首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The responses of spiking local interneurones of a ventral midline population in the metathoracic ganglion of the locust,Schistocerca gregaria, to controlled movements of a proprioceptor, the femoral chordotonal organ (FCO) in a hindleg, were revealed by intracellular recording. Afferents from the FCO which signal specific features of the movement or angle of the femoro-tibial joint, can make direct excitatory synapses with particular interneurones in this population (Burrows 1987a).Some interneurones in this population are excited only by flexion, some only by extension, but others by both flexion and extension movements of the femoro-tibial joint. Interneurones excited by one direction of movement may be either unaffected, or inhibited by the opposite movement. The balance between excitation and inhibition is determined by the range over which the movement occurs, and can increase the accuracy of a representation of a movement.The response of some interneurones has tonic components, so that the angle of the joint over a certain range is represented in the frequency of their spikes. Different interneurones respond within different ranges of femoro-tibial angles so that information about the position of the joint is fractionated amongst several members of the population. These interneurones respond to repetitive movements, similar to those used by the locust during walking, with bursts of spikes whose number and frequency are determined by the repetition rate and amplitude of the movement. A brief movement of the FCO may induce effects which persist for many seconds and outlast the changed pattern of afferent spikes. The sign of such an effect depends upon the preceding history of stimulation.Other interneurones respond only to movement so that their response is more phasic. The velocities to which they respond fall within the range of those generated by twitches of the flexor and extensor tibiae muscles and the movements of the tibia during locomotion. Some interneurones respond only to a specific range of velocities because they are inhibited by all other movements. Some interneurones respond to repetitive movements with reliable bursts of spikes, whilst in others the frequency of spikes may be raised but may contain no cyclical information. All, however, produce the largest number of spikes during the first cycle of a repetitive movement.Inputs from the FCO may sum either with excitation generated by direct inputs from exteroceptors or with inhibition produced by other local interneurones as a result of afferent signals.These spiking local interneurones are essential elements in the integration of local reflexes initiated by signals from the FCO. For example, one ensures that the levator tarsi motor neurone is reflexly inhibited when the FCO signals an extension movement. Exteroceptive inputs from the ventral tarsus suppress the spikes in this interneurone and would prevent expression of the reflex when the tarsus is in contact with ground.Abbreviation FCO femoral chordotonal organ  相似文献   

2.
We performed an imitation simulation of receptive fields (RF) of cat cortical neurons in the primary visual cortex, which were able to detect symmetrical and asymmetrical Y-like figures. We investigated the models of the receptive fields of neurons sensitive to Y-like figures through either the convergence from half-bar detectors or disinhibition mechanism. The model of an of the receptive fields of neurons sensitive to Y-like figures through either the convergence from half-bar detectors or disinhibition mechanism. The model of an-like figure detector on the basis of convergence from the angle and orientation detectors was advanced. Tuning of the simulated receptive fields to Y-like figures was compared with their tuning to cross-like figures. It was shown that the detectors of asymmetric Y-like figures are also detectors of a cross, whereas the detectors of symmetric Y-like figures are more sensitive to Y-like figures than to crosses. The features of the model critical for sensitivity to Y-like figures (the shape, localization, and weight of the RF zones) were specified.  相似文献   

3.
The organization of exteroceptive inputs to identified ascending interneurones of the crayfish, Procambarus clarkii (Girard), has been analyzed by stimulation of hairs on the uropod and simultaneous intracellular recordings from ascending interneurones. The spikes of single afferent neurones which innervated hairs on the distal ventral surface of the exopodite were consistently followed by a depolarizing synaptic potential in many identified ascending interneurones with a constant and short central delay of 0.7–1.5 ms. The amplitude of the potentials depended on the membrane potential of the ascending interneurones. Each afferent neurone made divergent outputs onto several ascending interneurones and each ascending interneurone received convergent inputs from several afferent neurones. Certain ascending interneurones made inhibitory or excitatory connections with other ascending interneurones. These central interactions were always one-way, and the spikes from one ascending interneurone consistently evoked excitatory or inhibitory post-synaptic potentials in other interneurones which followed with a constant and short latency of 0.7–1.0 ms. The inhibitory postsynaptic potential was reversed by injection of steady hyperpolarizing current.Abbreviations EPSP excitatory post-synaptic potential - IPSP inhibitory post-synaptic potential  相似文献   

4.
Spiders can use air particle movements to localize moving prey. We studied the responses of 32 wind-sensitive interneurones in the hunting spider Cupiennius salei to prey stimuli. Stimulation with a tethered flying fly or with artificial air pulses activated plurisegmental interneurones that responded to changes in air movement velocity and were thus well suited to represent the highly fluctuating air stream typical of prey stimuli. In most interneurones (n = 18) the responses to the stimulation of different legs were not significantly different from each other. Different interneurones had different response characteristics and their latencies largely overlapped suggesting that there is parallel processing of the signals by populations of interneurones with different response characteristics. In two interneurones the number of spikes and the spiking pattern elicited by stimulation of each of the eight legs markedly differed depending on the leg stimulated. These neurones may play an important role in directional information processing. Stimulation of the adjacent legs from front to back or from back to front revealed two interneurones sensitive to the direction of successive stimulation of the legs. These neurones may be able to detect the motion of an air movement source in a preferred direction and thus act as nearfield motion detectors to localize a moving prey item. Accepted: 28 September 1996  相似文献   

5.
Nonspiking local interneurones are the important premotor elements in arthropod motor control systems. We have analyzed the synaptic interactions between nonspiking interneurones in the crayfish terminal (6th) abdominal ganglion using simultaneous intracellular recordings. Only 15% of nonspiking interneurones formed bi-directional excitatory connections. In 77% of connections, however, the nonspiking interneurones showed a one-way inhibitory interaction. In these cases, the presynaptic nonspiking interneurones received excitatory synaptic inputs from the sensory afferents innervating hairs on the surface of the uropods and the postsynaptic nonspiking interneurones received inhibitory synaptic inputs that were partly mediated by the inputs to the presynaptic nonspiking interneurones. The membrane hyperpolarization of the postsynaptic nonspiking interneurones mediated by the presynaptic nonspiking interneurones was reduced in amplitude when the hyperpolarizing current was injected into the postsynaptic interneurones, or when the external bathing solution was replaced with one containing low calcium and high magnesium concentrations. The role of these interactions in the circuits controlling the movements of the terminal appendages is discussed.Abbreviations AL antero-lateral - epsp excitatory postsynaptic potential - ipsp inhibitory postsynaptic potential - PL postero-lateral  相似文献   

6.
In the stick insect (Carausius morosus) imposed forward and backward movements of the coxa of the middle leg induce resistance reflexes in the retractor or protractor coxae muscles, depending on the direction of movement. The hairs of the ventral coxal hairplate (cxHPv) function as the primary transducer of the retractor part of the underlying feedback loop: bending of the hairs of the cxHPv during an imposed forward movement of the coxa leads to a reflex activation of the retractor motoneurones, whereas releasing of the hairs causes an inhibition of these motoneurones. Local nonspiking interneurones were investigated, which transmit information from the cxHPv onto the retractor motoneurones: 1) they are depolarized during bending of the hair sensilla of the cxHPv and 2) they decrease the activities of retractor motoneurones. In addition, four of the interneurones drive a protractor motoneurone, when they are depolarized. As bending stimuli at the cxHPv (mimicking an imposed forward movement of the leg) induce reflex activation of the retractor motoneurones and reflex inhibition of the protractor motoneurones, the physiology of the recorded interneurones appears to antagonize the resistance reflex in the thoraco-coxal joint. The results indicate that these nonspiking interneurones take part in the shaping of the reflex response and that furthermore these interneurones are involved in the organization of the motor output to the two antagonistic sets of motoneurones. The possible role of these interneurones might be the adjustment of the gain and of the time constant in the thoraco-coxal feedback loop.  相似文献   

7.
Summary At the distal end of a mesothoracic tibia of the locust,Schistocerca gregaria, is a chordotonal organ which monitors the position and movement of the tarsus relative to the tibia. It contains approximately 35 receptors that variously encode different spatial and temporal parameters (position, velocity and direction of movement). Some excite intersegmental interneurones that respond phasically or tonically, with directional sensitivity to active or imposed movements of the tarsus. Some of these interneurones are also excited by intrinsic movements of the tarsal segments. Others, besides being excited by tarsal proprioceptive inputs, are also excited by exteroreceptors on the tarsus.When stimulated mechanically or electrically, chordotonal afferents evoke excitatory postsynaptic potentials with a central latency of between 0.9 and 1.4 ms simultaneously in the intersegmental interneurones and in tarsal motor neurones. The central arborizations of the afferents, the intersegmental interneurones and the tarsal motor neurones overlap in certain neuropilar regions of the mesothoracic ganglion. Other afferents cause an inhibition of the motor neurones, with a longer and non-consistent latency suggesting the involvement of other intercalated interneurones.These results indicate that proprioceptive inputs from the tarsal joint receptors are transmitted in parallel and monosynaptically to tarsal motor neurones and to the intersegmental interneurones.  相似文献   

8.
SUMMARY 1. Based on the findings that some dragonflies prefer either ‘dark’ or ‘bright’ water (as perceived by the human eye viewing downwards perpendicularly to the water surface), while others choose both types of water bodies in which to lay their eggs, the question arises: How can dragonflies distinguish a bright from a dark pond from far away, before they get sufficiently close to see it is bright or dark? 2. Our hypothesis is that certain dragonfly species may select their preferred breeding sites from a distance on the basis of the polarisation of reflected light. Is it that waters viewed from a distance can be classified on the basis of the polarisation of reflected light? 3. Therefore we measured, at an angle of view of 20° from the horizontal, the reflection‐polarisation characteristics of several ponds differing in brightness and in their dragonfly fauna. 4. We show that from a distance, at which the angle of view is 20° from the horizontal, dark water bodies cannot be distinguished from bright ones on the basis of the intensity or the angle of polarisation of reflected light. At a similar angle of view, however, dark waters reflect light with a significantly higher degree of linear polarisation than bright waters in any range of the spectrum and in any direction of view with respect to the sun. 5. Thus, the degree of polarisation of reflected light may be a visual cue for the polarisation‐sensitive dragonflies to distinguish dark and bright water bodies from far away. Future experimental studies should prove if dragonflies do indeed use this cue for habitat selection.  相似文献   

9.
Previous neuropharmacological studies have described the presence of a nitric oxide-cGMP signalling pathway in the crayfish abdominal nervous system. In this study we have analysed the distribution of putative nitric oxide synthase (NOS)-containing ascending interneurones in the crayfish terminal abdominal ganglion using NADPH-diaphorase (NADPHd) histochemistry. Ascending intersegmental interneurones were stained intracellularly using the fluorescent dye Lucifer yellow and the ganglia containing the stained interneurones subsequently processed for NADPHd activity. Fluorescence persisted throughout histochemical processing. These double-labelling experiments showed that 12 of 18 identified ascending interneurones were NADPHd positive. Thus many ascending interneurones that process mechanosensory signals in the terminal ganglion may contain NOS, and are themselves likely sources of NO which is known to modulate their synaptic inputs. Three clear relationships emerged from our analysis between the effects of NO on the synaptic inputs of interneurones, their output properties and their staining for NADPH-diaphorase. First were class 1 interneurones with no local outputs in the terminal ganglion, the NE type interneurones, which had sensory inputs that were enhanced by NO and were NADPHd positive. Second were class 1 interneurones with local and intersegmental output effects that had sensory inputs that were also enhanced by NO but were NADPHd negative. Third were class 2 interneurones with local and intersegmental outputs that had synaptic inputs that were depressed by the action of NO but were NADPHd positive. These results suggest that NO could selectively enhance specific synaptic connections and sensory processing pathways in local circuits.  相似文献   

10.
Summary Tactile stimulation of a leg of the locustSchistocerca gregaria can lead to specific reflex movements of that leg. At the same time nonspiking interneurones that are presynaptic to the participating motor neurones are excited or inhibited, suggesting that they are directly involved in these reflexes. The afferent pathways mediating these effects have been examined by recording from individual afferents and nonspiking interneurones.Afferent spikes fromtrichoid orcampaniform sensilla on specific regions of a leg evoke chemically-mediated EPSPs with a constant central latency of about 1.5 ms in certain nonspiking interneurones. The branches of an interneurone and the afferents from which it receives inputs overlap in the neuropil of the ganglion.No afferents have been found to evoke IPSPs directly in the nonspiking interneurones. Instead the inhibition is caused by a population of spiking local interneurones that are themselves excited directly by the afferents, and whose spikes evoke IPSPs in certain nonspiking interneurones.The tactile reflexes can involve movements about one or more joints of the leg, and these coordinated responses are explained by the participation of specific nonspiking interneurones that distribute the sensory inputs to the appropriate sets of motor neurones. For example, when hairs on the dorsal surface of a tarsus are touched, the tarsus is levated. This reflex involves nonspiking local interneurones which are excited directly by these hair afferents and which make direct excitatory connections with the single levator tarsi motor neurone.  相似文献   

11.
The presence of an illuminated slit in the visual field of a locust compound eye produced changes in the tonic discharge rate of the DCMD and three other visual interneurones, recorded in a connective. The DCMD discharge peaked initially in the range of low slit subtenses, but over a period of minutes of exposure its character changed so that there was a rise at high subtenses also. When the luminance of a slit of fixed subtense was increased in steps, there was an initial rise then a sharp fall in discharge, indicating an abrupt onset of inhibition. Lateral spread of inhibition could account for the peak in response to slits, at a subtense falling well within the acceptance angle of a single ommatidium. The results show the ability of some visual interneurones to maintain a changed level of discharge in the presence of a stationary object in the visual field of the eye.  相似文献   

12.
1. The interneurones which make widespread connexions with flight motoneurones also synapse upon ventilatory motoneurones so that in all 50 motoneurones receive synapses. They influence three aspects of ventilation; (a) the closing and opening movements of the thoracic spiracles, (b) some aspects of abdominal pumping movements and (c) the recruitment of some motoneurones controlling head pumping. 2. The two closer motoneurones of a particular thoracic spiracle receive the same excitatory synaptic inputs (EPSPs) during expiration. The EPSPs match those in appropriate flight motoneurones. 3. The closer motoneurones of each thoracic spiracle whose somata are in the pro-, meso- or metathoracic ganglia all receive the same excitatory synaptic inputs. These inputs are an adequate explanation of the pattern of spikes in the closer motoneurones. Both the slow ventilatory and fast rhythms of synaptic potentials are expressed as spikes; the slow as the overall expiratory burst of spikes and the fast as the groups of spikes within that burst. This establishes a ventilatory function for the interneurones. All thoracic closer motoneurones therefore receive the same excitatory commands which will tend to synchronize the movements of each spiracle. 4. Spiracular opener motoneurones are inhibited during expiration, their IPSPs matching the EPSPs in flight or closer motoneurones. Therefore the interneurones have reciprocal effects on the antagonistic motoneurones of the spiracles. 5. The interneurones synapse upon some motoneurones which control the pumping movements of the abdomen and which have their somata in the metathoracic or first unfused abdominal ganglion. Motoneurones in four separate ganglia therefore receive inputs from these interneurones. 6. The interneurones also synapse upon motoneurones which control an auxiliary form of ventilation, head pumping.  相似文献   

13.
Summary Interneurones in the deutocerebrum of male cockroaches were characterised according to their intracellularly recorded responses to odours of females and to selected food odours. Following physiological characterization the interneurones were stained by the intracellular injection of dye. Some interneurones were characterized by extracellular recording and staining.The intracellular electrodes were either placed in the somata of the interneurones or more usually in neurites between the deutocerebral glomeruli. Such recordings reveal a continuous background of synaptic potentials, and spikes at a variable but low frequency depending upon the individual interneurone. The odours, which were blown over one antenna, were a whole female extract and two purified components of this; Fraction A and a second identical to Periplanone B. Sixteen other food odours were also tested. The interneurones revealed fell into four main groups which responded to: the whole female extract and the two components, to one of the two components preferentially, and to whole female extract but neither of the components. Other interneurones were inhibited by female odours but excited by some food odours. The interneurones with these characteristics which were stained, were principal interneurones with cell bodies in the lateral cluster in the deutocerebrum, branches within the deutocerebrum confined to the macroglomerulus (an enlarged glomerulus found only in adult males), and an axon projecting to the calyces and lobus lateralis protocerebralis of the protocerebrum. The interneurones responding preferentially to Periplanone B had branches throughout the macroglomerulus, but those responding to Fraction A had a more restricted pattern of branching within the macroglomerulus.  相似文献   

14.
The contribution of ATP-sensitive potassium (K(ATP)) channels to neuronal excitability was studied in different types of pyramidal cells and interneurones in hippocampal slices prepared from 9- to 15-day-old rats. The presence of functional K(ATP) channels in the neurones was detected through the sensitivity of whole-cell currents to diazoxide, a K(ATP) channel opener, and to tolbutamide, a K(ATP) channel inhibitor. The percentages of neurones with K(ATP) channels increase in the sequence: CA1 pyramidal cells (37%)相似文献   

15.
The processing of proprioceptive information from the exopodite-endopodite chordotonal organ in the tailfan of the crayfish Procambarus clarkii (Girard) is described. The chordotonal organ monitors relative movements of the exopodite about the endopodite. Displacement of the chordotonal strand elicits a burst of sensory spikes in root 3 of the terminal ganglion which are followed at a short and constant latency by excitatory postsynaptic potentials in interneurones. The afferents make excitatory monosynaptic connections with spiking and nonspiking local interneurones and intersegmental interneurones. No direct connections with motor neurones were found.Individual afferents make divergent patterns of connection onto different classes of interneurone. In turn, interneurones receive convergent inputs from some, but not all, chordotonal afferents. Ascending and spiking local interneurones receive inputs from afferents with velocity thresholds from 2–400°/s, while nonspiking interneurones receive inputs only from afferents with high velocity thresholds (200–400°/s).The reflex effects of chordotonal organ stimulation upon a number of uropod motor neurones are weak. Repetitive stimulation of the chordotonal organ at 850°/s produces a small reduction in the firing frequency of the reductor motor neurone. Injecting depolarizing current into ascending or non-spiking local interneurones that receive direct chordotonal input produces a similar inhibition.  相似文献   

16.
The role of non-spiking local interneurones in the synaptic interactions between abdominal extension-evoking descending interneurones and uropod motor neurones in the terminal abdominal ganglion of the crayfish Procambarus clarkii (Girard) was investigated electrophysiologically. Continuous electrical stimulation of the lateral region of the 3rd-4th abdominal connective that included abdominal extension evoking interneurones excited the opener motor neurones and inhibited the closer, reductor motor neurone. Spikes from a single descending interneurone evoked consistent and short latency (0.8–0.9 ms) excitatory postsynaptic potentials (e.p.s.ps) in the opener motor neurones, and evoked rather long-latency (1.5–2.7 ms) inhibitory postsynaptic potentials (i.p.s.ps) in the reductor motor neurone. Many non-spiking interneurones also received depolarizing p.s.ps (0.8–2.5 ms in latency) that were usually faster than i.p.s.ps of the reductor motor neurone if both neurones were recorded sequentially in the same preparation. Non-spiking interneurones received convergent inputs from several descending interneurones and made inverting connection with the reductor motor neurone. Elimination of descending inputs to a particular non-spiking interneurone could reduce the inhibitory response of the reductor motor neurone. These observations strongly suggested that descending inhibitory inputs to the closer, reductor motor neurone were mediated by non-spiking interneurones. Furthermore, some non-spiking interneurones made output connections with the opener motor neurones. The disynaptic pathway through non-spiking interneurones is significant to control and modulate the opening pattern of the uropod during abdominal extension. Accepted: 27 December 1996  相似文献   

17.
Recordings were made from identified balancing system interneurones using implanted electrodes in crabs oscillated at 0.3 Hz during bouts of Parabolic flight. Repeatable non stabilized patterns of response firing were seen in head up and head down interneurones. During the hypergravity phases, the ratio of firing frequencies in the two directional categories of interneurones was altered showing that hypergravity produced effects normally seen during tilting of the crab, implying greater bending of the sensory thread hairs. During microgravity, firing levels remained low and constant or changed slowly towards initial firing levels.  相似文献   

18.
The neural pathways underlying the processing of signals from locust (Schistocerca gregaria) ovipositor hairs by different classes of interneurones are investigated.Spikes in the sensory neurones from these hairs evoke chemically-mediated, unitary EPSPs with a short and constant latency in six identified non-giant projection interneurones with cell bodies in the terminal abdominal ganglion. Five of these interneurones receive direct inputs from the valves ipsilateral to their neuropilar branches, whereas the other receives direct inputs from valves on both sides. The sensory neurone from a single hair makes divergent connections with several interneurones and those from different hairs make convergent connections with a given interneurone. The amplitude of the EPSPs evoked depends on the position of a hair along the proximal-distal axis of the valve, with sensory neurones from more distal hairs generating larger amplitude EPSPs.Deflection of hairs also excites three of the four giant projection interneurones through polysynaptic pathways and some local interneurones in the terminal abdominal ganglion through monosynaptic connections. Branches of non-giant projection interneurones, local interneurones, but not those of the giant interneurones, overlap the axon terminals of the ovipositor hair afferents in the terminal abdominal ganglion.  相似文献   

19.
A spinal "respiration" generator has been shown to fire phrenic motoneurones in rhythmic bursts. It is very likely driven through bulbo-spinal inspiratory neurones in intact preparations. Although no direct evidence for respiratory interneurones at the C4-C5 spinal levels has been obtained so far (except for Renshaw cells ), it is currently believed that only few inspiratory inputs to the phrenic motoneurones are transmitted monosynaptically from the medulla. We have tried here to record spinal interneuronal respiratory activities in decorticate, unanaesthetized, vagotomized and curarized rabbit preparations. Different functional categories of interneurones could be identified at the C4-C5 spinal levels: inspiratory and expiratory interneurons with various discharge patterns which rather well correspond to the functional categories of inspiratory and expiratory bulbo-spinal neurones described by Bianchi and Richter. In addition, multiunit inspiratory bursting could be followed over several 100 microns during each electrode penetration. The different categories of interneurones were encountered laterally from 700 to 1,000 microns, at depths ranging from 300 to 500 microns dorsally to the phrenic nucleus, down to the nucleus itself. These results indicate that part of the medullary inspiratory drive is channelled via spinal cord interneurones; they also suggest that an inhibition of phrenic motoneurones from the bulbo-spinal expiratory drive takes place via interneurones.  相似文献   

20.
(1) Responses of auditory interneurones were recorded intracellularly within the metathoracic ganglion of the locust when stimulating each tympanic membrane with a piezoelectric transducer. Thus, in contrast to conventional sound stimulation, each of the two ears could be activated independently from the other at variable intensities, duration and stimulus onsets. By means of this ‘earphone-like’ stimulation technique the binaural integration properties of auditory interneurons could be analysed. (2) A minority of units (3 out of 43) was affected by input from one side only. Their synaptic input was purely excitatory and the intensity characteristics reflected those of auditory receptor fibres. (3) Most interneurones received input from both ears, each being excitatory or one excitatory or one excitatory and one inhibitory. In some units the unilateral synaptic response already included both an EPSP and an IPSP. As a result of varying temporal interactions between the EPSP and the IPSP within the unilaterally evoked complex response the intensity characteristics differed widely from unit to unit. (4) With binaural simultaneous stimulation the complexity of the postsynaptic responses of most interneurones increased as the synaptic input from both ears coincided at the level of the recorded interneurone. Although both ears were stimulated symmetrically (at the same time and intensity), units were recorded where the latencies of ipsilateral and contralateral synaptic input were different. Contralateral inhibition could either follow or precede ipsilateral excitation and in some cases both EPSP and IPSP had the same latency. On the basis of these findings the binaural synaptic mechanisms of directional coding are discussed and compared with corresponding results under free field stimulus conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号