellular fractions showed the following pathway of cortisol-asialotranscortin complex: cell membrane, lysosomes, cytoplasm. The complex dissociates in lysosomes.  相似文献   

15.
Chlorophyllous cells in suspension culture from the moss, Barbula unguculata Hedw., grown under photoheterotrophic conditions were transferred to photoautotrophic conditions. The cells started to grow photoautotrophically without selection. Maximum growth was observed under irradiances of more than 5 W m2 and in an atmosphere enriched with 1% (v/v) CO2. Under optimum growth conditions, dry weight and chlorophyll content in the culture had increased 20-fold after 20 days of cell growth. High concentration of chlorophyll [10–20 μg (mg dry weight)−1] and high photosynthetic actively [30–70 μmol O2 evolved (mg chlorophyll)−1 h−1] were observed throughout the culture period. In sugar-free culture medium, cell growth did not occur in the dark or in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) under light, although cell growth was observed in glucose-containing medium under those conditions. When cells that were grown photoautotrophically for one year were transferred to glucose-containing medium under ordinary air, they started to grow heterotrophically both in the light and in the dark.  相似文献   

16.
副干酪乳杆菌HD1.7群体感应行为   总被引:2,自引:1,他引:1  
【目的】Paracin1.7是从副干酪乳杆菌(Lactobacillus paracasei)HD1.7发酵液中提取的一种细菌素,本文主要研究菌株HD1.7在发酵过程中调控Paracin1.7代谢的群体感应机制。【方法】利用杯碟法检测不同生长条件下菌株HD1.7培养液的抑菌活性,通过调整培养基营养成分的多寡,控制培养液中细胞密度。【结果】菌株HD1.7的抑菌活性与其细胞密度密切相关,只有当细胞密度达到一定的阈值(OD600为0.8,菌体干重为0.331 1 g/L)时,菌株才能表现抑菌活性;以发酵上清液作为信号分子,当添加不同浓度信号分子至低于阈值浓度培养液后,菌株抑菌活性受到不同程度的影响,并且在去除信号分子后,菌株的抑菌活性明显降低。【结论】细菌素Paracin1.7是存在于HD1.7发酵液中的特殊的群体感应信号分子,可进行自我诱导。细菌素Paracin1.7的抑菌活性受到HD1.7群体感应系统的调控。  相似文献   

17.
不同培养条件对胶质芽孢杆菌诱导碳酸钙晶体形成的影响   总被引:4,自引:0,他引:4  
周雪莹  杜叶  连宾 《微生物学报》2010,50(7):956-962
【目的】研究不同培养条件对胶质芽孢杆菌(Bacillus mucilaginosus)菌体形态、数量和分泌的碳酸酐酶(CA酶)活性的影响,以及不同方式培养的菌体与碳酸钙晶体的生长及其形貌、数量之间的联系。【方法】分别采用无氮和有氮培养基培养胶质芽孢杆菌,进行菌体形态、数量及CA酶活性的比较,收集不同培养方式的菌体加入碳酸钙结晶体系中以研究细菌与碳酸钙晶体形成的联系。【结果】在无氮培养条件下,胶质芽孢杆菌数量少、荚膜肥厚,细菌培养液CA酶活力较低;有氮培养条件下,菌体数量多、荚膜单薄,细菌培养液CA酶活力较高。在碳酸钙结晶体系中加入无氮培养的菌体,生成的碳酸钙晶体表面光滑,体积较大但数量较小,加入有氮条件下培养的菌体形成的碳酸钙晶体表面粗糙,数量大但体积较小。【结论】不同培养条件能够引起胶质芽孢杆菌菌体数量、荚膜多糖及CA酶活的明显差异,进而对碳酸钙晶体的生成和形貌产生影响。  相似文献   

18.
The abilities of various methods of oxygenation to meet the demands of high-cell-density culture were investigated using a spin filter perfusion system in a bench-top bioreactor. Oxygen demand at high cell density could not be met by sparging with air inside a spin filter (oxygen transfer values in this condition were comparable with those for surface aeration). Sparging with air outside a spin filter gave adequate oxygen transfer for the support of cell concentrations above 107 ml–1 in fully aerobic conditions but the addition of antifoam to control foaming caused blockage of the spinfilter mesh. Bubble-free aeration through immersed silicone tubing with pure oxygen gave similar oxygen transfer rates to that of sparging with air but without the problems of bubble damage and fouling of the spin filter. A supra-optimal level of dissolved oxygen (478% air saturation) inhibited cell growth. However, cells could recover from this stress and reach high density after reduction of the dissolved oxygen level to 50% air saturation.  相似文献   

19.
Microcarrier culture of vascular endothelial cells on solid plastic beads   总被引:1,自引:0,他引:1  
The culture of vascular endothelial cells on solid plastic beads is described. A greater than 30-fold increase in cell numbers was achieved in stationary culture medium. The inclusion of fibroblast growth factor slightly improved the rate of growth from low densities. Addition of fresh beads to colonized beads resulted in colonization of the newly introduced microcarrier. In common with the behaviour of endothelium in conventional culture, the cells cultured on beads changed from a fusiform to a polygonal shape after reaching confluence. Cell proliferation was also observed by [3H]thymidine autoradiography of DNA. The fraction of radiolabelled nuclei declined at confluence on each bead, indicating density-inhibition of growth. By electron microscopy, the cells displayed the typical ultrastructural appearance of endothelium. Following transfer of colonized beads to a chromatography column with slow perfusion of the bead bed, cell viability was maintained over a 24 h period and proportional synthesis of prostaglandin I2 upon stimulation by ionophore A23187 was demonstrated. This simple microcarrier technique allows the generation of large numbers of vascular endothelial cells for subcellular fractionation with economical use of space and medium. When set up as a perfused bead bed, it offers possibilities for the short-term collection of concentrated endothelial metabolites.  相似文献   

20.
陈昭烈  Kai  Iding 《生物工程学报》2001,17(1):109-112
在动物细胞培养过程中对培养体系实施培基连续灌流能及时地补充细胞生长所需的营养物质、控制细胞代谢产物对细胞的影响 ,实现细胞的高密度长期培养 ,提高目的产品的生产效率[1,2 ] 。细胞连续灌流培养的前提是在实施培基连续灌流的同时培养体系能有效地截留细胞[3] 。这一前提增加了细胞培养装置的复杂程度 ,使之特化为价格昂贵的生物反应器 ,限制了细胞连续灌流培养的应用。如能通过对普通的细胞搅拌培养瓶进行改进 ,使之能用于细胞的连续灌流培养 ,则有利于细胞连续灌流培养的推广应用。1 材料和方法1 1 细胞产人重组凝血酶原CHO工…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号