首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the influence of estrogen on postexercise muscle repair processes, we examined the effects of estrogen supplementation (0.25-mg pellet) on numbers of myofibers positive for markers of total, activated, and proliferating satellite cells in rat skeletal muscles 72 h following downhill running. Ovariectomized female rats (n = 44) were divided into four groups (n = 11 per group): sham (no estrogen) controls (SC); sham, exercised (SE); estrogen-supplemented controls (EC); and estrogen-supplemented, exercised (EE). After 8 days of estrogen exposure, animals were exposed to 90 min of treadmill running at 17 m/min (-13.5 degrees ). Seventy-two hours later, soleus and white vastus muscles were removed and immunostained for total [paired box homeotic gene 7 (Pax7)], [activated myogenic differentiation factor D (MyoD)], and proliferating [5-bromo-2'-deoxyuridine (BrdU)] satellite cells. beta-Glucuronidase activity was increased (P < 0.05) in both muscles following exercise; however, the postexercise elevations in enzyme activity were attenuated in the EE group compared with the SE group in the soleus (P < 0.05). Immunohistochemical analysis revealed that exercised groups displayed increased numbers of myofibers containing total, activated, and proliferating satellite cells compared with control groups (P < 0.05). Furthermore, greater numbers of fibers positive for markers of total, activated, and proliferating satellite cells were observed postexercise in EE animals compared with SE animals for both muscles (P < 0.05). The results demonstrate that estrogen may potentially influence post-damage repair of skeletal muscle through activation of satellite cells.  相似文献   

2.
3.
The purposes of this study were to examine (a) the effects of acute exercise on metabolic rate 24 and 48 h postexercise and (b) the interaction of acute exercise and the thermic effect of caffeine on metabolic rate and hormonal changes during the late postexercise recovery period. In six young males, who were regular consumers of caffeine, resting energy expenditure was measured before and after caffeine (5 mg.kg-1) and placebo ingestion under the following conditions: (i) control (e.g., no prior exercise), (ii) 24 h postexercise, and (iii) 48 h postexercise. Blood samples were drawn for plasma glucose, insulin, glycerol, free fatty acids, catecholamines, and thyroid hormones (triiodothyronine, thyroxine, and free thyroxine). Results showed that acute exercise did not exert a detectable effect on resting metabolic rate in the late postexercise recovery period, that is, resting metabolic rate was similar among the conditions of control (1.17 +/- 0.12 kcal.min-1), 24 h postexercise (1.16 +/- 0.12), and 48 h postexercise (1.16 +/- 0.11). Caffeine ingestion increased metabolic rate (approximately 7%), but the thermic effect was not different among the experimental conditions. Plasma insulin and norepinephrine were lower after caffeine ingestion, whereas an increase in plasma free fatty acids was noted. Other hormones and substrates did not change significantly in response to caffeine ingestion. Furthermore, the hormonal and substrate milieu was not significantly different 24 and 48 h postexercise when compared with the control condition. Our results support the view that acute exercise does not alter the resting metabolic rate in the late postexercise recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The activity of satellite cells during myogenesis, development, or skeletal muscle regeneration is strongly modelled using cultures of single muscle fibers. However, there are variations in reported features of gene or protein expression as examined with single-fiber cultures. Here, we examined the potential differences in activation of satellite cells on normal mouse muscle fibers produced during a standard isolation protocol, with or without agitation during collagenase digestion. Activation was detected in satellite cells on fibers after 24 and 48 h of culture in basal growth medium using immunodetection of the incorporation of bromodeoxyuridine (BrdU) into DNA and quantification of the number of BrdU-positive cells per fiber. After 24 and 48 h in culture under nonactivating conditions, the number of activated (BrdU+) satellite cells was greater on fibers that had received gentle agitation during collagenase digestion than on those that were subject to digestion without agitation during isolation. The findings are interpreted to mean that at least some of the variation among published reports may derive from the application of various methods of fiber isolation. The information should be useful for maintaining satellite cell quiescence during studies of the regulatory steps that lead to satellite cell activation.  相似文献   

5.
The purpose of this study was to investigate the influence of eccentric contractions (ECC) on the biceps (BB) and triceps brachii (TB) muscles during maximal voluntary contraction (MVC) of elbow flexors using electrical (EMG) and mechanomyographical activities (MMG). Each of 18 male students performed 25 submaximal contractions (50% MVC) of the elbow flexors. Root mean square amplitude (RMS) and median frequency (MDF) were calculated for the EMG and MMG signals recorded during MVC. All measurements were taken before, immediately after, 24, 48, 72, and 120 h post-ECC from the BB and TB muscles. MVC was reduced by 34% immediately after exercise and did not return to the resting value within 120 h (P0.05). The EMG MDF decreased significantly (P< or =0.05) in both muscles after ECC. The MMG RMS at 24h, 48, 72 and 120 h post-ECC was significantly lower compared to that recorded immediately after ECC in both muscles (P< or =0.05). The present research showed that (i) there were similar changes in electrical and mechanical activities during MVC after submaximal ECC in agonist and antagonist muscles suggesting a common drive controlling the agonist and antagonist motoneuron pool, (ii) the ECC induced different changes in EMG than in MMG immediately after ECC and during 120 h of recovery that suggested an increased tremor and contractile impairments, i.e., reduced rate of calcium release from the sarcoplasmic reticulum (acute effect), and changes in motor control mechanisms of agonist and antagonist muscles, and increased muscle stiffness (chronic effect).  相似文献   

6.
The purpose of the present study was to determine the rates of muscle glycogenolysis and glycogenesis during and after exercise in GLUT-1 transgenic mice and their age-matched littermates. Male transgenic mice (TG) expressing a high level of human GLUT-1 and their nontransgenic (NT) littermates underwent 3 h of swimming. Glycogen concentration was determined in gastrocnemius and extensor digitorum longus (EDL) muscles before exercise and at 0, 5, and 24 h postexercise, during which food (chow) and 10% glucose solution (as drinking water) were provided. Exercise resulted in approximately 90% reduction in muscle glycogen in both NT (from 11.2 +/- 1.4 to 2. 1 +/- 1.3 micromol/g) and TG (from 99.3 +/- 4.7 to 11.8 +/- 4.3 micromol/g) in gastrocnemius muscle. During recovery from exercise, the glycogen concentration increased to 38.2 +/- 7.3 (5 h postexercise) and 40.5 +/- 2.8 micromol/g (24 h postexercise) in NT mice. In TG mice, however, the increase in muscle glycogen concentration during recovery was greater (to 57.5 +/- 7.4 and 152.1 +/- 15.7 micromol/g at 5 and 24 h postexercise, respectively). Similar results were obtained from EDL muscle. The rate of 2-deoxyglucose uptake measured in isolated EDL muscles was 7- to 10-fold higher in TG mice at rest and at 0 and 5 h postexercise. There was no difference in muscle glycogen synthase activation measured in gastrocnemius muscles between NT and TG mice immediately after exercise. These results demonstrate that the rate of muscle glycogen accumulation postexercise exhibits two phases in TG: 1) an early phase (0-5 h), with rapid glycogen accumulation similar to that of NT mice, and 2) a progressive increase in muscle glycogen concentration, which differs from that of NT mice, during the second phase (5-24 h). Our data suggest that the high level of steady-state muscle glycogen in TG mice is due to the increase in muscle glucose transport activity.  相似文献   

7.
Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.  相似文献   

8.
The patterns of skeletal muscle precursor cell replication after crush injury were compared by the use of autoradiographic techniques, in young (4-week-old) and old (39-week-old) BALBc and SJL/J mice. Similar comparisons were made between cut and crush lesions in old BALBc muscle. Muscle precursor cell replication commenced at 18–24 h after injury in both young and old muscles from both strains of mice. In young BALBc muscle the peak of myogenic activity at 60 h was 36 h earlier than in old mice. SJL/J muscle responded more rapidly than did BALBc: in young SJL/J the peak myogenic activity was at 46 h (14 h earlier than in young BALBc muscle), and in old SJL/J muscle the peak activity at 72 h was 24 h earlier than in old BALBc muscle. In all mice (both young and old) myogenic cell replication was substantially reduced by 120 h after injury. A comparison of the timing of muscle precursor cell replication in cut and crush lesions in old BALBc mice revealed a more rapid response in the cut lesion: this difference between the lesions in comparable with data from identical lesion in 6-8-week-old BALBc mice (McGeachie and Grounds 1987). However, the peak of myogenic replication in the older mice in the present study was some 26–36 h later than in the younger 6-8-week-old mice. These experiments show that, whilst muscle precursor cell replication commences at approximately the same time (about 24 h) after injury in young and old mice, the peak level of activity is delayed by some 24–36 h in old mice. In addition, the SJL/J mouse strain responds more rapidly and prolifically to muscle injury than does the BALBc strain.  相似文献   

9.
These experiments were designed to study skeletal muscle pathology resulting from eccentric-biased exercise in rats. The effects on the muscles of running on a treadmill on a 0 degrees incline (similar amounts of concentric and eccentric contractions), down a 16 degrees incline (primarily eccentric contractions), and up a 16 degrees incline (primarily concentric contractions) at 16 m . min-1 for 90 min were assessed by following postexercise changes in 1) plasma creatine kinase and lactate dehydrogenase activities, 2) glucose-6-phosphate dehydrogenase (G-6-PDase) activity (bio- and histochemically) in the physiological extensor muscles, and 3) histological appearance of the muscles. The data indicate the following. 1) Whereas all exercise protocols resulted in elevations of plasma enzymes immediately after running, only eccentric exercise caused late phase elevations 1.5-2 days postexercise. 2) Significant increases in muscle G-6-PDase activity, which were always associated with accumulations of mononuclear cells, always occurred within some muscles of each extensor group 1-3 days following downhill and uphill running and did not occur following level running; the increases in activity were usually of lower magnitude in the muscles of uphill runners than in those of downhill runners; the deeply located, predominantly slow-twitch muscles were most affected by both down- and uphill running. 3) Muscle histology demonstrated localized disruption of normal banding patterns of some fibers immediately after exercise and accumulations of macrophages in the interstitium and in some (less than 5%) muscle fibers by 24 h postexercise in the deep slow muscles of the antigravity groups. Although the data generally indicated that eccentric exercise causes greater injury to the muscles, questions remain.  相似文献   

10.
Calcitonin gene-related peptide (CGRP) is present in some spinal cord motoneurons and at neuromuscular junctions in skeletal muscle. We previously reported increased numbers of CGRP-positive (CGRP+) motoneurons supplying hindlimb extensors after downhill exercise (Homonko DA and Theriault E, Inter J Sport Med 18: 1-7, 1997). The present study identifies the responding population with respect to muscle and motoneuron pool and correlates changes in CGRP with muscle fiber type-identified end plates. Twenty seven rats were divided into the following groups: control and 72 h and 2 wk postexercise. FluoroGold was injected into the soleus, lateral gastrocnemius, and the proximal (mixed fiber type) or distal (fast-twitch glycolytic) regions of the medial gastrocnemius (MG). Untrained animals ran downhill on a treadmill for 30 min. The number of FluoroGold/CGRP+ motoneurons within proximal and distal MG increased by 72 h postexercise (P<0.05). No significant changes were observed in soleus or lateral gastrocnemius motoneurons postexercise. The number of alpha-bungarotoxin/CGRP+ motor end plates in the MG increased exclusively at fast-twitch glycolytic muscle fibers 72 h and 2 wk postexercise (P<0.05). One interpretation of these results is that unaccustomed exercise preferentially activates fast-twitch glycolytic muscle fibers in the MG.  相似文献   

11.
The nature and kinetics of postexercise cardiac troponin (cTn) appearance is poorly described and understood in most athlete populations. We compared the kinetics of high-sensitivity cTn T (hs-cTnT) after endurance running in training-matched adolescents and adults. Thirteen male adolescent (mean age: 14.1 ± 1.1 yr) and 13 male adult (24.0 ± 3.6 yr) runners performed a 90-min constant-load treadmill run at 95% of ventilatory threshold. Serum hs-cTnT levels were assessed preexercise, immediately postexercise, and at 1, 2, 3, 4, 5, 6, and 24 h postexercise. Serum NH(2)-terminal pro-brain natriuretic peptide (NT-pro-BNP) levels were recorded preexercise and 3, 6, and 24 h postexercise. Left ventricular function was assessed preexercise, immediately postexercise, and 6 h postexercise. Peak hs-cTnT occurred at 3-4 h postexercise in all subjects, but was substantially higher (P < 0.05) in adolescents [median (range): 211.0 (11.2-794.5) ng/l] compared with adults [median (range): 19.1 (9.7-305.6) ng/l]. Peak hs-cTnT was followed by a rapid decrease in both groups, although adolescent data had not returned to baseline at 24 h. Substantial interindividual variability was noted in peak hs-cTnT, especially in the adolescents. NT-pro-BNP was significantly elevated postexercise in both adults and adolescents and remained above baseline at 24 h in both groups. In both groups, left ventricular ejection fraction and the ratio of early-to-atrial peak Doppler flow velocities were significantly decreased immediately postexercise. Peak hs-cTnT was not related to changes in ejection fraction, ratio of early-to-atrial peak Doppler flow velocities, or NT-pro-BNP. The present data suggest that postexercise hs-cTnT elevation 1) occurred in all runners, 2) peaked 3-4 h postexercise, and 3) the peak hs-cTnT concentration after prolonged exercise was higher in adolescents than adults.  相似文献   

12.
The function and normal regulation of calpain-3, a muscle-specific Ca(2+)-dependent protease, is uncertain, although its absence leads to limb-girdle muscular dystrophy type 2A. This study examined the effect of eccentric exercise on calpain-3 autolytic activation, because such exercise is known to damage sarcomeric structures and to trigger adaptive changes that help prevent such damage on subsequent exercise. Six healthy human subjects performed a 30-min bout of one-legged, eccentric, knee extensor exercise. Torque measurements, vastus lateralis muscle biopsies, and venous blood samples were taken before and up to 7 days following the exercise. Peak isometric muscle torque was depressed immediately and at 3 h postexercise and recovered by 24 h, and serum creatine kinase concentration peaked at 24 h postexercise. The amount of autolyzed calpain-3 was unchanged immediately and 3 h after exercise, but increased markedly (from approximately 16% to approximately 35% of total) 24 h after the exercise, and returned to preexercise levels within 7 days. In contrast, the eccentric exercise produced little autolytic activation of the ubiquitous Ca(2+)-activated protease, mu-calpain. Eccentric exercise is the first physiological circumstance shown to result in calpain-3 activation in vivo.  相似文献   

13.
MyoD and myogenin protein expression in skeletal muscles of senile rats   总被引:4,自引:0,他引:4  
We analyzed the level of protein expression of two myogenic regulatory factors (MRFs), MyoD and myogenin, in senile skeletal muscles and determined the cellular source of their production in young adult (4 months old), old (24, 26, and 28 months old), and senile (32 months old) male rats. Immunoblotting demonstrated levels of myogenin approximately 3.2, approximately 4.0, and approximately 5.5 times higher in gastrocnemius muscles of 24-, 26-, and 32-month-old animals, respectively, than in those of young adult rats. Anti-MyoD antibody recognized two major areas of immunoreactivity in Western blots: a single MyoD-specific band (approximately 43-45 kDa) and a double (or triple) MyoD-like band (approximately 55-65 kDa). Whereas the level of MyoD-specific protein in the 43- to 45-kDa band remained relatively unchanged during aging compared with that of young adult rats, the total level of MyoD-like immunoreactivity within the 55- to 65-kDa bands was approximately 3.4, approximately 4.7, approximately 9.1, and approximately 11.7 times higher in muscles of 24-, 26-, 28-, and 32-month-old rats, respectively. The pattern of MRF protein expression in intact senile muscles was similar to that recorded in young adult denervated muscles. Ultrastructural analysis of extensor digitorum longus muscle from senile rats showed that, occasionally, the area of the nerve-muscle junction was partially or completely devoid of axons, and satellite cells with the features of activated cells were found on the surface of living fibers. Immunohistochemistry detected accumulated MyoD and myogenin proteins in the nuclei of both fibers and satellite cells in 32-month-old muscles. We suggest that the up-regulated production of MyoD and myogenin proteins in the nuclei of both fibers and satellite cells could account for the high level of MRF expression in muscles of senile rats.  相似文献   

14.
The purpose of this study was to determine if pomegranate juice supplementation improved the recovery of skeletal muscle strength after eccentric exercise in subjects who routinely performed resistance training. Resistance trained men (n = 17) were randomized into a crossover design with either pomegranate juice or placebo. To produce delayed onset muscle soreness, the subjects performed 3 sets of 20 unilateral eccentric elbow flexion and 6 sets of 10 unilateral eccentric knee extension exercises. Maximal isometric elbow flexion and knee extension strength and muscle soreness measurements were made at baseline and 2, 24, 48, 72, 96, and 168 hours postexercise. Elbow flexion strength was significantly higher during the 2- to 168-hour period postexercise with pomegranate juice compared with that of placebo (main treatment effect; p = 0.031). Elbow flexor muscle soreness was also significantly reduced with pomegranate juice compared with that of placebo (main treatment effect; p = 0.006) and at 48 and 72 hours postexercise (p = 0.003 and p = 0.038, respectively). Isometric strength and muscle soreness in the knee extensors were not significantly different with pomegranate juice compared with those using placebo. Supplementation with pomegranate juice attenuates weakness and reduces soreness of the elbow flexor but not of knee extensor muscles. These results indicate a mild, acute ergogenic effect of pomegranate juice in the elbow flexor muscles of resistance trained individuals after eccentric exercise.  相似文献   

15.
Clustering of cardiovascular risk factors may lead to endothelial dysfunction. Physical exercise is an important factor in prevention and treatment of endothelial dysfunction. We wanted to determine the time course of adaptation to a single bout of exercise at either high or moderate intensity upon endothelial function both before and after a 16-week fitness program in patients with metabolic syndrome. Twenty-eight patients with metabolic syndrome participated in the study and were randomized and stratified (according to age and sex) into an aerobic interval exercise training group (AIT, n = 11), a continuously moderate-intensity exercise training group (CME, n = 8) or to a control group (n = 9). Flow-mediated dilatation (FMD) was determined at baseline, immediately, 24, 48, and 72 hours after 1 bout of exercise and repeated after 16 weeks of exercise. In the untrained state, FMD improved from 5 to 11% (p = 0.003) immediately after a single bout of aerobic interval training (AIT), an effect lasting 72 hours postexercise. In comparison, continuous moderate exercise (CME) improved FMD immediately after a single bout of exercise from 5 to 8% (p = 0.02), an effect lasting 24 hours postexercise (group difference, p < 0.001). In the trained state, a single bout of AIT resulted in a 2% (p = 0.007) acute increase of FMD lasting 48 hours postexercise. The CME increased FMD by 3% (p < 0.01), an effect lasting 24 hours postexercise (group difference p = 0.0012). Blood glucose level decreased after 1 single bout of AIT in the untrained state (p < 0.05), and the effect lasted at least 72 hours postexercise (p < 0.01). Acute CME decreased blood glucose with normalization of the values 24 hours postexercise (p < 0.01). A single bout of exercise in the trained state reduced fasting blood glucose by 10% (p < 0.05) after both AIT and CME. Exercise training, especially high intensity, thus appears to be highly beneficial in reducing blood glucose and improving endothelial function.  相似文献   

16.
Betanodavirus protein alpha induces cell apoptosis or secondary necrosis by a poorly understood process. In the present work, red spotted grouper nervous necrosis virus (RGNNV) RNA 2 was cloned and transfected into tissue culture cells (GF-1) which then underwent apoptosis or post-apoptotic necrosis. In the early apoptotic stage, progressive phosphatidylserine externalization was evident at 24h post-transfection (p.t.) by Annexin V-FLUOS staining. TUNEL assay revealed apoptotic cells at 24-72 h p.t, after which post-apoptotic necrotic cells were identified by acridine orange/ethidium bromide dual dye staining from 48 to 72 h p.t. Protein alpha induced progressive loss of mitochondrial membrane potential (MMP) which was detected in RNA2-transfected GF-1 cells at 24, 48, and 72 h p.t., which correlated with cytochrome c release, especially at 72 h p.t. To assess the effect of zfBcl-xL on cell death, RNA2-transfected cells were co-transfected with zfBcl-x(L). Co-transfection of GF-1 cells prevented loss of MMP at 24 h and 48 h p.t. and blocked initiator caspase-8 and effector caspase-3 activation at 48 h p.t. We conclude that RGNNV protein alpha induces apoptosis followed by secondary necrotic cell death through a mitochondria-mediated death pathway and activation of caspases-8 and -3.  相似文献   

17.
To compare postexercise changes in plasma lipids and lipoprotein enzymes in 13 hypercholesterolemic (HC) and 12 normocholesterolemic men [total cholesterol (TC) 252 +/- 5 vs. 179 +/- 5 mg/dl], fasting blood samples were obtained 24 h before, immediately, 24, and 48 h after a single bout of treadmill walking (70% peak O(2) consumption, 500 kcal expenditure). Significant findings (P < 0.05 for all) for plasma volume-adjusted lipid and enzyme variables were that TC, low-density-lipoprotein cholesterol, and cholesterol ester transfer protein activity were higher in the HC group but did not influence the lipid responses to exercise. Across groups, TC was transiently reduced immediately after exercise but returned to baseline levels by 24 h postexercise. Decreases in triglyceride and increases in high-density-lipoprotein cholesterol (HDL-C) and HDL(3)-C were observed 24 h after exercise and lasted through 48 h. Lipoprotein lipase activity was elevated by 24 h and remained elevated 48 h after exercise. HDL(2)-C, cholesterol ester transfer protein activity, hepatic triglyceride lipase, and lecithin: cholesterol acyltransferase activities did not change after exercise. These data indicate that the exercise-induced changes in HDL-C and triglyceride are similar in HC and normocholesterolemic men and may be mediated, at least in part, by an increase in lipoprotein lipase activity.  相似文献   

18.
The exercise-induced expression of heat shock proteins (HSPs) in rodent models is relatively well defined. In contrast, comparable data from human studies are limited and the exercise-induced stress response of human skeletal muscle is far from understood. This study has characterized the time course and magnitude of the HSP response in the skeletal muscles of a healthy active, but untrained, young male population following a running exercise protocol. Eight subjects performed 45 min of treadmill running at a speed corresponding to their lactate threshold (11.7 +/- 0.5 km/h; 69.8 +/- 4.8% maximum O2 uptake). Muscle biopsies were obtained from the vastus lateralis muscle immediately before and at 24 h, 48 h, 72 h, and 7 days postexercise. Exercise induced a significant (P < 0.05) but variable increase in HSP70, heat shock cognate (HSC) 70, and HSP60 expression with peak increases (typically occurring at 48 h postexercise) to 210, 170, and 139% of preexercise levels, respectively. In contrast, exercise did not induce a significant increase in either HSP27, alphaB-crystallin, SOD 2 (MnSOD) protein content, or the activity of SOD and catalase. When examining baseline protein levels, HSC70, HSP27, and alphaB-crystallin appeared consistently expressed between subjects, whereas HSP70 and MnSOD displayed marked individual variation of up to 3- and 1.5-fold, respectively. These data are the first to define the time course and extent of HSP production in human skeletal muscle following a moderately demanding and nondamaging running exercise protocol. Data demonstrate a differential effect of aerobic exercise on specific HSPs.  相似文献   

19.
Muscle damage resulting from eccentric exercise provides a useful model of oxyradical-induced injury and can be used to examine age-related responses to oxidative stress. Sixteen young (26.4 ± 3.3 years) and 16 older (71.1 ± 4.0 years) healthy men were randomly assigned to 1000 IU/d vitamin E or placebo for 12 weeks and ran downhill for 45 min at 75% VO2max, once before and following supplementation. Blood samples were obtained before (baseline) and immediately postexercise (0 h), and at 6, 24, and 72 h postexercise to determine antioxidant status, muscle damage, lipid peroxidation, and DNA damage. Following exercise, young and older men experienced similar increases in serum creatine kinase (CK), F2-isoprostanes (iPF2; p < .001) and malondialdehyde (MDA; p < .01), although iPF2 peaked at 72 h postexercise and MDA peaked at 0 h. Oxygen Radical Absorbance Capacity (ORAC) decreased at 72 h (p < .01) and correlated with the rise in iPF2, MDA, and CK in the young men (p < .05). Leukocyte 8-hydroxy-2′-deoxyguanosine (8-OHdG) was unaffected by exercise. Vitamin E decreased peak CK in young men, while in older men it decreased resting levels of iPF2 and suppressed the 24 h postexercise increases in iPF2 (p < .05). Thus, vitamin E supplementation induced modest changes eccentric exercise-induced oxidative stress, although differentially between the young and older subjects, while age had no direct influence on these responses among this group of physically fit subjects.  相似文献   

20.
High mechanical loading was hypothesized to induce the expression of angiogenic and/or lymphangiogenic extracellular matrix (ECM) proteins in skeletal muscle. Eight men performed a strenuous exercise protocol, which consisted of 100 unilateral maximal drop jumps followed by submaximal jumping until exhaustion. Muscle biopsies were taken 30 min and 48 h postexercise from the vastus lateralis muscle and analyzed for the following parameters: mRNA and protein expression of ECM-associated CCN proteins [cysteine-rich angiogenic protein 61 (Cyr61)/CCN1, connective tissue growth factor (CTGF)/CCN2], and mRNA expression of vascular endothelial growth factors (VEGFs) and hypoxia-inducible factor-1alpha. The mRNA expression of Cyr61 and CTGF increased 30 min after the exercise (14- and 2.5-fold, respectively; P < 0.001). Cyr61 remained elevated 48 h postexercise (threefold; P < 0.05). The mRNA levels of VEGF-A, VEGF-B, VEGF-C, VEGF-D, or hypoxia-inducible factor-1alpha did not change significantly at either 30 min or 48 h postexercise; however, the variation between subjects increased markedly in VEGF-A and VEGF-B mRNA. Cyr61 protein levels were higher at both 30 min and 48 h after the exercise compared with the control (P < 0.05). Cyr61 and CTGF proteins were localized to muscle fibers and the surrounding ECM by immunohistochemistry. Fast fibers stained more intensively than slow fibers. In conclusion, mechanical loading induces rapid expression of CCN proteins in human skeletal muscle. This may be one of the early mechanisms involved in skeletal muscle remodeling after exercise, since Cyr61 and CTGF regulate the expression of genes involved in angiogenesis and ECM remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号