首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular phylogeny of Drosophila based on ribosomal RNA sequences   总被引:4,自引:0,他引:4  
Nucleotide sequences of 72 species of Drosophilidae were determined for divergent D1 and D2 domains (representing 200 and 341 nucleotides respectively in D. melanogaster) of large ribosomal RNA, using the rRNA direct sequencing method. Molecular phylogenetic trees were reconstructed using both distance and parsimony methods and the robustness of the nodes was evaluated by the bootstrap procedure. The trees obtained by these methods revealed four main lineages or clades which do not correspond to the taxonomical hierarchy. In our results, the genus Chymomyza is associated with the subgenus Scaptodrosophila of the genus Drosophila and their cluster constitutes the most ancient clade. The two other clades are constituted of groups belonging to the subgenus Sophophora of the genus Drosophila: the so-called Neotropical clade including the willistoni and saltans groups and the obscura-melanogaster clade itself split into three lineages: (1) obscura group + ananassae subgroup, (2) montium subgroup, and (3) melanogaster + Oriental subgroups. The fourth clade, the Drosophila one, contains three lineages. D. polychaeta, D. iri, and D. fraburu are branched together and constitute the most ancient lineage; the second lineage includes the annulimana, bromeliae, dreyfusi, melanica, mesophragmatica, repleta, robusta, and virilis groups. The third lineage is composed of the immigrans and the cardini, funebris, guaramunu, guarani, histrio, pallidipennis, quinaria, and tripunctata groups. The genera Samoaia, Scaptomyza, and Zaprionus are branched within the Drosophila clade. Although these four clades appear regularly in almost all tree calculations, additional sequencing will be necessary to determine their precise relationships.Correspondence to: M. Pelandakis  相似文献   

2.
The existing taxonomy of Euryalida, one of the two orders of the Ophiuroidea (Echinodermata), is uncertain and characterized by controversial delimitation of taxonomic ranks from genus to family-level. Their phylogeny was not studied in detail until now. We investigated a dataset of sequence from a mitochondrial gene (16S rRNA) and two nucleic genes (18S rRNA and 28S rRNA) for 49 euryalid ophiuroids and four outgroup species from the order Ophiurida.The monophyly of the order Euryalida was supported as was the monophyly of Asteronychidae, Gorgonocephalidae and an Asteroschematidae + Euryalidae clade. However, the group currently known as the Asteroschematidae was paraphyletic with respect to the Euryalidae. The Asteroschematidae + Euryalidae clade, which we recognise as an enlarged Euryalidae, contains three natural groups: the Asteroschematinae (Asteroschema and Ophiocreas), a new subfamily Astrocharinae (Astrocharis) and the Euryalinae with remaining genera. These subfamilies can be distinguished by internal ossicle morphology.  相似文献   

3.
The first comprehensive cladistic analysis of Reduviidae, the assassin bugs, based on molecular data is presented and discussed in the context of a recently-published morphological analysis. Assassin bugs are essential components of ecosystems, but also important in agriculture and medicine. Sampling included 94 taxa (89 Reduviidae, 5 outgroups) in 15 subfamilies and 24 tribes of Reduviidae and is based on 3300 base pairs of mitochondrial (16S) and nuclear (18S, 28SD2, 28SD3-5) ribosomal DNA. Partitions of the dataset were aligned using different algorithms implemented in MAFFT and the combined dataset was analyzed using parsimony, partitioned maximum likelihood and partitioned Bayesian criteria. Clades recovered in all analyses, independent of alignment and analytical method, comprise: Cimicomorpha and Reduviidae; Hammacerinae; Harpactorinae; Apiomerini; Peiratinae; Phymatinae; Salyavatinae; Triatominae; Phymatinae + Holoptilinae; the higher Reduviidae (Reduviidae excluding Hammacerinae and the Phymatine Complex); Ectrichodiinae + Tribelocephalinae; (Triatominae + Zelurus) + Stenopodainae. Hammacerinae are rejected as sister group to all remaining Reduviidae in all analyses, as is the monophyly of Reduviinae, Emesinae and Harpactorini. High support values for Triatominae imply that blood-feeding has evolved only once within Reduviidae. Stenopodainae and part of Reduviinae are discussed as close relatives to Triatominae.  相似文献   

4.
The ribosomal RNAs (rRNAs) of animal mitochondria, especially those of arthropod mitochondria, have a higher content of G:U and U:G base pairs in their stem regions than the nuclear rRNAs. Thus, the theoretical formulation of base pair changes is extended to incorporate the faster base pair changes A:U<-->G:U<-->G:C and U:A<-->U:G<-->C:G into the previous formulation of the slower base pair changes between A:U, G:C, C:G and U:A. The relative base pair change probability containing the faster and slower base pair changes is theoretically derived to estimate the divergence time of rRNAs under the influence of selection for these base pairs. Using the cartilaginous fish-teleost fish divergence and the crustacean-insect divergence as calibration points, the present method successfully predicts the divergence times of the main branches of animals: Deuterostomia and Protostomia diverged 9.2 x 10(8) years ago, the divergence of Echinodermata, Hemichordata and Cephalochordata succeedingly occurred during the period from 8 x 10(8) to 6 x 10(8) years ago, while Arthropoda, Annelida and Mollusca diverged almost concomitantly about 7 x 10(8) years ago. The dating for the divergence of Platyhelminthes and Cnidaria is traced back to 1.2 x 10(9) years ago. This result is consistent with the fossil records in the Stirling Range Formation of southwestern Australia, the Ediacara and Avalon faunas and the Cambrian Burgess Shale. Thus, the present method may be useful for estimating the divergence times of animals ranging from 10(8) to 10(9) years ago, resolving the difficult problems, e.g. deviation from rate constancy and large sampling variances, in the usual methods of treating apparent change rates between individual bases and/or base pairs.  相似文献   

5.
The fragmented mitochondrial ribosomal RNAs (rRNAs) of the green algaeChlamydomonas eugametos andChlamydomonas reinhardtii are discontinuously encoded in subgenic modules that are scrambled in order and interspersed with protein coding and tRNA genes. The mitochondrial rRNA genes of these two algae differ, however, in both the distribution and organization of rRNA coding information within their respective genomes. The objectives of this study were (1) to examine the phylogenetic relationships between the mitochondrial rRNA gene sequences ofC. eugametos andC. reinhardtii and those of the conventional mitochondrial rRNA genes of the green alga,Prototheca wickerhamii, and land plants and (2) to attempt to deduce the evolutionary pathways that gave rise to the unusual mitochondrial rRNA gene structures in the genusChlamydomonas. Although phylogenetic analysis revealed an affiliation between the mitochondrial rRNA gene sequences of the twoChlamydomonas taxa to the exclusion of all other mitochondrial rRNA gene sequences tested, no specific affiliation was noted between theChlamydomonas sequences andP. wickerhamii or land plants. Calculations of the minimal number of transpositions required to convert hypothetical ancestral rRNA gene organizations to the arrangements observed forC. eugametos andC. reinhardtii mitochondrial rRNA genes, as well as a limited survey of the size of mitochondrial rRNAs in other members of the genus, lead us to propose that the last common ancestor ofChlamydomonas algae contained fragmented mitochondrial rRNA genes that were nearly co-linear with conventional rRNA genes.  相似文献   

6.
The peptidyl transferase center of the domain V of large ribosomal RNA in the prokaryotic and eukaryotic cytosolic ribosomes acts as general protein folding modulator. We showed earlier that one part of the domain V (RNA1 containing the peptidyl transferase loop) binds unfolded protein and directs it to a folding competent state (FCS) that is released by the other part (RNA2) to attain the folded native state by itself. Here we show that the peptidyl transferase loop of the mitochondrial ribosome releases unfolded proteins in FCS extremely slowly despite its lack of the rRNA segment analogous to RNA2. The release of FCS can be hastened by the equivalent activity of RNA2 or the large subunit proteins of the mitochondrial ribosome. The RNA2 or large subunit proteins probably introduce some allosteric change in the peptidyl transferase loop to enable it to release proteins in FCS.  相似文献   

7.
The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Tanymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata ("Family" Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae ("Family" Linderiellidae), which has 11 pairs of trunk limbs. All appear to be part of the Chirocephalidae and share one morphological character: double pre-epipodites on at least part of their legs. That Linderiella is part of the Polyartemiinae suggests that multiplication of the number of limbs occurred once, but was lost again in Linderiella. Within Chirocephalidae, we found two further clades, the Eubranchipus-Pristicephalus clade and the Chirocephalus clade. Pristicephalus is reinstated as a genus.  相似文献   

8.
Moenkhausia is one of the most speciose genera in Characidae, currently composed of 75 nominal species of small fishes distributed across South American hydrographic basins, primarily the Amazon and Guyanas. Despite the large number of described species, studies involving a substantial number of its species designed to better understand their relationships and putative monophyly are still lacking. In this study, we analysed a large number of species of Moenkhausia to test the monophyly of the genus based on the phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes. The in‐group included 29 species of Moenkhausia, and the out‐group was composed of representatives of Characidae and other members of Characiformes. All species of Moenkhausia belong to the same clade (Clade C); however, they appear distributed in five monophyletic groups along with other different genera, which means that Moenkhausia is polyphyletic and indicates the necessity of an extensive revision of the group.  相似文献   

9.
The phylogeny of representative species of Chinese ranids was reconstructed using two nuclear (tyrosinase and rhodopsin) and two mitochondrial (12S rRNA, 16S rRNA) DNA fragments. Maximum parsimony, Bayesian, and maximum likelihood analyses were employed. In comparison with the results from nuclear and mitochondrial data, we used nuclear gene data as our preferred phylogenetic hypothesis. We proposed two families (Ranidae, Dicroglossidae) for Chinese ranids, with the exception of genus Ingerana. Within Dicroglossidae, four tribes were supported including Dicroglossini, Paini, Limnonectini, and Occidozygini. A broader sampling strategy and evidence from additional molecular markers are required to decisively evaluate the evolutionary history of Chinese ranids.  相似文献   

10.
洪平杏(Armeniaca hongpingensis C. L. Li)是杏属的一个狭域分布种,基于形态观察被推测为杏(A.vulgaris Lam.)和梅(A. mume Sieb.)的天然杂交种,但目前尚无该种与杏、梅亲缘关系的分子系统学研究。本文以洪平杏的成株和实生苗以及包括杏、梅在内的6种(含1变种)杏属植物为研究材料,分别采用核基因(ITS和SBEI)和叶绿体基因(mat K和ycf1b)序列构建系统发育树,并采用mat K、ycf1b和SBEI基因序列构建单倍型网络图,探讨该物种与杏、梅及杏梅(A. mume Sieb. var. bungo Makino)之间的亲缘关系。基于核基因和叶绿体基因序列分别构建的系统发育树均显示,洪平杏的成株及其全部实生苗个体单独聚为一支,且具有较高的支持率(分别为99/79、71/81),独立于杏属其他种之外。而基于核基因ITS序列的系统发育分析结果表明,洪平杏除极少数成株与杏、杏梅聚为一支外,其余所有成株与实生苗聚为2大支(支持率分别为0.82和0.97),而没有克隆的与梅聚在一起。单倍型分析结果表明,该物种的成株与实生苗在SBEI和ycf1b基因序列中均未检测到杏或梅的单倍型,仅有少数(2/9)的实生苗个体在叶绿体mat K基因序列中检测到杏的单倍型。研究结果不支持将洪平杏定为杏和梅的天然杂交种的观点,推测洪平杏应为一个独立的物种,与杏之间的亲缘关系更近并且存在可检测到的基因流。  相似文献   

11.
We analyzed the 896 base-pair (bp) mitochondrial DNA (mtDNA) sequences for seven gibbons, representative of three out of four subgenera. The result from our molecular analysis is consistent with previous studies as to the monophyly of subgenus Hylobates species, yet the relationship among subgenera remains slightly ambiguous. A striking result of the analysis is the phylogenetic location of Kloss's gibbon (H. klossii). Kloss's gibbon has been considered to be an initial off-shoot of the subgenus Hylobates because of its morphological primitiveness. However, our molecular data strongly suggest that Kloss's gibbon speciated most recently within the subgenus Hylobates. Correspondence to: S. Horai  相似文献   

12.
Mutations in mitochondrial small subunit ribosomal proteins MRPS16 or MRPS22 cause severe, fatal respiratory chain dysfunction due to impaired translation of mitochondrial mRNAs. The loss of either MRPS16 or MRPS22 was accompanied by the loss of most of another small subunit protein MRPS11. However, MRPS2 was reduced only about 2-fold in patient fibroblasts. This observation suggests that the small ribosomal subunit is only partially able to assemble in these patients. Two large subunit ribosomal proteins, MRPL13 and MRPL15, were present in substantial amounts suggesting that the large ribosomal subunit is still present despite a non-functional small subunit.  相似文献   

13.
The phylogenetic relationships among rhacophorid frogs are under dispute. We use partial sequences of three mitochondrial (12S rRNA, 16S rRNA, and cytochrome b) and three nuclear protein-coding (Rag-1, rhodopsin exon 1, and tyrosinase exon 1) genes from 57 ingroup taxa and eight outgroup taxa to propose a hypothesis for phylogenetic relationships within Rhacophoridae. Our results support recognition of the genus Feihyla, and Chiromantis is the sister taxon to the clade formed by Feihyla, Polypedates and Rhacophorus. We place Aquixalus odontotarsus within Kurixalus, and the remaining species of Aquixalus and Philautus jinxiuensis into the genus Gracixalus. We give Philautus (Kirtixalus) the rank of genus and place Philautus menglaensis within it. The division of species groups among Chinese Rhacophorus needs revision, and a cryptic species is revealed within Rhacophorus nigropunctatus. Rhacophorus pingbianensis is considered a synonym of Rhacophorus omeimontis. The validity of Rhacophorus hui is confirmed by present molecular evidence.  相似文献   

14.
Summary Two mitochondrial ribosomal proteins of yeast (Saccharomyces cerevisiae) were purified and their N-terminal amino acid sequences determined. The sequence data were used for the synthesis of oligonucleotide probes to clone the corresponding genes. Thus, the genes for two proteins, termed YMR-31 and YMR-44, were cloned and their nucleotide sequences determined. From the nucleotide sequence data, the coding region of the gene for protein YMR-31 was found to be composed of 369 nucleotide pairs. Comparison of the amino acid sequence of protein YMR-31 and the one deduced from the nucleotide sequence of its gene suggests that it contains an octapeptide leader sequence. The calculated molecular weight of protein YMR-31 without the leader sequence is 12792 dalton. The gene for protein YMR-44 was found to contain a 147 bp intron which contains two sequences conserved among yeast introns. The length of the two exons flanking the intron totals 294 nucleotide pairs which can encode a protein with a calculated molecular weight of 11476 dalton. The gene for protein YMR-31 is located on chromosome VI, while the gene for protein YMR-44 is located on either chromosome XIII or XVI.  相似文献   

15.
The schizothoracine fishes, members of the Teleost order Cypriniformes, are one of the most diverse group of cyprinids in the Qinghai–Tibetan Plateau and surrounding regions. However, taxonomy and phylogeny of these species remain unclear. In this study, we determined the complete mitochondrial genome of Schizopygopsis malacanthus. We also used the newly obtained sequence, together with 31 published schizothoracine mitochondrial genomes that represent eight schizothoracine genera and six outgroup taxa to reconstruct the phylogenetic relationships of the subfamily Schizothoracinae by different partitioned maximum likelihood and partitioned Bayesian inference at nucleotide and amino acid levels. The schizothoracine fishes sampled form a strongly supported monophyletic group that is the sister taxon to Barbus barbus. A sister group relationship between the primitive schizothoracine group and the specialized schizothoracine group + the highly specialized schizothoracine group was supported. Moreover, members of the specialized schizothoracine group and the genera Schizothorax, Schizopygopsis, and Gymnocypris were found to be paraphyletic.  相似文献   

16.
The fork-tongued frogs, members of the amphibian Order Anura, belong to the family Dicroglossidae and are one of the most diverse groups of Anuran frogs; however, their taxonomy and phylogeny remain controversial. In the present study, sixteen dicroglossine mitochondrial genomes representing nine dicroglossine genera and 23 other neobatrachian taxa, were used to reconstruct the phylogenetic relationships of the family Dicroglossidae using different partitioned maximum likelihood and partitioned Bayesian inference methods at both the nucleotide and amino acid levels. The sampled fork-tongued frogs form a strongly supported monophyletic group that is the sister taxon to another well-supported clade that includes representatives of the families Ranidae, Rhacophoridae, and Mantellidae. The monophyly of the subfamily Occidozyginae and Dicroglossinae was revealed with strong supports, and two major clades were supported within Dicroglossinae. The sister-group relationship between the genera Limnonectes and the tribe Paini was supported. In addition, a sister-group relationships between Fejervarya and Euphlyctis + Hoplobatrachus, between Quasipaa and Yerana, and between Feirana and Nanorana are well supported. Estimates of divergence times revealed the divergence of Dicroglossidae during the Late Upper Cretaceous to the Early Eocene, and diversification of the major dicroglossine genera from the Early Eocene to the Middle Miocene.  相似文献   

17.
Trypanorhynch tapeworms (Platyhelminthes: Cestoda) are among the most diverse and abundant groups of metazoan parasites of elasmobranchs and are a ubiquitous part of the marine food webs that include these apex predators. Here we present a comprehensive analysis of their phylogeny, character evolution and host associations based on 10 years of sampling effort, including representatives of 12 of 15 and 44 of 66 currently recognized trypanorhynch families and genera, respectively. Using a combination of ssrDNA and lsrDNA (Domains 1-3) for 79 and 80 taxa, respectively, we maintain one-to-one correspondence between molecules and morphology by scoring 45 characters from the same specimens used for sequencing, and provide museum vouchers for this material. Host associations are examined through likelihood-based ancestral character state reconstructions (ACSRs) and by estimating dates of divergence using strict and relaxed molecular clock models in a Bayesian context. Maximum parsimony and Bayesian inference analyses of rDNA produced well-resolved and strongly supported trees in which the trypanorhynchs formed two primary lineages and were monophyletic with respect to the diphyllidean outgroup taxa. These lineages showed marked differences in their rates of divergence which in turn resulted in differing support and stability characteristics within the lineages. Mapping of morphological characters onto the tree resulting from combined analysis of rDNA showed most traits to be highly plastic, including some previously considered of key taxonomic importance such as underlying symmetries in tentacular armature. The resulting tree was found to be congruent with the most recent morphologically based superfamily designations in the order, providing support for four proposed superfamilies, but not for the Tentacularioidea and Eutetrarhynchoidea. ACSRs based on the combined analysis of rDNA estimated the original hosts of the two primary parasite lineages to be alternatively rajiform batoids and carcharhiniform sharks. This fundamental split provides independent support for rejecting the notion that rays are derived sharks, and thus supports the most recent molecular phylogenies of the Neoselachii. Beyond the basal split between shark- and ray-inhabiting lineages, no pattern was found to suggest that the trypanorhynchs have closely tracked the evolutionary histories of these host lineages, but instead, it appears that host-switching has been common and that the subsequent evolution of the parasites has been ecologically driven primarily through overlap in the niches of their shark and ray hosts. Using a relaxed molecular clock model calibrated by means of host fossil data, the ray-inhabiting lineage is estimated to have diversified around the Jurassic-Cretaceous boundary, whereas the shark-inhabiting lineage is estimated to have diversified later, in the Middle Cretaceous. Although the large error associated with the estimated divergence dates prevents robust conclusions from being drawn, the dates are nevertheless found to be consistent in a relative sense with the origins of their major hosts groups. The erection and definition of the suborders Trypanobatoida and Trypanoselachoida, for the major clades of trypanorhynchs parasitizing primarily rays and sharks, respectively, is proposed for the two primary lineages recovered here.  相似文献   

18.
To determine the phylogenetic position of Stentor within the Class Heterotrichea, the complete small subunit rRNA genes of three Stentor species, namely Stentor polymorphus, Stentor coeruleus, and Stentor roeseli, were sequenced and used to construct phylogenetic trees using the maximum parsimony, neighbor joining, and Bayesian analysis. With all phylogenetic methods, the genus Stentor was monophyletic, with S. roeseli branching basally.  相似文献   

19.
The taxonomy and phylogeny of the Chinese species of the Barbinae (Cypriniformes) has a confusing history. In this study, partial sequences of four mitochondrial genes (cyt b, COI, ND4 and 16S rRNA) from 75 Barbinae species and 38 outgroup species were used to investigate the taxonomy and phylogeny within the Barbinae in China. The monophyly of Neolissochilus, Sikukia and Tor are not supported. Neolissochilus benasi might represent a new genus, and Tor hemispinus and Tor qiaojiensis should be moved into Neolissochilus. Sikukia flavicaudata is not Sikukia species. Puntius paucimaculatus might be a synonym of Puntius semifasciolatus. Puntius semifasciolatus does not belong to Puntius. Onychostoma barbatum might consist of more than one species. Our molecular results corroborate that Acrossocheilus stenotaeniatus is a synonym of Acrossocheilus longipinnis. Finally, Barbonymus gonionotus from Menglun, Yunnan should be Poropuntius huangchuchieni.  相似文献   

20.
Summary The 16S ribosomal RNA (30S subunit) ofRhodopseudomonas spheroides has been characterized in terms of T1 ribonuclease digestion products. This fingerprint ultimately permits the placement ofR. spheroides into a detailed procaryotic phylogenetic tree. Given the number of major procaryotic lines that have been characterized in these terms to date, one can tentatively place the Athiorhodaceae closer to the Vibrio-Enteric group than to the Bacillaceae or Cyanophyta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号