首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various lipids were tested as substrates for the insulin receptor kinase using either receptor partially purified from rat hepatoma cells by wheat-germ-agglutinin-Sepharose chromatography or receptor purified from human placenta by insulin-Sepharose affinity chromatography. Phosphatidylinositol was phosphorylated to phosphatidylinositol 4-phosphate by the partially purified insulin receptor. In contrast, phosphatidylinositol 4-phosphate and diacylglycerol were not phosphorylated. In some, but not all preparations of partially purified insulin receptor, the phosphatidylinositol kinase activity was stimulated by insulin (mean effect 33%). Phosphatidylinositol kinase activity was retained in insulin receptor purified to homogeneity. Insulin regulation of the phosphatidylinositol kinase was lost in the purified receptor; however, dithiothreitol stimulated both autophosphorylation of the purified receptor and phosphatidylinositol kinase activity in parallel about threefold. (Glu80Tyr20)n, a polymeric substrate specific to tyrosine kinases, inhibited the phosphatidylinositol kinase activity of the purified receptor by greater than 90% and inhibited receptor autophosphorylation by 67%. Immunoprecipitation by specific anti-receptor antibodies depleted by greater than 90% the phosphatidylinositol kinase activity in the supernatant of the purified receptor and the phosphatidylinositol kinase activity was recovered in the precipitate in parallel with receptor autophosphorylation activity. These characteristics of the phosphatidylinositol kinase activity of the purified insulin receptor and its metal ion preference paralleled those of the receptor tyrosine kinase activity and differed from bulk phosphatidylinositol kinase activity in cell extracts, which was not significantly inhibited by (Glu80Tyr20)n, stimulated by dithiothreitol or depleted by immunoprecipitation with anti-(insulin receptor) antibody. These results suggest that the insulin receptor is associated with a phosphatidylinositol kinase activity; however, this activity is not well regulated by insulin. This kinase appears to be distinct from the major phosphatidylinositol kinase(s) of cells. Its relationship to insulin action needs further study.  相似文献   

2.
Phosphatidylinositol phosphate kinases (PIPKs) have important roles in the production of various phosphoinositides. For type I PIP5Ks (PIP5KI), a broad substrate specificity is known. They phosphorylate phosphatidylinositol 4-phosphate most effectively but also phosphorylate phosphatidylinositol (PI), phosphatidylinositol 3-phosphate, and phosphatidylinositol (3,4)-bisphosphate (PI(3, 4)P(2)), resulting in the production of phosphatidylinositol (4, 5)-bisphosphate (PI(4,5)P(2)), phosphatidylinositol 3-phosphate, phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P(2)), phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P(2)), and phosphatidylinositol (3,4,5)-trisphosphate. We show here that PIP5KIs have also protein kinase activities. When each isozyme of PIP5KI (PIP5KIalpha, -beta, and -gamma) was subjected to in vitro kinase assay, autophosphorylation occurred. The lipid kinase-negative mutant of PIP5KIalpha (K138A) lost the protein kinase activity, suggesting the same catalytic mechanism for the lipid and the protein kinase activities. PIP5KIbeta expressed in Escherichia coli also retains this protein kinase activity, thus confirming that no co-immunoprecipitated protein kinase is involved. In addition, the autophosphorylation of PIP5KI is markedly enhanced by the addition of PI. No other phosphoinositides such as phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, or phosphatidylinositol trisphosphate have such an effect. We also found that the PI-dependent autophosphorylation strongly suppresses the lipid kinase activity of PIP5KI. The lipid kinase activity of PIP5KI was decreased to one-tenth upon PI-dependent autophosphorylation. All these results indicate that the lipid kinase activity of PIP5KI that acts predominantly for PI(4,5)P(2) synthesis is regulated by PI-dependent autophosphorylation in vivo.  相似文献   

3.
Cobra venom cardiotoxin was found to stimulate the phosphatidylinositol kinase activity present in A431 cell membranes and in detergent extracts of these membranes. Incubation of highly purified phosphatidylinositol 4-kinase from this source with cardiotoxin resulted in a 2- to 3-fold stimulation of phosphatidylinositol kinase activity. The activation of the purified phosphatidylinositol 4-kinase by cardiotoxin was time- and dose-dependent and appeared to be associated with a decrease in the Km apparent of the enzyme for phosphatidylinositol with no change in the Vmax apparent of the enzyme. The data suggest that the phosphatidylinositol 4-kinase is activated by direct interaction of the enzyme with cobra venom cardiotoxin.  相似文献   

4.
Phosphatidylinositol transfer activity is measured in cytosol fractions prepared from 13 rat tissues; specific activity is highest in brain and lowest in adipose and skeletal muscle. Based upon electrophoretic analysis phosphatidylinositol transfer protein is purified to homogeneity from whole rat brain. The protein has a molecular weight of 36,000 and exists as a mixture of species having isoelectric points of 4.9 and 5.3. In a vesicle-vesicle assay system, the intermembrane transfer rate is greatest for phosphatidylinositol and less by a factor of 2 for phosphatidylcholine; transfer of phosphatidylethanolamine, phosphatidylserine or sphingomyelin is not observed. Using a polyclonal rabbit antibody against bovine phosphatidylinositol transfer protein, immunologic cross-reactivity is noted between the rat protein and other mammalian phosphatidylinositol transfer proteins. A strong correlation is established between a tissue's capacity for phosphatidylinositol transfer and the amount of immunoreactive transfer protein seen in that tissue. Purified phosphatidylinositol transfer protein is capable of transporting newly synthesized phosphatidylinositol molecules from rat brain microsomes to small unilamellar phospholipid vesicles. The results are discussed within the context of cellular phosphoinositide metabolism and the maintenance of the metabolically responsive pool of phosphatidylinositol in the plasma membrane.  相似文献   

5.
A phospholipase C which hydrolyses phosphatidylinositol 4,5-bisphosphate to release inositol trisphosphate was detected in a sedimentable fraction from celery and from some other higher plants. The particulate enzyme also hydrolyses phosphatidylinositol, whereas the soluble phosphatidylinositol phosphodiesterase described previously [Irvine, Letcher & Dawson (1980) Biochem. J. 192, 279-283] acts only on phosphatidylinositol, and we were unable to detect activity of this soluble activity on phosphatidylinositol 4,5-bisphosphate. Activity of the particulate enzyme is markedly enhanced in the presence of deoxycholate, but not of other detergents; the particulate enzyme can also be solubilized by extraction with deoxycholate.  相似文献   

6.
On immunoprecipitation using a specific antiphosphotyrosine antibody, phosphatidylinositol kinase (EC 2.7.1.67) activity was separated from the protein-tyrosine kinase (EC 2.7.1.112) activity of the wheat germ agglutinin (WGA) -purified insulin receptor from human placenta. This clearly indicates that protein-tyrosine kinase and phosphatidylinositol kinase activity do not reside on the same polypeptide chain as previously has been suggested. Quantitatively, the fraction of phosphatidylinositol kinase that was bound to WGA sepharose and eluted together with the insulin receptor amounted to 2% of the Triton X-100 soluble phosphatidylinositol kinase. The apparent Km values of the bound and unbound phosphatidylinositol kinase with respect to PI and ATP were very similar (0.4 and 0.3 mmol/l and 8 and 7 mumol/l, respectively) suggesting that the WGA-bound phosphatidylinositol kinase is not a different enzyme, but rather represents a small portion of the bulk Triton X-100-soluble phosphatidylinositol kinase that is bound to the lectin tightly associated with the insulin receptor. The synthetic polymer (Glu80Tyr20)n, a model substrate of the insulin receptor tyrosine kinase, at 0.5 mmol/l, inhibited phosphatidylinositol kinase of WGA-purified insulin receptor by 70-90%. This inhibition was not overcome by increasing the concentrations of ATP or PI as one would expect if a functional interrelationship of the protein-tyrosine kinase and the phosphatidylinositol kinase would exist.  相似文献   

7.
The phosphorylation of phosphatidylinositol in plasma membranes from A431 cells was investigated using [gamma-32P]ATP as the substrate. Phosphatidylinositol 4-phosphate was found to be the major product after an incubation time of 5-10 min. Little, if any, phosphatidylinositol 4,5-bisphosphate was found under these conditions. Epidermal growth factor (EGF) had no effect on the formation of phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate. On the other hand, the polyamines spermidine and spermine stimulated the phosphatidylinositol kinase activity about eightfold yielding almost exclusively phosphatidylinositol 4-phosphate as the reaction product. Half-maximum stimulation by spermidine occurred under near physiological conditions (1.5 mM). Furthermore various proteins and amino acid polymers containing clustered basic amino acid residues (e.g. histones and polylysine) stimulated the formation of phosphatidylinositol 4-phosphate to a similar extent. Half-maximal concentrations for the activation were considerably lower ranging from 1.5 microM to 80 microM. The ATP specificity of the phosphatidylinositol kinase(s) was investigated with a small set of selected ATP derivatives. In the presence of spermidine the specificity changed significantly indicating that (a) spermidine acts on a kinase and not on a phosphatase, (b) this activity is distinct from the EGF-receptor protein kinase activity. The results do not suggest an involvement of the EGF receptor in the growth-factor-dependent formation of phosphatidylinositol phosphates. It is proposed that the phosphorylation of phosphatidylinositol by polyamines might be a mechanism to replenish the pool of inositolphospholipids.  相似文献   

8.
Eukaryotic protein translation elongation factor 1 alpha 2 (eEF1A2) is an oncogene that transforms mammalian cell lines and increases their tumorigenicity in nude mice. Increased expression of eEF1A2 occurs during the development of breast, ovarian, and lung cancer. Here, we report that eEF1A2 directly binds to and activates phosphatidylinositol 4-kinase III beta (PI4KIIIbeta), an enzyme that converts phosphatidylinositol to phosphatidylinositol 4-phosphate. Purified recombinant eEF1A2 increases PI4KIIIbeta lipid kinase activity in vitro, and expression of eEF1A2 in rat and human cells is sufficient to increase overall cellular phosphatidylinositol 4-kinase activity and intracellular phosphatidylinositol 4-phosphate abundance. siRNA-mediated reduction in eEF1A2 expression concomitantly reduces phosphatidylinositol 4-kinase activity. This identifies a physical and functional relationship between eEF1A2 and PI4KIIIbeta.  相似文献   

9.
The effect of prolactin action on nuclear polyphosphoinositide synthesis was investigated in isolated rat liver nuclei. An increased uptake of phosphate from [gamma 32P] adenosinetriphosphate was observed in both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate with a maximum response at 10(-12) M concentration of hormone. Pulse-chase experiments in isolated nuclei following prolactin treatment indicate that the observed increase in accumulation of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate is mainly due to a decrease in their rate of turnover possibly induced by a change in activity of polyphosphoinositide-specific monoesterases. In vitro prolactin also reduces the activity of nuclear phospholipase C specific for phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Moreover, this feature is strongly supported by the concomitant decrease in nuclear diacylglycerol mass. Thus these data suggest that once prolactin reaches the nucleus an intranuclear signalling is evoked through inositol lipid metabolism.  相似文献   

10.
The phosphatidylinositol-4-phosphate kinase activity in rat liver showed a subcellular distribution different from that of phosphatidylinositol kinase. It was preferentially associated with plasma membrane-rich subcellular fractions, while no or minimal activity could be ascribed to mitochondria, lysosomes, Golgi membranes or the endoplasmic reticulum. The plasma membrane enzyme phosphorylated endogenous and exogenously added phosphatidylinositol 4-phosphate at comparable initial rates. The phosphorylation of endogenous substrate was strongly inhibited by Triton X-100, while the phosphorylation of added substrate was enhanced, suggesting that endogenous phosphatidylinositol 4-phosphate was readily available to the enzyme in unperturbed plasma membranes. The total activity of phosphatidylinositol-4-phosphate kinase in rat liver was only 1/20 that of phosphatidylinositol kinase. The enzyme activity showed an unusually broad pH-optimum in the neutral range. Mg2+ was the preferred divalent cation and Km towards ATP was about 3-fold higher than the corresponding value for phosphatidylinositol kinase.  相似文献   

11.
Phospholipase C was purified from human melanoma grown as solid tumors in nude mice. The specific activity of the pure enzyme was approx. 100 mumol/min per mg; its apparent molecular mass was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis to be 150 kDa. The enzyme required calcium for activity and was activated by deoxycholate in the presence of the substrate phosphatidylinositol. The melanoma phospholipase C has a distinctly different substrate preference than those identified from normal tissues; it prefers phosphatidylinositol to phosphatidylinositol bisphosphate. The tumor enzyme was approx. 4-5-fold more active using phosphatidylinositol than phosphatidylinositol bisphosphate as the substrate.  相似文献   

12.
The membrane-associated phospholipid biosynthetic enzyme phosphatidylinositol kinase (ATP:phosphatidylinositol 4-phosphotransferase, EC 2.7.1.67) was purified 8,000-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of microsomal membranes, DE-52 chromatography, hydroxylapatite chromatography, octyl-Sepharose chromatography, and two consecutive Mono Q chromatographies. The procedure resulted in the isolation of a protein with a subunit molecular weight of 35,000 that was 96% of homogeneity as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidylinositol kinase activity was associated with the purified Mr 35,000 subunit. Maximum phosphatidylinositol kinase activity was dependent on magnesium ions and Triton X-100 at pH 8. The true Km values for phosphatidylinositol and MgATP were 70 microM and 0.3 mM, and the true Vmax was 4,750 nmol/min/mg. The turnover number for the enzyme was 166 min-1. Results of kinetic and isotopic exchange reactions indicated that phosphatidylinositol kinase catalyzed a sequential Bi Bi reaction mechanism. The enzyme bound to phosphatidylinositol prior to ATP and phosphatidylinositol 4-phosphate was the first product released in the reaction. The equilibrium constant for the reaction indicated that the reverse reaction was favored in vitro. The activation energy for the reaction was 31.5 kcal/mol, and the enzyme was thermally labile above 30 degrees C. Phosphatidylinositol kinase activity was inhibited by calcium ions and thioreactive agents. Various nucleotides including adenosine and S-adenosylhomocysteine did not affect phosphatidylinositol kinase activity.  相似文献   

13.
Approximately 1 mol phosphatidylinositol phosphate is formed per mol isolated Ca2+ transport ATPase when the enzyme is incubated with ATP/Mg2+. The phosphorylation of this enzyme-associated phosphatidylinositol represents the alkylphosphate formation described earlier. The phosphatidylinositol phosphate has been found in the hydrophobic core of the enzyme. A complex of phosphatidylinositol phosphate with protein can be extracted with acidic chloroform/methanol. The protein behaves like proteolipid during chromatography on Sephadex LH 60 and binds the radioactively labelled phosphatidylinositol phosphate. The phosphorylation of approximately 1 mol phosphatidylinositol per 100,000 g protein correlates with an enhancement of the Ca2+ transport ATPase activity which is due to an approximately 7-fold enhanced affinity for Ca2+ and an approximately 2-fold enhanced maximal turnover.  相似文献   

14.
The effects of growth phase and carbon source on membrane-associated phosphatidylinositol kinase in cell extracts of Saccharomyces cerevisiae were examined. Phosphatidylinositol kinase activity increased 2- and 2.5-fold in glucose- and glycerol-grown cells, respectively, in the stationary phase as compared with the exponential phase of growth. The increase in phosphatidylinositol kinase activity in the stationary phase of growth correlated with an increase in the relative amounts of phosphatidylinositol 4-phosphate, the product of the reaction. The increase in phosphatidylinositol kinase activity was not due to the presence of water-soluble effector molecules in cell extracts as indicated by mixing experiments. Phosphatidylinositol kinase activity decreased in cell extracts of exponential-phase cells preincubated under phosphorylation conditions which favor cyclic AMP-dependent protein kinase activity. Phosphatidylinositol kinase activity was not affected in cell extracts of stationary-phase cells preincubated under phosphorylation conditions.  相似文献   

15.
Phosphatidylinositol synthase is the enzyme responsible for the synthesis of phosphatidylinositol, a key phospholipid component of all eukaryotic membranes and the precursor of messenger molecules involved in signal transduction pathways for calcium-dependent responses in the cell. Using the amino acid sequence of the yeast enzyme as a probe, we identified an Arabidopsis expressed sequence tag potentially encoding the plant enzyme. Sequencing the entire cDNA confirmed the homology between the two proteins. Functional assays, performed by overexpression of the plant cDNA in Escherichia coli, a bacteria which lacks phosphatidylinositol and phosphatidylinositol synthase activity, showed that the plant protein induced the accumulation of phosphatidylinositol in the bacterial cells. Analysis of the enzymatic activity in vitro showed that synthesis of phosphatidylinositol occurs when CDP-diacylglycerol and myo-inositol only are provided as substrates, that it requires manganese or magnesium ions for activity, and that it is at least in part located to the bacterial membrane fraction. These data allowed us to conclude that the Arabidopsis cDNA codes for a phosphatidylinositol synthase. A single AtPIS genetic locus was found, which we mapped to Arabidopsis chromosome 1.  相似文献   

16.
The phospholipid monolayer technique has been used to study the transfer activity of the phospholipid exchange protein from beef brain. In measuring the transfer between a monolayer consisting of equimolar amounts of phosphatidylcholine and phosphatidylinositol and liposomes consisting of 98 mol% phosphatidylcholine and 2 mol% phosphatidylinositol, the beef brain protein demonstrates an 8-fold higher transfer activity for phosphatidylinositol than for phosphatidylcholine. Under similar conditions the phosphatidylcholine exchange protein from beef liver showed a great preference for phosphatidylcholine. Phosphatidylcholine liposomes devoid of phosphatidylinositol still functioned as receptors of phosphatidylinositol when the beef brain exchange protein was present. This indicates that this protein can catalyse a net transfer of phosphatidylinopsitol. Binding of both phosphatidylinositol and phosphatidylcholine to the beef brain protein was shown.  相似文献   

17.
(1) A phosphatidylinositol kinase (EC 2.7.1.67) of a chromaffin vesicle membrane preparation isolated from bovine adrenal medulla was characterized. Its activity towards endogenous and exogenous phosphatidylinositol was very similar to the kinase activity of the microsomal fraction prepared from the same tissue. (2) Phosphomonoesterase (EC 3.1.3.36) and diesterase activity hydrolysing membrane bound phosphatidylinositol 4-phosphate was located mainly in the microsomal fraction. No hydrolytic activity was present in the vesicle membrane. (3) Phosphorylation of chromaffin vesicle membrane phosphatidylinositol did not increase calcium-binding by the membranes.  相似文献   

18.
The polyphosphoinositide phosphodiesterase of erythrocyte membranes   总被引:94,自引:53,他引:41       下载免费PDF全文
1. A new assay procedure has been devised for measurement of the Ca(2+)-activated polyphosphoinositide phosphodiesterase (phosphatidylinositol polyphosphate phosphodiesterase) activity of erythrocyte ghosts. The ghosts are prepared from cells previously incubated with [(32)P]P(i). They are incubated under appropriate conditions for activation of the phosphodiesterase and the released (32)P-labelled inositol bisphosphate and inositol trisphosphate are separated by anion-exchange chromatography on small columns of Dowex-1 (formate form). When necessary, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate can be deacylated and the released phosphodiesters separated on the same columns. 2. The release of both inositol bisphosphate and inositol trisphosphate was rapid in human ghosts, with half of the labelled membrane-bound phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate broken down in only a few minutes in the presence of 0.5mm-Ca(2+). For both esters, optimum rates of release were seen at pH6.8-6.9. Mg(2+) did not provoke release of either ester. 3. Ca(2+) provoked rapid polyphosphoinositide breakdown in rabbit erythrocyte ghosts and a slower breakdown in rat ghosts. Erythrocyte ghosts from pig or ox showed no release of inositol phosphates when exposed to Ca(2+). 4. In the presence of Mg(2+), the inositol trisphosphate released from phosphatidylinositol 4,5-bisphosphate was rapidly converted into inositol bisphosphate by phosphomonoesterase activity. 5. Neomycin, an aminoglycoside antibiotic that interacts with polyphosphoinositides, inhibited the breakdown of both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, with the latter process being appreciably more sensitive to the drug. Phenylmethanesulphonyl fluoride, an inhibitor of serine esterases that is said to inhibit phosphatidylinositol phosphodiesterase, had no effect on the activity of the erythrocyte polyphosphoinositide phosphodiesterase. 6. These observations are consistent with the notion that human, and probably rabbit and rat, erythrocyte membranes possess a single polyphosphoinositide phosphodiesterase that is activated by Ca(2+) and that attacks phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate with equal facility. Inhibition of this activity by neomycin seems likely to be due to interactions between neomycin and the polyphosphoinositides, with the greater inhibition of phosphatidylinositol 4,5-bisphosphate breakdown consistent with the greater affinity of the drug for this lipid. In addition, erythrocyte membranes possess Mg(2+)-dependent phosphomonoesterase that converts inositol 1,4,5-triphosphate into inositol bisphosphate.  相似文献   

19.
Subcellular fractions were isolated from a rat beta-cell tumour by centrifugation of homogenates on Percoll and Urografin density gradients. Fractions were incubated with [gamma-32P]ATP, and labelling of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was used to measure phosphatidylinositol kinase and phosphatidylinositol 4-phosphate kinase activities, respectively. The distribution of enzyme markers in density gradients indicated that phosphatidylinositol kinase was located in both the plasma membrane and the secretory-granule membrane. Phosphatidylinositol 4-phosphate kinase activity was low in all fractions. Phosphatidylinositol kinase activity of secretory granules and plasma membranes was decreased to 10-20% of its initial value by raising the free [Ca2+] from 1 microM to 5 microM. The enzyme had a Km (apparent) for ATP of 110 microM (secretory granule) or 120 microM (plasma membrane) and a Ka for Mg2+ of 7 mM (secretory granule) or 6 mM (plasma membrane). Ca2+-sensitivity of phosphatidylinositol kinase in calmodulin-depleted secretory granules and plasma membranes was not affected by addition of exogenous calmodulin, although activity was stimulated by trifluoperazine in the presence of 0.1 microM or 40 microM-Ca2+. Trifluoperazine oxide had no effect on the enzyme activity of secretory granules. Plasma membranes had a phosphatidylinositol 4-phosphate phosphatase activity which was stimulated by raising the free [Ca2+] from 0.1 to 40 microM. The secretory granule showed no phosphatidylinositol 4-phosphate-degrading activity. These results suggest the presence in the tumour beta-cell of Ca2+-sensitive mechanisms responsible for the metabolism of polyphosphoinositides in the secretory granule and plasma membrane.  相似文献   

20.
The membrane-bound form of phosphatidylinositol-4-phosphate (PtdInsP) kinase was purified 4,300-fold from human red blood cells to a specific activity of 117 nmol min-1 mg-1. Although this enzyme copurified with red blood cell membranes, it was solubilized by high salt extraction in the absence of detergent indicating that it is a peripheral membrane protein. The major protein seen in the most purified preparation migrated at 53,000 daltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major PtdInsP kinase activity in this preparation was also coincident with this 53,000-dalton band upon renaturation of activity from SDS-PAGE. To test further whether the 53,000-dalton protein contained PtdInsP kinase activity, antibodies were prepared against the gel-purified 53,000-dalton protein. This antiserum was able to precipitate both the 53,000-dalton peptide and PtdInsP kinase activity from red blood cell membranes. The apparent size of the native enzyme in the most purified preparation was determined to be 150,000 +/- 25,000 daltons by gel filtration. This PtdInsP kinase activity was at least 100-fold more active in phosphorylating PtdInsP than phosphatidylinositol and was easily separated from the red cell membrane phosphatidylinositol kinase by salt extraction. Analysis of the reaction product, phosphatidylinositol 4,5-bisphosphate, indicates that the enzyme phosphorylates phosphatidylinositol 4-phosphate specifically at the 5'-hydroxyl of the inositol ring. The apparent Km for ATP was 2 microM, and the concentrations of Mg2+ and Mn2+ giving half-maximal activity were 2 and 0.2 mM, respectively. Mg2+ supported 3-fold higher activity than Mn2+ at optimal concentrations. The enzymatic activity was inhibited by its product, phosphatidylinositol 4,5-bisphosphate and enhanced by phosphatidylserine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号