首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribozyme constructs derived from group II intron RmInt1 of Sinorhizobium meliloti self-splice in vitro when incubated under permissive conditions, but exon ligation is unusually inefficient when the 5' exon is truncated close to the IBS2 intron-binding site. One plausible explanation for this observation is the presence of an alternative intron-exon pairing between an intron segment that overlaps with the EBS2 exon-binding site and a 5' exon site located just distal of IBS2 relative to the splice junction. Strikingly, the existence of this pairing is supported by comparative sequence analysis of introns related to RmInt1.  相似文献   

2.
Group II introns are catalytic RNAs that are excised from their precursors in a protein-dependent manner in vivo. Certain group II introns can also react in a protein-independent manner under nonphysiological conditions in vitro. The efficiency and fidelity of the splicing reaction is crucial, to guarantee the correct formation and expression of the protein-coding mRNA. RmInt1 is an efficient mobile intron found within the ISRm2011-2 insertion sequence in the symbiotic bacterium Sinorhizobium meliloti. The RmInt1 intron self-splices in vitro, but this reaction generates side products due to a predicted cryptic IBS1* sequence within the 3′ exon. We engineered an RmInt1 intron lacking the cryptic IBS1* sequence, which improved the fidelity of the splicing reaction. However, atypical circular forms of similar electrophoretic mobility to the lariat intron were nevertheless observed. We analyzed a run of four cytidine residues at the 3′ splice site potentially responsible for a lack of fidelity at this site leading to the formation of circular intron forms. We showed that mutations of residues base-pairing in the tertiary EBS3–IBS3 interaction increased the efficiency and fidelity of the splicing reaction. Our results indicate that RmInt1 has developed strategies for decreasing its splicing efficiency and fidelity. RmInt1 makes use of unproductive splicing reactions to limit the transposition of the insertion sequence into which it inserts itself in its natural context, thereby preventing potentially harmful dispersion of ISRm2011-2 throughout the genome of its host.  相似文献   

3.
4.
5.
Group II introns are both self-splicing RNAs and mobile retroelements found in bacterial and archaeal genomes and in organelles of eukaryotes. They are thought to be the ancestors of eukaryote spliceosomal introns and non-long terminal repeat retrotransposons. We show here that RmInt1, a bacterial group II intron first described in the nitrogen-fixing symbiont of alfalfa (Medicago sativa) Sinorhizobium meliloti, is also present in other Sinorhizobium and Rhizobium species. The intron-homing sites in these species are IS elements of the ISRm2011-2 group as in S. meliloti, but ectopic insertion is also observed. We present evidence that these related bacteria have acquired RmInt1 by vertical inheritance from a common ancestor and by independent horizontal transfer events. We also show that RmInt1 is mobile in related taxa of bacteria that interact with plants and tends to evolve toward an inactive form by fragmentation, with loss of the 3' terminus including the intron-encoded protein. Our results provide an overview of the evolution and dispersion of a bacterial group II intron.  相似文献   

6.
7.

Background

Group II intron splicing proceeds through two sequential transesterification reactions in which the 5' and 3'-exons are joined together and the lariat intron is released. The intron-encoded protein (IEP) assists the splicing of the intron in vivo and remains bound to the excised intron lariat RNA in a ribonucleoprotein particle (RNP) that promotes intron mobility. Exon recognition occurs through base-pairing interactions between two guide sequences on the ribozyme domain dI known as EBS1 and EBS2 and two stretches of sequence known as IBS1 and IBS2 on the 5' exon, whereas the 3' exon is recognized through interaction with the sequence immediately upstream from EBS1 [(δ-δ' interaction (subgroup IIA)] or with a nucleotide [(EBS3-IBS3 interaction (subgroup IIB and IIC))] located in the coordination-loop of dI. The δ nucleotide is involved in base pairing with another intron residue (δ') in subgroup IIB introns and this interaction facilitates base pairing between the 5' exon and the intron.

Results

In this study, we investigated nucleotide requirements in the distal 5'- and 3' exon regions, EBS-IBS interactions and δ-δ' pairing for excision of the group IIB intron RmInt1 in vivo. We found that the EBS1-IBS1 interaction was required and sufficient for RmInt1 excision. In addition, we provide evidence for the occurrence of canonical δ-δ' pairing and its importance for the intron excision in vivo.

Conclusions

The excision in vivo of the RmInt1 intron is a favored process, with very few constraints for sequence recognition in both the 5' and 3'-exons. Our results contribute to understand how group II introns spread in nature, and might facilitate the use of RmInt1 in gene targeting.  相似文献   

8.
Self-splicing group II introns are thought to be the evolutionary progenitors of eukaryotic spliceosomal introns. The invasion of novel (ectopic) sites by group II introns is considered to be a key mechanism by which spliceosomal introns may have become widely dispersed. However, the dynamics of these events in populations are unknown. In bacteria, only two group II introns have been shown to splice and to be mobile in vivo. One of these introns, RmInt1 from Sinorhizobium meliloti, which encodes a protein with no endonuclease domain, has been shown to invade the ectopic oxi1 site independently of recombinase. In this study, we analysed ectopic transposition of the RmInt1 intron in a natural population of S. meliloti. We characterized S. meliloti isolates by polymerase chain reaction amplification of a gene, dapB, which is found only on the pRmeGR4b plasmid diagnostic of GR4-type strains. The diversity within this specific field population of bacteria was analysed by restriction fragment length polymorphism using ISRm2011-2 (homing site of RmInt1) and RmInt1 as probes. We found that ectopic transposition of RmInt1 to the oxi1 site occurred in this natural bacterial population. This ectopic transposition was also the most frequent genetic event observed. This work provides further evidence that the ectopic transposition of group II introns is an important mechanism for their spread in natural bacterial populations.  相似文献   

9.
Excision of the bacterial group II intron RmInt1 has been demonstrated in vivo, resulting in the formation of both intron lariat and putative intron RNA circles. We show here that the bulged adenosine in domain VI of RmInt1 is required for splicing via the branching pathway, but branch site mutants produce small numbers of RNA molecules in which the first G residue of the intron is linked to the last C residue. Mutations in the coordination loop in domain I reduced splicing efficiency, but branched templates clearly predominated among splicing products. We also found that a single substitution at the EBS3 position (G329C), preventing EBS3-IBS3 pairing, resulted in the production of 50 to 100 times more RNA molecules in which the 5' and 3' extremities were joined. We provide evidence that these intron molecules may correspond to both, intron circles linked by a 2'-5' phosphodiester bond, and tandem, head-to-tail intron copies.  相似文献   

10.
RmInt1 is a group II intron of Sinorhizobium meliloti which was initially found within the insertion sequence ISRm2011-2. Although the RmInt1 intron-encoded protein lacks a recognizable endonuclease domain, it is able to mediate insertion of RmInt1 at an intron-specific location in intronless ISRm2011-2 recipient DNA, a phenomenon termed homing. Here we have characterized three additional insertion sites of RmInt1 in the genome of S.meliloti. Two of these sites are within IS elements closely related to ISRm2011-2, which appear to form a characteristic group within the IS630-Tc1 family. The third site is in the oxi1 gene, which encodes a putative oxide reductase. The newly identified integration sites contain conserved intron-binding site (IBS1 and IBS2) and δ′ sequences (14 bp). The RNA of the intron-containing oxi1 gene is able to splice and the oxi1 site is a DNA target for RmInt1 transposition in vivo. Ectopic transposition of RmInt1 into the oxi1 gene occurs at 20-fold lower efficiency than into the homing site (ISRm2011-2) and is independent of the major RecA recombination pathway. The possibility that transposition of RmInt1 to the oxi1 site occurs by reverse splicing into DNA is discussed.  相似文献   

11.
Recognition of 5' splice points by group I and group II self-splicing introns involves the interaction of exon sequences--directly preceding the 5' splice site--with intronic sequence elements. We show here that the exon binding sequences (EBS) of group II intron aI5c can accept various substitutes of the authentic intron binding sites (IBS) provided in cis or in trans. The efficiency of cleavages at these cryptic 5' splice sites was enhanced by deletion of the authentic IBS2 element. All cryptic 5' cleavage sites studied here were preceded by an IBS1 like sequence; indicating that the IBS1/EBS1 pairing alone is sufficient for proper 5' splice site selection by the intronic EBS element. The results are discussed in terms of minimal requirements for 5' cleavages and position effects of IBS sites relative to the intron.  相似文献   

12.
13.
We have generated several deletions within the intron of a yeast actin gene construct which have lead to different splicing efficiencies as measured by Northern blot (RNA blot) and primer extension analyses. Our data especially demonstrate that a minimum distance from the 5' splice site to the internal branch acceptor site is required for accurate and efficient splicing. In a construct in which splicing was completely abolished, splicing could be restored by expanding the distance from the 5' splice site to the internal branch acceptor site with heterologous sequences. Alternative splicing, i.e., exon skipping and the use of a cryptic 5' splice site, was observed when the mRNA precursor was derived from a tandem repeat of a truncated intron with flanking exon sequences.  相似文献   

14.
The mechanism by which group II introns cleave the correct phosphodiester linkage was investigated by studying the reaction of mutant substrates with a ribozyme derived from intron ai5gamma. While fidelity was found to be quite high in most cases, a single mutation on the substrate (+1C) resulted in a dramatic loss of fidelity. When this mutation was combined with a second mutation that induces a bulge in the exon binding site 1/intron binding site 1 (EBS1/IBS1) duplex, the base-pairing register of the EBS1/IBS1 duplex was shifted and the cleavage site moved to a downstream position on the substrate. Conversely, when mismatches were incorporated at the EBS1/IBS1 terminus, the duplex was effectively truncated and cleavage occurred at an upstream site. Taken together, these data demonstrate that the cleavage site of a group II intron ribozyme can be tuned at will by manipulating the thermodynamic stability and structure of the EBS1/IBS1 pairing. The results are consistent with a model in which the cleavage site is not designated through recognition of specific nucleotides (such as the 5'-terminal residue of EBS1). Instead, the ribozyme detects a structure at the junction between single and double-stranded residues on the bound substrate. This finding explains the puzzling lack of phylogenetic conservation in ribozyme and substrate sequences near group II intron target sites.  相似文献   

15.
Group II intron RNA-catalyzed recombination of RNA in vitro.   总被引:1,自引:1,他引:0       下载免费PDF全文
We report the first evidence for a novel reaction mediated by the self-splicing yeast mitochondrial group II intron bl1; the site-specific recombination of RNA molecules in vitro. Upon incubation of the intron lariat with two different RNAs, each harbouring a short sequence complementary to exon binding site 1 (EBS1) of the intron, novel recombined RNAs are formed. As a result of this intron-mediated shuffling of gene segments, the 5' part of RNA1 is ligated to the 3' part of RNA2 and, reciprocally, the 5' part of RNA2 to the 3' part of RNA1. Sequence analysis of the recombinant junction shows that the site of recombination is precisely located 3' to intron binding site 1 (IBS1). The hypothesized mechanism of recombination involves exchange of RNA 5' parts after the first step of a reverse splicing reaction. The possible role of this mechanism in vivo and during prebiotic evolution is discussed.  相似文献   

16.
17.
Excision of group II introns as circles has been described only for a few eukaryotic introns and little is known about the mechanisms involved, the relevance or consequences of the process. We report that splicing of the bacterial group II intron RmInt1 in vivo leads to the formation of both intron lariat and intron RNA circles. We determined that besides being required for the intron splicing reaction, the maturase domain of the intron-encoded protein also controls the balance between lariat and RNA intron circle production. Furthermore, comparison with in vitro self-splicing products indicates that in vivo, the intron-encoded protein appears to promote the use of a correct EBS1/IBS1 intron-exon interaction as well as cleavage at, or next to, the expected 3' splice site. These findings provide new insights on the mechanism of excision of group II introns as circles.  相似文献   

18.
Bar-Shalom A  Moore MJ 《Biochemistry》2000,39(33):10207-10218
Group II introns self-splice via a two-step mechanism: cleavage at the 5' splice site followed by exon ligation at the 3' splice site. The second step has been difficult to study in vitro because it is generally faster than the first. Herein we describe development and partial kinetic characterization of a novel assay for studying the second step in isolation. In this system, a truncated linear intron (nucleotides 1-881) mediates exon ligation between two oligonucleotide substrates: a 19 nt 5' exon and a 3' substrate consisting of the last 6 nucleotides of the intron plus a 6 nucleotide 3' exon. We found that neither the exact structure of domain 6 nor the identity of nucleotides flanking the 3' splice site is critical for accurate 3' splice site choice by the ai5gamma group II intron. The multiple turnover k(cat) (0.14 min(-)(1)) is slower than the single turnover k(obs) (0.6-0.7 min(-)(1)), consistent with rate-limiting product release under steady-state conditions. Decreased single turnover rates at lower pHs were more consistent with loss of catalytic activity than with rate-limiting chemistry. Binding of the 3' substrate (K(m) = 2.6 microM) could be improved by changing a long-range A:U base pair involving the last intronic nucleotide (the gamma-gamma' interaction) to G:C (K(m(3)(')(substrate)) = 1 microM).  相似文献   

19.
The group IIA intron Ll.LtrB from Lactococcus lactis and the group IIB intron EcI5 from Escherichia coli have intron-encoded proteins (IEP) with a DNA-binding domain (D) and an endonuclease domain (En). Both have been successfully retargeted to invade target DNAs other than their wild-type target sites. RmInt1, a subclass IIB3/D intron with an IEP lacking D and En domains, is highly active in retrohoming in its host, Sinorhizobium meliloti. We found that RmInt1 was also mobile in E. coli and that retrohoming in this heterologous host depended on temperature, being more efficient at 28°C than at 37°C. Furthermore, we programmed RmInt1 to recognize target sites other than its wild-type site. These retargeted introns efficiently and specifically retrohome into a recipient plasmid target site or a target site present as a single copy in the chromosome, generating a mutation in the targeted gene. Our results extend the range of group II introns available for gene targeting.  相似文献   

20.
We have shown previously that truncation of the human beta-globin pre-mRNA in the second exon, 14 nucleotides downstream from the 3' splice site, leads to inhibition of splicing but not cleavage at the 5' splice site. We now show that several nonglobin sequences substituted at this site can restore splicing and that the efficiency of splicing depends on the length of the second (downstream) exon and not a specific sequence. Deletions in the first exon have no effect on the efficiency of in vitro splicing. Surprisingly, an intron fragment from the 5' region of the human or rabbit beta-globin intron 2, when placed 14 nucleotides downstream from the 3' splice site, inhibited all the steps in splicing beginning with cleavage at the 5' splice site. This result suggests that the intron 2 fragment carries a "poison" sequence that can inhibit the splicing of an upstream intron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号