首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mating type interconversion in homothallic Saccharomyces cerevisiae has been studied in diploids homozygous for the mating type locus produced by sporulation of a/a/a/α and a/a/α/α tetraploid strains. Mating type switches have been analyzed by techniques including direct observation of cells for changes in α-factor sensitivity. Another method of following mating type switching exploits the observation that a/α cells exhibit polar budding and a/a and α/α cells exhibit medial budding.—These studies indicate the following: (1) The allele conferring the homothallic life cycle (HO) is dominant to the allele conferring the heterothallic life cycle (ho). (2) The action of the HO gene is controlled by the mating type locus—active in a/a and α/α cells but not in a/α cells. (3) The HO (or HO-controlled) gene product can act independently on two mating type alleles located on separate chromosomes in the same nucleus. (4) A switch in mating type is observed in pairs of cells, each of which has the same change.  相似文献   

2.
Hicks JB  Herskowitz I 《Genetics》1977,85(3):373-393
The two mating types of the yeast Saccharomyces cerevisiae can be interconverted in both homothallic and heterothallic strains. Previous work indicates that all yeast cells contain the information to be both a and α and that the HO gene (in homothallic strains) promotes a change in mating type by causing a change at the mating type locus itself. In both heterothallic and homothallic strains, a defective α mating type locus can be converted to a functional a locus and subsequently to a functional α locus. In contrast, action of the HO gene does not restore mating ability to a strain defective in another gene for mating which is not at the mating type locus. These observations indicate that a yeast cell contains an additional copy (or copies) of α information, and lead to the "cassette" model for mating type interconversion. In this model, HMa and hmα loci are blocs of unexpressed α regulatory information, and HMα and hma loci are blocs of unexpressed a regulatory information. These blocs are silent because they lack an essential site for expression, and become active upon insertion of this information (or a copy of the information) into the mating type locus by action of the HO gene.  相似文献   

3.
A 14-mer α-pheromone peptide of Candida albicans was chemically synthesized and used to analyze the role of white-opaque switching in the mating process. The α-pheromone peptide blocked cell multiplication and induced “shmooing” in a/a cells expressing the opaque-phase phenotype but not in a/a cells expressing the white-phase phenotype. The α-pheromone peptide induced these effects at 25°C but not at 37°C. An analysis of mating-associated gene expression revealed several categories of gene regulation, including (i) MTL-homozygous-specific, pheromone stimulated, switching-independent (CAG1 and STE4); (ii) mating type-specific, pheromone-induced, switching-independent (STE2); and (iii) pheromone-induced, switching-dependent (FIG1, KAR4, and HWP1). An analysis of switching-regulated genes revealed an additional category of opaque-phase-specific genes that are downregulated by α-pheromone only in a/a cells (OP4, SAP1, and SAP3). These results demonstrate that α-pheromone causes shmooing, the initial step in the mating process, only in a/a cells expressing the opaque phenotype and only at temperatures below that in the human host. These results further demonstrate that although some mating-associated genes are stimulated by the α-pheromone peptide in both white- and opaque-phase cells, others are stimulated only in opaque-phase cells, revealing a category of gene regulation unique to C. albicans in which α-pheromone induction requires the white-opaque transition. These results demonstrate that in C. albicans, the mating process and associated gene regulation must be examined within the context of white-opaque switching.  相似文献   

4.
Lemontt JF  Fugit DR  Mackay VL 《Genetics》1980,94(4):899-920
The umr7–1 mutation, previously identified in a set of mutants that had been selected for defective UV-induced mutagenesis at CAN1, affects other cellular functions, including many of those regulated by the mating-type locus (MAT) in heterothallic Saccharomyces cerevisiae. The recessive umr7–1 allele, mapping approximately 20 cM distal to thr4 on chromosome III, causes clumpy growth in both a and α cells and has no apparent effect on a mating functions. However, α umr7 meiotic segregants fail to express several α-specific functions (e.g., high-frequency conjugation with a strains, secretion of the hormone α-factor and response to the hormone a-factor). In addition, α umr7 cells exhibit some a-specific characteristics, such as the barrier phenotype (Bar+) that prevents diffusion of α-factor and an increased mating frequency with α strains. The most striking property of α umr7 strains is their altered morphology, in which mitotic cells develop an asymmetric pear shape, like that of normal a cells induced to form "shmoos" by interaction with α-factor. Some a/α-specific diploid functions are also affected by umr7; instead of polar budding patterns, aumr7/umr7 diploids have medial budding like a/a, α/α and haploid strains. Moreover, aumr7/umr7 diploids have lost the ability to sporulate and are Bar+ like a or a/a strains. Revertant studies indicate that umr7–1 is a single point mutation. The umr7 mutant fails to complement mutants of both tup1 (selected for deoxythymidine monophosphate utilization) and cyc9 (selected for high iso-2-cytochrome c levels), and all three isolates have similar genetic and phenotypic properties. It is suggested that the product of this gene plays some common central role in the complex regulation of the expression of both MAT-dependent and MAT-independent functions.  相似文献   

5.
Arima K  Takano I 《Genetics》1979,93(1):1-12
To investigate the dominance and recessiveness of the homothallism genes, HMα/hmα and HMa/hma, for mating-type conversion, we constructed hybrids with various configurations of the homothallic genes by fusion of protoplasts prepared from haploid strains having identical mating types. Eight different combinations of the homothallic genes were tested for their function by observing the mating and sporulation abilities of the fusion products. With few exceptions, nonmating and sporogenous fusion products were obtained from the following combinations: α HO hmα HMa + α ho hmα hma, α HO hmα HMa + α ho HMα hma, α HO hmα HMa + α ho HMα HMa, a HO HMα hma + a ho hmα hma, a HO HMα hma + a ho hmα HMa and a HO HMα hma + a ho HMα HMa. All the fusion products from the α HO hmα HMa + α ho hmα HMa and a HO HMα hma + a ho HMα hma combinations showed mating types identical to those of the respective haploid strains. These results clearly support the co-dominance of the HMα/hmα and HMa/hma alleles and indicate that the hmα allele has the same function as the HMa allele and that the hma allele has the same function as the HMα allele.  相似文献   

6.
In wild-type S. cerevisiae, diploid cells must be heterozygous at the mating-type locus in order to sporulate. In the preceding paper, we described a number of mutants (CSP mutants), isolated from nonsporulating aa and αα parent strains, in which sporulation appeared to be uncoupled from control by mating type. The characterization of one of these mutants (CSP1) is now extended to other processes controlled by mating type. This mutant is indistinguishable from αα cells and unlike aα cells for mating factor production and response, zygote formation, intragenic mitotic recombination, and for X-ray sensitivity. The mutant apparently undergoes a full round of DNA synthesis in sporulation medium, but with delayed kinetics. Only 20% of the cells complete sporulation. Among spores in completed asci, the frequency of both intra- and intergenic recombination is the same as it is for spores produced by aα cells. However, experiments in which cells were shifted from sporulation medium back to minimal growth medium gave a frequency of meiotic recombination between ade2 or leu2 heteroalleles only 25% to 29% as high for CSP1 αα diploid or CSP1 aa disomic cells as for aα diploid or disomic cells. Because the latter result, indicating recombination defectiveness, measured recombinant production in the entire cell population, whereas the result indicating normal recombination sampled only completed spores, we infer that all meiotic recombination events occurring in the population of CSP1 αα cells are concentrated in those few cells which complete sporulation. This high degree of correlation between meiotic recombination and the completion of meiosis and sporulation suggests that recombination may be required for proper meiotic chromosome segregation in yeast just as it appears to be in maize and in Drosophila  相似文献   

7.
Cryptococcus neoformans is a ubiquitous human fungal pathogen that causes meningoencephalitis in predominantly immunocompromised hosts. The fungus is typically haploid, and sexual reproduction involves two individuals with opposite mating types/sexes, α and a. However, the overwhelming predominance of mating type (MAT) α over a in C. neoformans populations limits αa mating in nature. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions, especially between α isolates. Whether same-sex mating occurs in nature and contributes to the current population structure was unknown. In this study, natural αADα hybrids that arose by fusion between two α cells of different serotypes (A and D) were identified and characterized, providing definitive evidence that same-sex mating occurs naturally. A novel truncated allele of the mating-type-specific cell identity determinant SXI1α was also identified as a genetic factor likely involved in this process. In addition, laboratory-constructed αADα strains exhibited hybrid vigor both in vitro and in vivo, providing a plausible explanation for their relative abundance in nature despite the fact that AD hybrids are inefficient in meiosis/sporulation and are trapped in the diploid state. These findings provide insights on the origins, genetic mechanisms, and fitness impact of unisexual hybridization in the Cryptococcus population.  相似文献   

8.
9.
Hicks JB  Herskowitz I 《Genetics》1976,83(2):245-258
The HO gene promotes interconversion between a and α mating types. As a consequence, homothallic diploid cells are formed by mating between siblings descended from a single α HO or a HO spore. In order to determine the frequency and pattern of the mating-type switch, we have used a simple technique by which the mating phenotype can be assayed without losing the cell to the mating process itself. Specifically, we have performed pedigree analysis on descendants of single homothallic spores, testing these cells for sensitivity to α-factor.

The switch from α to a and vice versa is detectable after a minimum of two cell divisions. 50% of the clones tested showed switching by the four-cell stage. Of the four cells descended from a single cell, only the oldest cell and its immediate daughter are observed to change mating type. This pattern suggests that one event in the switching process has occurred in the first cell division cycle. Restriction of the switched mating-type to two particular cells may reflect the action of the homothallism system followed by nonrandom segregation of DNA strands in mitosis.

The mating behavior of cells which have sustained a change in mating type due to the HO gene is indistinguishable from that of heterothallic strains.

  相似文献   

10.
Klar AJ 《Genetics》1980,94(3):597-605
Given a nutritional regime marked by a low nitrogen level and the absence of fermentable carbon sources, conventional a/α diploid cells of Saccharomyces cerevisiae exhibit a complex developmental sequence that includes a round of premeiotic DNA replication, commitment to meiosis and the elaboration of mature tetrads containing viable ascospores. Ordinarily, haploid cells and diploid cells of genotype a/a and α/α fail to display these reactions under comparable conditions. Here, we describe a simple technique for sporulation of α/α and a/a cells. Cells of genotype α/α are mated to haploid a cells carrying the kar1 (karyogamy defective) mutation to yield heterokaryons containing the corresponding diploid and haploid nuclei. The kar1 strains mate normally, but nuclei in the resultant zygotes do not fuse. When heterokaryotic cells are inoculated into sporulation media, they produce asci with six spores. Four spores carry genotypes derived from the diploid nucleus and the other two possess the markers originating from the haploid nucleus, i.e., the diploid nucleus divides meiotically while the haploid nucleus apparently divides mitotically. Similarly, the a/a genome is "helped" to sporulate as a consequence of mating with α kar1 strains. The results allow us to conclude that the mating-type functions essential for meiosis and sporulation are communicated and act through the cytoplasm and that sporulation can be dissociated from typical meiosis. This procedure will facilitate the genetic analysis of strains that are otherwise unable to sporulate.  相似文献   

11.
The CYC7–H2 mutation causes an approximately 20-fold overproduction of iso–2–cytochromo c in a and α haploid strains of the yeast Saccharomyces cerevisiae due to an alteration in the nontranslated regulatory region that is presumably contiguous with the structural region. In this investigation, we demonstrated that heterozygosity at the mating type locus, a/α or a/a/α/α, prevents expression of the overproduction, while homozygosity, a/a and α/α, and hemizygosity, a/0 and α/0, allow full expression of the CYC7–H2 mutation, equivalent to the expression observed in a and α haploid strains. There is no decrease in the overproduction of iso-2-cytochrome c in a/α diploid strains containing either of the other two similar mutations, CYC7–H1 and CYC7–H3. It appears as if active expression of one or another of the mating-type alleles is required for the overproduction of iso-2-cytochrome c in CYC7–H2 mutants.  相似文献   

12.
Takano I  Arima K 《Genetics》1979,91(2):245-254
The possible function of the α-inc allele (an α mating-type allele that is insensitive to the function of the homothallic gene system) was investigated by means of protoplast fusion. The fusion of protoplasts prepared from haploid strains of α-inc HO HMα HMa and α ho hmα HMa gave rise mainly to nonmating clones (58 of 64 isolates) and a few clones (six of 64 isolates) showing α mating type. Thirty of the 58 nonmating clones showed the diploid cell size and 28 clones had a larger cell size. Tetrad analysis of the nonmating clones with diploid cell size indicated that they were a/α-inc diploid; the normal α allele in α/α-inc cells was preferentially switched to an a allele. This observation further indicated that the HO/ho HMα/hmα HMa/HMa genotype is effective for the conversion of the α to a and that the inconvertibility of the α-inc allele is due to the insensitivity of the mating-type allele to the functional combination of the homothallic genes. It was suspected that fusion products larger than diploid cells might have been caused by multiple fusion of protoplasts.  相似文献   

13.
Jue CK  Lipke PN 《Eukaryotic cell》2002,1(5):843-845
In W303-derived strains, disruption of FIG2 increased agglutinability of α cells, but not a cells, and did not alter expression of α-agglutinin, binding of 125I-labeled α-agglutinin, or mating efficiency. Fig2p overexpression led to α-cell-specific suppression of agglutinability. These results imply that Fig2p is an indirect masker of the active sites in α-agglutinin.  相似文献   

14.
Candida albicans, the single most frequently isolated human fungal pathogen, was thought to be asexual until the recent discovery of the mating-type-like locus (MTL). Homozygous MTL strains were constructed and shown to mate. Furthermore, it has been demonstrated that opaque-phase cells are more efficient in mating than white-phase cells. The similarity of the genes involved in the mating pathway in Saccharomyces cerevisiae and C. albicans includes at least one gene (KEX2) that is involved in the processing of the α mating pheromone in the two yeasts. Taking into account this similarity, we searched the C. albicans genome for sequences that would encode the α pheromone gene. Here we report the isolation and characterization of the gene MFα1, which codes for the precursor of the α mating pheromone in C. albicans. Two active α-peptides, 13 and 14 amino acids long, would be generated after the precursor molecule is processed in C. albicans. To examine the role of this gene in mating, we constructed an mfα1 null mutant of C. albicans. The mfα1 null mutant fails to mate as MTLα, while MTLa mfα1 cells are still mating competent. Experiments performed with the synthetic α-peptides show that they are capable of inducing growth arrest, as demonstrated by halo tests, and also induce shmooing in MTLa cells of C. albicans. These peptides are also able to complement the mating defect of an MTLα kex2 mutant strain when added exogenously, thereby confirming their roles as α mating pheromones.  相似文献   

15.
Mutants that are resistant to α-factor have been isolated from a mating-type haploid strains of yeast by direct selection on agar medium containing partially purified α-factor. All resistant mutants isolated were found to be sterile. They were characterized and compared with mutants previously isolated as nonmating. Among 93 able to mate at low frequency and to sporulate, none showed linkage to the mating-type locus. The results support the hypothesis that the response to α-factor by cells of mating-type a is essential for mating.  相似文献   

16.
Candida albicans has an elaborate, yet efficient, mating system that promotes conjugation between diploid a and α strains. The product of mating is a tetraploid a/α cell that must undergo a reductional division to return to the diploid state. Despite the presence of several “meiosis-specific” genes in the C. albicans genome, a meiotic program has not been observed. Instead, tetraploid products of mating can be induced to undergo efficient, random chromosome loss, often producing strains that are diploid, or close to diploid, in ploidy. Using SNP and comparative genome hybridization arrays we have now analyzed the genotypes of products from the C. albicans parasexual cycle. We show that the parasexual cycle generates progeny strains with shuffled combinations of the eight C. albicans chromosomes. In addition, several isolates had undergone extensive genetic recombination between homologous chromosomes, including multiple gene conversion events. Progeny strains exhibited altered colony morphologies on laboratory media, demonstrating that the parasexual cycle generates phenotypic variants of C. albicans. In several fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, the conserved Spo11 protein is integral to meiotic recombination, where it is required for the formation of DNA double-strand breaks. We show that deletion of SPO11 prevented genetic recombination between homologous chromosomes during the C. albicans parasexual cycle. These findings suggest that at least one meiosis-specific gene has been re-programmed to mediate genetic recombination during the alternative parasexual life cycle of C. albicans. We discuss, in light of the long association of C. albicans with warm-blooded animals, the potential advantages of a parasexual cycle over a conventional sexual cycle.  相似文献   

17.
In Saccharomyces cerevisiae, meiosis and spore formation as well as mating are controlled by mating-type genes. Diploids heterozygous for mating type (aα) can sporulate but cannot mate; homozygous aa and αα diploids can mate, but cannot sporulate. From an αα diploid parental strain, we have isolated mutants which have gained the ability to sporulate. Those mutants which continue to mate as αα cells have been designated CSP (control of sporulation). Upon sporulation, CSP mutants yield asci containing 4α spores. The mutant gene which allows αα cells to sporulate is unlinked to the mating-type locus and also acts to permit sporulation in aa diploid cells. Segregation data from crosses between mutant αα and wild-type aa diploids and vice versa indicate (for all but one mutant) that the mutation which allows constitutive sporulation (CSP) is dominant over the wild-type allele. Some of the CSP mutants are temperature-sensitive, sporulating at 32°, but not at 23°. In addition to CSP mutants, our mutagenesis and screening procedure led to the isolation of mutants which sporulate by virtue of a change in the mating-type locus itself, resulting in loss of ability to mate.  相似文献   

18.
19.
Candida albicans forms two types of biofilm in RPMI 1640 medium, depending upon the configuration of the mating type locus. In the prevalent a/α configuration, cells form a biofilm that is impermeable, impenetrable by leukocytes, and fluconazole resistant. It is regulated by the Ras1/cyclic AMP (cAMP) pathway. In the a/a or α/α configuration, white cells form a biofilm that is architecturally similar to an a/α biofilm but, in contrast, is permeable, penetrable, and fluconazole susceptible. It is regulated by the mitogen-activated protein (MAP) kinase pathway. The MTL-homozygous biofilm has been shown to facilitate chemotropism, a step in the mating process. This has led to the hypothesis that specialized MTL-homozygous biofilms facilitate mating. If true, then MTL-homozygous biofilms should have an advantage over MTL-heterozygous biofilms in supporting mating. We have tested this prediction using a complementation strategy and show that minority opaque a/a and α/α cells seeded in MTL-homozygous biofilms mate at frequencies 1 to 2 orders of magnitude higher than in MTL-heterozygous biofilms. No difference in mating frequencies was observed between seeded patches of MTL-heterozygous and MTL-homozygous cells grown on agar at 28°C in air or 20% CO2 and at 37°C. Mating frequencies are negligible in seeded patches of both a/α and a/a cells, in contrast to seeded biofilms. Together, these results support the hypothesis that MTL-homozygous (a/a or α/α) white cells form a specialized “sexual biofilm.”  相似文献   

20.
We have examined the hypothesis that the highly selective recombination of an active mating type locus (MAT) with either HMLα or HMRa is facilitated by the spatial positioning of relevant sequences within the budding yeast (Saccharomyces cerevisiae) nucleus. However, both position relative to the nuclear envelope (NE) and the subnuclear mobility of fluorescently tagged MAT, HML, or HMR loci are largely identical in haploid a and α cells. Irrespective of mating type, the expressed MAT locus is highly mobile within the nuclear lumen, while silent loci move less and are found preferentially near the NE. The perinuclear positions of HMR and HML are strongly compromised in strains lacking the Silent information regulator, Sir4. However, HMLα, unlike HMRa and most telomeres, shows increased NE association in a strain lacking yeast Ku70 (yKu70). Intriguingly, we find that the yKu complex is associated with HML and HMR sequences in a mating-type-specific manner. Its abundance decreases at the HMLα donor locus and increases transiently at MATa following DSB induction. Our data suggest that mating-type-specific binding of yKu to HMLα creates a local chromatin structure competent for recombination, which cooperates with the recombination enhancer to direct donor choice for gene conversion of the MATa locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号