首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melkikh AV  Seleznev VD 《Biofizika》2001,46(2):275-280
A model of a stationary electrical potential on biomembrane was created. This model takes into account conformational changes in transport ATPase. N positive ions are transported simultaneously by the system of active transport. The model allows one to determine independently ion concentrations inside the cell and membrane electrical potential. It is shown that, to obtain the electrical potential, it is necessary to take into account organic negative intracellular ions. The effect of positive ions that are not transported by active transport systems on the potential value is discussed. The results obtained are in a good agreement with experimental data for various cells.  相似文献   

2.
A model of the active transport of ions in a cardiac muscle cell, which takes into account the active transport of Na+, K+, Ca2+, Mg2+, HCO3 and Cl ions, has been constructed. The model allows independent calculations of the resting potential at the biomembrane and concentrations of basic ions (sodium, potassium, chlorine, magnesium and calcium) in a cell. For the analysis of transport processes in cardiac cell hierarchical algorithm “one ion-one transport system” was offered. The dependence of the resting potential on concentrations of the ions outside a cell has been established. It was shown, that ions of calcium and magnesium, despite their rather small concentration, play an essential role in maintenance of resting potential in cardiac cell. The calculated internal concentrations of ions are in good agreement with the corresponding experimental values.  相似文献   

3.
Nonequilibrium statistical models of the active transport of ions in biomembranes have been constructed. Differences of chemical potentials of the ATP-ADP reaction and the electrochemical potential of ions were taken as the thermodynamic forces responsible for the flow of ions through the membrane. The active transport of ions was viewed as a cross phenomenon arising from the chemical reaction of the ATP hydrolysis. These models provide independent calculations of the resting potential at the biomembrane and concentrations of ions in a cell on the assumption the free energy of the ATP-ADP reaction is fully (without the dissipation loss) converted to the free energy of transported ions. They take into account the presence of nonpenetrating ions in a cell. It was shown that different concentrations of nonpenetrating ions have a considerable effect on the resting potential. The proposed models were compared with experimental data obtained for different types of cells including neurons, muscular cells, bacteria, plants, and mitochondria. Calculated values of the membrane potential and ion concentrations were in good qualitative agreement with experimental data.  相似文献   

4.
A mathematical model of the transport of basic ions (K+, Na+, Cl) across the hepatocyte membrane has been created using the previously constructed models of active ion transport in biomembranes. The dependence of the resting potential on extracellular ion concentration has been established. Using the model, it is possible to independently calculate the resting potential at the biomembrane and the concentrations of sodium, potassium, and chlorine ions in the cell. The calculated internal concentrations of the ions are in good agreement with the corresponding experimental values.  相似文献   

5.
Requirements on models of the active transport of ions in biomembranes have been formulated. The basic requirements include an explicit dependence of the resting potential and intracellular concentrations of ions on the difference of ATP-ADP chemical potentials, a consideration of the reversibility of the ionic pump operation, a correlation between theoretical and experimental data on the resting potential and intracellular concentrations of ions for different types of cells, the pump efficiency approaching 100%, and a tendency of the resting potential to the Donnan potential if the active transport is blocked. A model satisfying the aforementioned requirements has been proposed by the authors as an example.  相似文献   

6.
A mathematical model of the active transport of main ions in cells of archaebacteria has been constructed. A set of equations has been developed and solved for ion fluxes through the bacterium membrane. The model is based on the principle “one ion—one transport system.” Considering experimental data, the major transport mechanism was determined for each ion and the balance equation was written on the basis of this mechanism in the stationary state. This allowed calculating values of the membrane potential and intracellular concentrations of the ions independently. The calculated values of the intracellular concentrations and resting potential are in qualitative agreement with the corresponding experimental values for cells of extremely halophilic archaea.  相似文献   

7.
The uptake of nickel ions by the cyanobacterium Anabaena cylindrica was studied. Nickel transport was dependent on the membrane potential of the cells and the rate of uptake was decreased in the dark or by the addition of inhibitors, including uncouplers and electron transport inhibitors, which decreased or abolished the membrane potential of cells. The transport process obeyed hyperbolic kinetics, with a high affinity (apparent Km = 17 +/- 11 (SEM) nM) and low turnover number (maximum velocity = 22.3 +/- 5.4 (SEM) pmol h-1 mg dry wt-1 of cells or flux rate of 3.1 nmol h-1 m-2 of plasma membrane surface area). The process was also apparently specific for Ni2+, the rate being unaffected by the presence of a range of other metal ions in large excess. Equilibrium experiments showed that, over a range of nickel ion concentrations, the cells concentrated Ni2+ by a factor of 2700 +/- 240 (SEM)-fold, corresponding to a chemical diffusion potential for Ni2+ of 101 mV. It was concluded that the cells transport nickel ions by a carrier-facilitated transport process with the concentration factor for the ions being determined by the cell membrane potential according to the Nernst equation.  相似文献   

8.
The diuretic amiloride, an almost specific inhibitor of sodium transport in animal cells and tissues, appears to produce a number of effects in the alga Hydrodictyon reticulatum. At 1 mmol/l concentration it markedly reduces the influx of sodium ions (but not their active outflux), the influxes of potassium, chloride as well as of bicarbonate ions, and causes a profound decrease in the plasmalemma membrane potential. This plurality of inhibitory effects suggests that individual transport processes in the alga are mutually coupled.  相似文献   

9.
Certain species of lactic acid bacteria (LAB), as well as other microorganisms, can bind metal ions to their cells surface or transport and store them inside the cell. Due to this fact, over the past few years interactions of metal ions with LAB have been intensively investigated in order to develop the usage of these bacteria in new biotechnology processes in addition to their health and probiotic aspects. Preliminary studies in model aqueous solutions yielded LAB with high absorption potential for toxic and essential metal ions, which can be used for improving food safety and quality. This paper provides an overview of results obtained by LAB application in toxic metal ions removing from drinking water, food and human body, as well as production of functional foods and nutraceutics. The biosorption abilities of LAB towards metal ions are emphasized. The binding mechanisms, as well as the parameters influencing the passive and active uptake are analyzed.  相似文献   

10.
The metabolic cost of active sodium transport was determined in toad bladder at different gradients of transepithelial potential. Deltapsi, by continuous and simultaneous measurements of CO2 production and of transepithelial electric current. Amiloride was used to block active sodium transport in order to assess the nontransport-linked, basal, production of CO2 and the passive permeability of the tissue. From these determinations active sodium transport, Jna, and suprabasal CO2 production, Jsb CO2, were calculated. Since large transients in Jna and Jsb CO2 frequently accompanied any abrupt change in deltapsi, steady state conditions were carefully defined. Some 20 to 40 min were required after a change in deltapsi before steady state of transport activity and of CO2 production were achieved. The metabolic cost of sodium transport proved to be the same whether the bladder expended energy moving sodium against a transepithelial electrical potential grandient of +50 mV or whether sodium was being pulled through "the active transport pathway" by an electrical gradient of -50 mV. In both cases the value of the ratio Jna/Jsb CO2 averaged some 20 sodium ions transported per molecule of CO2 produced. When the Na pump was blocked by 10(-2) M ouabain, the perturbations of the transepithelial electrical potential did not elicit changes of Jna nor, consequently of Jsb CO2. The independence of the ratio Jna/Jsb CO2 from deltapsi over the range+/-50 mV indicates a high degree of coupling between active sodium transport and metabolism.  相似文献   

11.
Bacteria of the genus Rhodococcus were found to be able to accumulate cesium by means of active transport and nonspecific sorption on the cell surface structures. The maximum removal (up to 97%) of cesium from a medium with ammonium acetate was observed at 28 degrees C, pH 7.8-8.6, and an equimolar content (0.2 mM) of potassium and cesium ions in the medium. The most active cesium-accumulating Rhodococcus sp. strains can be used for purification of industrial wastewaters contaminated with radionuclides.  相似文献   

12.
A model of the active transport of ions through internal membranes of mitochondria is proposed. If concentrations of ions in a cell are known, this model allows calculating concentrations of all main ions (H+, Ca+2, K+, Mg2+, Na+, Cl) in the mitochondrion matrix and the resting potential across the membrane. The theoretical values satisfactorily agree with available experimental data on the concentrations and the potentials, including different operating regimes of the adenosine triphosphate (ATP) synthetase (the main regime, short circuiting or ATP synthetase blocking). The active transport of Mg2+ ions in exchange for protons was assumed. In accordance with the model, the ATP synthetase operation is possible only if the stoichiometric coefficient of protons is 3.  相似文献   

13.
When active transport is electrogenic in a tissue that is continuously active, such as cardiac muscle, the active transport current is as important in the generation of the action potential as are the passive currents. A thermodynamically constrained kinetic model of electrogenic active transport of sodium and potassium ions has been developed in which the influences of voltage and chemical composition are explicitly defined. This model is coupled to a system of passive permeabilities, of the minimum degree of complexity, to simulate the integrated activity of active and passive ion transport in the generation of the cardiac action potential. Results of preliminary simulations indicate that electrogenic active transport provides a mechanism for slowly changing currents both within the time scale of an action potential as well as of many action potentials. The presence of active transport also complicates the interpretation of isotopic flux measurements and the separation of currents.  相似文献   

14.
Libraries of phage-displayed beta-lactamase mutants in which up to three loops have been engineered by genetic introduction of random peptide sequences or by randomization of the wild-type sequence have been submitted to selection protocols designed to find mutants in which binding of transition metal ions to the engineered secondary binding site leads to significant effects on the enzymatic activity. A double-selection protocol was applied: The phage-displayed libraries were first selected for transition metal ions affinity by panning on IMAC support, then a second selection step was applied to isolate mutants that have retained significant catalytic activity. The analysis of the kinetic properties of mutants in the presence of nickel, copper, or zinc ions allowed isolation of a few mutants whose activity was either enhanced or inhibited by factors up to three and >10, respectively, in a metal-specific manner. A remarkable mutant exhibiting differential allosteric regulation depending on the metal was found. Its activity was activated by nickel ion binding, inhibited by cupric ion binding, and nearly unaffected by zinc ions. These observations point to an interesting potential for up- or down-regulation of activity within a monomeric enzyme by binding to an "allosteric site" relatively remote from the active site.  相似文献   

15.
The mechanism by which suspension medium ions regulate the rate of photoinduced electron transport across photosystem II was investigated with ion permeabilized cells of the cyanobacterium Anacystis nidulans. Electron transport was measured as the reduction of the electroneutral acceptor dichlorophenol indophenol, whose surface concentration is independent of electrostatic membrane potential. Potassium salts stimulate photoinduced electron transport at low concentrations and inhibit it at higher concentrations. No inhibition is observed when an antichaotropic anion is associated with potassium, while the inhibition is more severe the stronger the chaotropic character of the anion. Neutralization of the surface charge by potassium ions ligated to negatively charged membrane sites at the cytoplasmic side is a prerequisite for the expression of the chaotropic inhibition of photosystem II electron transport.Abbreviations Chl chlorophyll - DCIP 2,6-dichlorophenol indophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DPC 1,5-diphenyl carbazide - FeCN ferricyanide anion - Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - PS photosystem - TEC3+ tris ethylene diamine cobalt cation  相似文献   

16.
Endomyces magnusii mitochondria were shown to be incapable of active Mg2+ transport at 0.1--16 mM concentrations. As was found using the inhibition analysis, when magnesium ions are added to the mitochondria once the phosphorylation cycle is over, the respiration is stimulated because adenylate kinase and H+-ATPase (Mg2+-dependent enzymes) are activated.  相似文献   

17.
Summary Evidence is presented that the transport of lipid-soluble ions through bilayer membranes occurs in three distinct steps: (1) adsorption to the membranesolution interface; (2) passage over an activation barrier to the opposite interface; and (3) desorption into the aqueous solution. Support for this mechanism comes from a consideration of the potential energy of the ion, which has a minimum in the interface. The formal analysis of the model shows that the rate constants of the individual transport steps can be determined from the relaxation of the electric current after a sudden change in the voltage. Such relaxation experiments have been carried out with dipicrylamine and tetraphenylborate as permeable ions. In both cases the rate-determining step is the jump from the adsorption site into the aqueous phase. Furthermore, it has been found that with increasing ion concentration the membrane conductance goes through a maximum. In accordance with the model recently developed by L. J. Bruner, this behavior is explained by a saturation of the interface, which leads to a blocking of the conductance at high concentrations.  相似文献   

18.
By means of ion-selective electrodes transport of H+ and K+ ions through model membranes was studied. The latter are fatty acid esters--impregnated nitroacetatecellulose ultrafilters. Fatty acids like nigericin were shown to be ion carriers and stimulate K+--H+-exchange. The velocity of H+ ions transfer was proportional to the content of fatty acid in the membrane, it depended on the content of Mg+2 ions and decreased abruptly as a result of cooling-induced phase transition of the fatty acid.  相似文献   

19.
Summary Charge-pulse relaxation studies were performed on squid giant axons in the presence of membrane absorbed lipophilic anions, dipicrylamine (DPA) and tetraphenylborate (TPhB), and of specific blockers of sodium and potassium active currents. With the instrumentation used in this work a time resolution of 5 to 10 sec was easily obtained without any averaging, although the voltage relaxations were always smaller than 5 mV in amplitude in order to keep the membrane voltage in a range where the used theory cyn be linearized. Two well distinguishable linear relaxations were invariably observed in the presence of the lipophilic anions. With DPA the fast relaxation (time constants between 8 and 70 sec) was attributed to the redistribution of the lipophilic ions within the membrane following the change in membrane potential. The long relaxation process (time constant in the millisecond range) corresponds to the normal voltage relaxation of the passive squid axon membrane slightly modified by the process of redistribution of the extrinsic ions.The results support the same model for the translocation of lipophilic ions within the nerve membrane proposed earlier for artificial lipid bilayers. The fit of the data with a single barrier model yields the translocation rate constant,K, and the total concentration,N t , of membrane absorbed ions, from which the membrane-solution partition coefficient, , can be derived. Both for DPA and TPhB,K had values close to those measured for solvent-free artificial lipid bilayers. The axon membrane appears as fluid mosaic membrane with a thickness of about 2.5 nm for the lipid bilayer part.In axons treated with DPA the dependence of relaxation data upon the holding membrane potential, , provided information on the asymmetry of the membrane structure. The data were best fitted by assuming that nearly 100% of the membrane potential drops between the two free energy minima where the extrinsic ions are located, indicating that these minima lie very close to the membrane-solution interfaces, in the region of the phospholipid polar heads. The asymmetry voltage,E o, at which the extrinsic ions are expected to be equally distributed between the two sides of the membrane was found to range between –35 and –65 mV (inside negative), depending on the assumed shape of the free energy barrier describing the ion translocation process. This voltage is of the same sign and of the same order of magnitude as the equilibrium voltages for the open-close transitions of the gates of sodium and potassium channels, suggesting that all these voltages result from the same membrane asymmetry. A similar analogy was found between the asymmetry of the free energy barrier which best fitted DPA relaxation data and the asymmetrical voltage dependence of the gating of ionic channels. Our data were best fitted by assuming that about 70% of the potential drop occurs between the free energy minimum on the intracellular membrane face and the top of the barrier.  相似文献   

20.
Isolated frog skin, mounted in a Ussing apparatus, was investigated electrophysiologically. Application of amiloride, an inhibitor of sodium ion transport, and bumetanide, known to block the transport of chloride ions, revealed the effect of these ions on PD, both under control conditions and following mechanical stimulation. Under control conditions, mechanical stimulation of the skin caused hyperpolarization, i.e. a transient increase in the electrical potential difference. Preincubation in the presence of amiloride, or amiloride plus bumetanide, brought about both a decrease in electrical potential and an inhibition of the reaction upon stimulation. On the other hand, incubation with bumetanide resulted in a decrease in electrical potential, but did not affect the skin reaction after mechanical stimulation. The above results indicate that hyperpolarization of the frog skin following mechanical stimulation is caused by enhanced transepithelial transport of sodium ions which, in turn, is induced by stimulation of sensory receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号