首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the kinetics and reaction mechanism of the carbamylphosphate synthetase of an enzyme aggregate functioning in the pyrimidine pathway of yeast. MG--ATP was found to be one of the substrates of the enzyme reaction which was activated by free Mg-2+ and inhibited by free ATP. Feedback inhibition by UTP was non-competitive with respect to both glutamine and bicarbonate. Potassium ions were essential for activity and could not be replaced by sodium. Glutamine could be replaced partially by ammonium ions as nitrogen donor. A bicarbonate-dependent cleavage of ATP was shown to take place in the absence of L-glutamine; L-glutamate was a competitive inhibitor of L-glutamine and the enzyme was shown to synthesize ATP when incubated with ADP and carbamyl phosphate. The reaction mechanism was found to involve sequential addition of the substrates bicarbonate and Mg--ATP and release of ADP, followed by addition of the third substrate glutamine. The purine nucleotide XMP had a pronounced activating effect on the enzyme, acting at a site different from that of UTP. Saturating levels of Mg--ATP eliminated this activation.  相似文献   

2.
3.
The first two steps of the de novo pyrimidine biosynthetic pathway in Saccharomyces cerevisiae are catalyzed by a 240-kDa bifunctional protein encoded by the ura2 locus. Although the constituent enzymes, carbamoyl phosphate synthetase (CPSase) and aspartate transcarbamoylase (ATCase) function independently, there are interdomain interactions uniquely associated with the multifunctional protein. Both CPSase and ATCase are feedback inhibited by UTP. Moreover, the intermediate carbamoyl phosphate is channeled from the CPSase domain where it is synthesized to the ATCase domain where it is used in the synthesis of carbamoyl aspartate. To better understand these processes, a recombinant plasmid was constructed that encoded a protein lacking the amidotransferase domain and the amino half of the CPSase domain, a 100-kDa chain segment. The truncated complex consisted of the carboxyl half of the CPSase domain fused to the ATCase domain via the pDHO domain, an inactive dihydroorotase homologue that bridges the two functional domains in the native molecule. Not only was the "half CPSase" catalytically active, but it was regulated by UTP to the same extent as the parent molecule. In contrast, the ATCase domain was no longer sensitive to the nucleotide, suggesting that the two catalytic activities are controlled by distinct mechanisms. Most remarkably, isotope dilution and transient time measurements showed that the truncated complex channels carbamoyl phosphate. The overall CPSase-ATCase reaction is much less sensitive than the parent molecule to the ATCase bisubstrate analogue, N-phosphonacetyl-L-aspartate (PALA), providing evidence that the endogenously produced carbamoyl phosphate is sequestered and channeled to the ATCase active site.  相似文献   

4.
Aquifex aeolicus, an organism that flourishes at 95 degrees C, is one of the most thermophilic eubacteria thus far described. The A. aeolicus pyrB gene encoding aspartate transcarbamoylase (ATCase) was cloned, overexpressed in Escherichia coli, and purified by affinity chromatography to a homogeneous form that could be crystallized. Chemical cross-linking and size exclusion chromatography showed that the protein was a homotrimer of 34-kDa catalytic chains. The activity of A. aeolicus ATCase increased dramatically with increasing temperature due to an increase in kcat with little change in the Km for the substrates, carbamoyl phosphate and aspartate. The Km for both substrates was 30-40-fold lower than the corresponding values for the homologous E. coli ATCase catalytic subunit. Although rapidly degraded at high temperature, the carbamoyl phosphate generated in situ by A. aeolicus carbamoyl phosphate synthetase (CPSase) was channeled to ATCase. The transient time for carbamoyl aspartate formation was 26 s, compared with the much longer transient times observed when A. aeolicus CPSase was coupled to E. coli ATCase. Several other approaches provided strong evidence for channeling and transient complex formation between A. aeolicus ATCase and CPSase. The high affinity for substrates combined with channeling ensures the efficient transfer of carbamoyl phosphate from the active site of CPSase to that of ATCase, thus preserving it from degradation and preventing the formation of toxic cyanate.  相似文献   

5.
Van Boxstael S  Maes D  Cunin R 《The FEBS journal》2005,272(11):2670-2683
Aspartate transcarbamylase (ATCase) (EC 2.1.3.2) from the hyperthermophilic archaeon Pyrococcus abyssi was purified from recombinant Escherichia coli cells. The enzyme has the molecular organization of class B microbial aspartate transcarbamylases whose prototype is the E. coli enzyme. P. abyssi ATCase is cooperative towards aspartate. Despite constraints imposed by adaptation to high temperature, the transition between T- and R-states involves significant changes in the quaternary structure, which were detected by analytical ultracentrifugation. The enzyme is allosterically regulated by ATP (activator) and by CTP and UTP (inhibitors). Nucleotide competition experiments showed that these effectors compete for the same sites. At least two regulatory properties distinguish P. abyssi ATCase from E. coli ATCase: (a) UTP by itself is an inhibitor; (b) whereas ATP and UTP act at millimolar concentrations, CTP inhibits at micromolar concentrations, suggesting that in P. abyssi, inhibition by CTP is the major control of enzyme activity. While V(max) increased with temperature, cooperative and allosteric effects were little or not affected, showing that molecular adaptation to high temperature allows the flexibility required to form the appropriate networks of interactions. In contrast to the same enzyme in P. abyssi cellular extracts, the pure enzyme is inhibited by the carbamyl phosphate analogue phosphonacetate; this difference supports the idea that in native cells ATCase interacts with carbamyl phosphate synthetase to channel the highly thermolabile carbamyl phosphate.  相似文献   

6.
In animals, UTP feedback inhibition of carbamyl phosphate synthetase II (CPSase) controls pyrimidine biosynthesis. Suppressor of black (Su(b) or rSu(b)) mutants of Drosophila melanogaster have elevated pyrimidine pools, and this mutation has been mapped to the rudimentary locus. We report that rSu(b) is a missense mutation resulting in a glutamate to lysine substitution within the second ATP binding site (i.e. CPS.B2 domain) of CPSase. This residue corresponds to Glu780 in the Escherichia coli enzyme (Glu1153 in hamster CAD) and is universally conserved among CPSases. When a transgene expressing the Glu-->Lys substitution was introduced into Drosophila lines homozygous for the black mutation, the resulting flies exhibited the Su(b) phenotype. Partially purified CPSase from rSu(b) and transgenic flies carrying this substitution exhibited a dramatic reduction in UTP feedback inhibition. The slight UTP inhibition observed with the Su(b) enzyme in vitro was due mainly to chelation of Mg2+ by UTP. However, the Km values for glutamate, bicarbonate, and ATP obtained from the Su(b) enzyme were not significantly different from wild-type values. From these experiments, we conclude that this residue plays an essential role in the UTP allosteric response, probably in propagating the response between the effector binding site and the ATP binding site. This is the first CPSase mutation found to abolish feedback inhibition without significantly affecting other enzyme catalytic parameters.  相似文献   

7.
A permeabilization procedure was adapted to allow the in situ determination of aspartate transcarbamylase activity in Saccharomyces cerevisiae. Permeabilization is obtained by treating cell suspensions with small amounts of 10% toluene in absolute ethanol. After washing, the cells can be used directly in the enzyme assays. Kinetic studies of aspartate transcarbamylase (EC 2.1.3.2) in such permeabilized cells showed that apparent Km for substrates and Ki for the feedback inhibitor UTP were only slightly different from those reported using partially purified enzyme. The aspartate saturation curve is hyperbolic both in the presence and absence of UTP. The inhibition by this nucleotide is noncompetitive with respect to aspartate, decreasing both the affinity for this substrate and the maximal velocity of the reaction. The saturation curves for both substrates give parallel double reciprocal plots. The inhibition by the products is linear noncompetitive. Succinate, an aspartate analog, provokes competitive and uncompetitive inhibitions toward aspartate and carbamyl phosphate, respectively. The inhibition by phosphonacetate, a carbamyl phosphate analog, is uncompetitive and noncompetitive toward carbamyl phosphate and aspartate, respectively, but pyrophosphate inhibition is competitive toward carbamyl phosphate and noncompetitive toward aspartate. These results, as well as the effect of the transition state analog N-phosphonacetyl-L-aspartate, all exclude a random mechanism for aspartate transcarbamylase. Most of the data suggest an ordered mechanism except the substrates saturation curves, which are indicative of a ping-pong mechanism. Such a discrepancy might be related to some channeling of carbamyl phosphate between carbamyl phosphate synthetase and aspartate transcarbamylase catalytic sites.  相似文献   

8.
9.
Genetic rearrangements such as deletions or duplications of DNA sequences are rarely detected in the yeast Saccharomyces cerevisiae. We have developed a screening system using the URA2 gene coding for the bi-functional CPSase-ATCase (carbamyl phosphate synthetase — aspartate transcarbamylase) to select positively for these kinds of events. Nonsense mutations in the CPSase region cause a complete loss of the ATCase activity because of their strong polar effect. Thirty-seven ATCase+ revertants were isolated from a strain containing three nonsense mutations in the proximal CPSase region. Genetic and structural analysis of the URA2 locus in these strains allowed us to characterize two major classes of revertants. In the first, an entire copy of a Ty transposon was found to be inserted in the CPSase coding domain. This event, which represents a new form of Ty-mediated gene activation was further analysed by mapping the Ty integration site in 26 strains. In a second class of revertants, we observed chromosomal rearrangements and, in particular, duplication of the ATCase region and its integration in a new chromosomal environment in which this sequence becomes active.  相似文献   

10.
The kinetics of the coupled reactions between carbamoyl-phosphate synthetase (CPSase) and both aspartate transcarbamoylase (ATCase) and ornithine transcarbamoylase (OTCase) from the deep sea hyperthermophilic archaeon Pyrococcus abyssi demonstrate the existence of carbamoyl phosphate channeling in both the pyrimidine and arginine biosynthetic pathways. Isotopic dilution experiments and coupled reaction kinetics analyzed within the context of the formalism proposed by Ovádi et al. (Ovádi, J., Tompa, P., Vertessy, B., Orosz, F., Keleti, T., and Welch, G. R. (1989) Biochem. J. 257, 187-190) are consistent with a partial channeling of the intermediate at 37 degrees C, but channeling efficiency increases dramatically at elevated temperatures. There is no preferential partitioning of carbamoyl phosphate between the arginine and pyrimidine biosynthetic pathways. Gel filtration chromatography at high and low temperature and in the presence and absence of substrates did not reveal stable complexes between P. abyssi CPSase and either ATCase or OTCase. Thus, channeling must occur during the dynamic association of coupled enzymes pairs. The interaction of CPSase-ATCase was further demonstrated by the unexpectedly weak inhibition of the coupled reaction by the bisubstrate analog, N-(phosphonacetyl)-L-aspartate (PALA). The anomalous effect of PALA suggests that, in the coupled reaction, the effective concentration of carbamoyl phosphate in the vicinity of the ATCase active site is 96-fold higher than the concentration in the bulk phase. Channeling probably plays an essential role in protecting this very unstable intermediate of metabolic pathways performing at extreme temperatures.  相似文献   

11.
The alpha beta-methylene analogues of ATP and ADP, [alpha beta CH2]ATP and [alpha beta CH2]ADP, are substrates for creatine kinase. However, the rate of the phosphoryl transfer reaction catalysed is about 10(-5)-times lower than that with normal ATP. The affinities of the analogues (especially [alpha beta CH2]ADP) for the enzyme are lower than those of the normal substrates. The equilibrium constant at 25 degrees C, measured using 31P NMR, for the reaction Mg[alpha beta CH2]ATP + creatine in equilibrium Mg[alpha beta CH2]ADP + phosphocreatine + H+ is 2.2 X 10(-12) M compared with a value of 2.5 X 10(-10) M for the same reaction with the normal substrates, corresponding to a difference in delta G0 values of 11.7 kJ X mol-1. It follows that delta G0 for the hydrolysis of the terminal phosphate group of Mg[alpha beta CH2]ATP is less favourable by 11.7 kJ X mol-1 than that for MgATP.  相似文献   

12.
Genetic rearrangements such as deletions or duplications of DNA sequences are rarely detected in the yeast Saccharomyces cerevisiae. We have developed a screening system using the URA2 gene coding for the bi-functional CPSase-ATCase (carbamyl phosphate synthetase — aspartate transcarbamylase) to select positively for these kinds of events. Nonsense mutations in the CPSase region cause a complete loss of the ATCase activity because of their strong polar effect. Thirty-seven ATCase+ revertants were isolated from a strain containing three nonsense mutations in the proximal CPSase region. Genetic and structural analysis of the URA2 locus in these strains allowed us to characterize two major classes of revertants. In the first, an entire copy of a Ty transposon was found to be inserted in the CPSase coding domain. This event, which represents a new form of Ty-mediated gene activation was further analysed by mapping the Ty integration site in 26 strains. In a second class of revertants, we observed chromosomal rearrangements and, in particular, duplication of the ATCase region and its integration in a new chromosomal environment in which this sequence becomes active.  相似文献   

13.
Summary Carbamyl phosphate stimulates neutral salt transport in thein vitro gallbladder. Acetyl phosphate also stimulates transport. In addition, the metabolic precursors of carbamyl phosphate, glutamine and bicarbonate ion, stimulate transport of fluid across the gallbladder mucosa. These data suggest that the effect of glutamine in stimulating increases in transport is achieved via the synthesis of carbamyl phosphate which in turn reacts with the transport mechanism. Metabolic precursors of glutamine, glutamate plus a nitrogen source, when combined will produce an effect similar to glutamine alone. Fluid transport is also slowed by azaserine; thus, the stimulation effect appears to be restricted to glutamine.  相似文献   

14.
The synthetase subunit of Escherichia coli carbamyl phosphate synthetase has two catalytic nucleotide-binding domains, one involved in the activation of HCO3- and the second in phosphorylation of carbamate. Here we show that a Glu841----Lys841 substitution in a putative ATP-binding domain located in the carboxyl half of the synthetase abolishes overall synthesis of carbamyl phosphate with either glutamine or NH3 as the nitrogen source. Measurements of partial activities indicate that while HCO3(-)-dependent ATP hydrolysis at saturating concentrations of substrate proceeds at higher than normal rates, ATP synthesis from ADP and carbamyl phosphate is nearly completely suppressed by the mutation. These results indicate Glu841 to be an essential residue for the phosphorylation of carbamate in the terminal step of the catalytic mechanism. The Lys841 substitution also affects the kinetic properties of the HCO3- activation site. Both kcat and Km for ATP increase 10-fold, while Km for HCO3- is increased 100-fold. Significantly, NH3 decreases rather than stimulates Pi release from ATP in the HCO3(-)-dependent ATPase reaction. The increase in kcat of the HCO3(-)-dependent ATPase reaction, and an impaired ability of the Lys841 enzyme to catalyze the reaction of NH3 with carboxy phosphate, strongly argues for interactions between the two catalytic ATP sites that couple the formation of enzyme-bound carbamate with its phosphorylation.  相似文献   

15.
The multifunctional protein CAD catalyzes the first three steps in pyrimidine biosynthesis in mammalian cells, including the synthesis of carbamyl phosphate from bicarbonate, MgATP and glutamine. The Syrian hamster CAD glutaminase (GLNase) domain, a trpG-type amidotransferase, catalyzes glutamine hydrolysis in the absence of MgATP and bicarbonate (Km = 95 microM and kcat = 0.14 s-1). Unlike E. coli carbamyl phosphate synthetase (Wellner, V.P., Anderson, P.M., and Meister, A. (1973) Biochemistry 12, 2061-2066), a stable thioester intermediate did not accumulate when the mammalian enzyme was incubated with glutamine. However, a covalent adduct could be isolated when the protein was denatured in acid. The steady state concentration of the intermediate increased with increasing glutamine concentration to nearly one mole per mole of enzyme with half saturation at 105 microM, close to the Km value for glutamine. The adduct formed at the active site of the glutaminase domain. The rate of breakdown of the intermediate (k4), determined directly, was 0.17 s-1 and the rate of formation (k3) was estimated as 0.52 s-1. In the absence of MgATP and bicarbonate, k4 = kcat indicating that the decomposition of the intermediate is the rate-limiting step. The intermediate was chemically and kinetically competent, and the glutamine dissociation constant (330 microM) and rate constants were consistent with steady state kinetics and accurately predicted the steady state concentration of the intermediate. These studies suggest a mechanism similar to the cysteine proteases such as recently proposed by Mei and Zalkin (Mei, B., and Zalkin, H. (1989) J. Biol. Chem. 264, 16613-16619) who identified a catalytic triad in glutamine phosphoribosyl-5'-pyrophosphate amidotransferase, a purF-type enzyme. MgATP and bicarbonate increased kcat of the glutaminase reaction 14-fold by accelerating both the rate of formation and the rate of breakdown of the intermediate, and prevented the accumulation of the intermediate; however, the Km value for glutamine was not significantly altered. The instability of the thioester intermediate leads to appreciable hydrolysis of glutamine in the absence of the other substrates. However, bicarbonate alone spares glutamine by increasing the Km and Ks of glutamine to 600 and 8960 microM, respectively, thus reducing kcat/Km 3-fold when MgATP is limiting. In the absence of MgATP and bicarbonate, ammonia decreased the rate of hydrolysis and the accumulation of the thioester intermediate indicating that ammonia had direct access to the thioester at the GLNase domain active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
13C and 15N isotope effects have been measured for the aspartate transcarbamylase (ATCase) reaction in an effort to elucidate the chemical mechanism of this highly regulated enzyme. The observed 15(V/K(asp))H2O value for the ATCase holoenzyme at saturing carbamyl phosphate and 12 mM L-aspartate is 1.0045 at pH 7.5, and this value remains unchanged in the presence of 5 mM ATP (activator) or 5 mM CTP (inhibitor). The fact that the isotope effect is not changed by the allosteric modifiers supports the conclusion that the kinetic properties of the active form of ATCase are not influenced by ATP or CTP. The observed 15(V/K(asp)) values for the catalytic subunit of ATCase are also the same as those determined for the holoenzyme, suggesting that the chemical mechanisms of both enzyme species are the same. Quantitative analysis of 13C and 15N isotope effects in both H2O and D2O has led to the proposal of a chemical model for the ATCase reaction which involves a precatalytic conformational change to form an activated complex that facilitates deprotonation of L-aspartate by an enzyme functional group. Nucleophilic attack on the carbonyl carbon of carbamyl phosphate by the alpha-amino group of L-aspartate results in the formation of a tetrahedral intermediate. An intramolecular proton transfer leads to formation of products N-carbamyl-L-aspartate and inorganic phosphate.  相似文献   

17.
D A Lewis  J J Villafranca 《Biochemistry》1989,28(21):8454-8459
The UTP-dependent ATPase reaction and the glutamine-dependent overall reaction of Escherichia coli CTP synthetase have been studied by rapid quench and isotope partitioning kinetics. The effect of GTP, an allosteric effector, on the pre-steady-state kinetics of both reactions has also been examined. The time courses of the UTP-dependent ATPase reaction in the presence and absence of GTP are both characterized by a burst of acid-labile phosphate equivalent to 0.93 and 0.43 subunits, respectively. The time course of the glutamine-dependent reaction in the absence of GTP is also characterized by a burst of acid-labile phosphate corresponding to 0.8 subunit; however, in the presence of GTP, no burst was observed. These results along with positional isotope exchange experiments [von der Saal, W., Anderson, P. M., & Villafranca, J. J. (1985) J. Biol. Chem. 260, 14997] provide evidence that the mechanism of CTP formation involves phosphorylation of UTP followed by attack of NH3, and finally release of phosphate, producing CTP, ADP, and Pi. A kinetic model for the first stages of the enzymatic reaction was developed from the rapid quench data, and the internal equilibrium constant for the formation of the phosphorylated UTP intermediate was determined. The internal equilibrium constants for the UTP-dependent reaction in the presence and absence of GTP were found to be 1.1 and 18, respectively. By contrast, the internal equilibrium constant for the reaction in the presence of glutamine was 50. Thus, the presence of glutamine shifts the internal equilibrium constant to favor formation of the phosphorylated UTP intermediate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A relatively simple kinetic model is proposed to account simultaneously for data on the binding of carbamyl phosphate and succinate to aspartate trans carbamylase (ATCase), and for the relaxation spectrum associated with this binding. The model also accounts for measurements of the initial velocity of the reaction of ATCase with respect to aspartate and carbamyl phosphate. The principal assumption made is that ATCase consists of three identical noninteracting cooperative dimers. Ordered binding and both sequential and concerted conformational changes in the dimers are needed to account for the properties of ATCase. The values of the parameters of this model can be determined by fitting to existing experimental evidence. Various new quantitative predictions are made that can serve as additional tests of the proposed theory.  相似文献   

19.
H S Kim  L Lee  D R Evans 《Biochemistry》1991,30(42):10322-10329
The ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA) was used to chemically modify the ATP binding sites of the carbamyl phosphate synthetase domain of CAD, the multifunctional protein that catalyzes the first steps in mammalian pyrimidine biosynthesis. Reaction of CAD with FSBA resulted in the inactivation of the ammonia- and glutamine-dependent CPSase activities but had no effect on its glutaminase, aspartate transcarbamylase, or dihydroorotase activities. ATP protected CAD against inactivation by FSBA whereas the presence of the allosteric effectors UTP and PRPP afforded little protection, which suggests that the ATP binding sites were specifically labeled. The inactivation exhibited saturation behavior with respect to FSBA with a K1 of 0.93 mM. Of the two ATP-dependent partial activities of carbamyl phosphate synthetase, bicarbonate-dependent ATPase was inactivated more rapidly than the carbamyl phosphate dependent ATP synthetase, which indicates that these partial reactions occur at distinct ATP binding sites. The stoichiometry of [14C]FSBA labeling showed that only 0.4-0.5 mol of FSBA/mol of protein was required for complete inactivation. Incorporation of radiolabeled FSBA into CAD and subsequent proteolysis, gel electrophoresis, and fluorography demonstrated that only the carbamyl phosphate synthetase domain of CAD is labeled. Amino acid sequencing of the principal peaks resulting from tryptic digests of FSBA-modified CAD located the sites of FSBA modification in regions that exhibit high homology to ATP binding sites of other known proteins. Thus CAD has two ATP binding sites, one in each of the two highly homologous halves of the carbamyl phosphate domain which catalyze distinct ATP-dependent partial reactions in carbamyl phosphate synthesis.  相似文献   

20.
CAD is a multidomain protein that catalyzes the first three steps in mammalian de novo pyrimidine biosynthesis. The 243-kDa polypeptide consists of four functional domains; glutamine amidotransferase (GLNase), carbamyl phosphate synthetase (CPSase), aspartate transcarbamylase (ATCase), and dihydroorotase (DHOase). Controlled proteolysis of hamster CAD was found to cleave the molecule into 18 fragments which successively accumulate and disappear during the course of digestion. Each fragment was isolated and partially sequenced to determine its location in the polypeptide chain. Proteolysis was found to usually occur at the junctions between the domains and sub-domains identified by sequence homology. All proteases of low to moderate specificity cleaved the molecule in a similar fashion. The rate of proteolysis widely varied and the interdomain regions were not always accessible to proteases. Each of the major functional domains is postulated to consist of subdomains. The duplicated halves of the CPSase domain (116 kDa) have a homologous structure consisting of 11-, 25-26-, and 21-22-kDa subdomains. Prolonged digestion cleaved the DHOase domain (36.6 kDa) into two stable species suggesting that this region is comprised of 11.5- and 15.0-kDa subdomains. Similarly, proteolysis of the 21-kDa catalytic subdomain of the GLNase domain (40 kDa) indicated a bilobal structure consisting of 12.3- and 8.5-kDa chain segments. The connecting region between the two ATCase subdomains (16.4 and 18 kDa) was not cleaved. Copurification of many of the domains showed that they remain associated by noncovalent interactions even after the connecting segments have been cleaved. The chain segments, the linkers, which connect the domains and subdomains were conserved in length but not in sequence, were predicted to be relatively hydrophilic and flexible but did not show a tendency to assume a particular secondary structure. These studies provide a more detailed map of the structural organization of the CAD polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号