首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of the Mediterranean corn borer, Sesamia nonagrioides, under long-day (LD) photoperiod is associated with juvenile hormone (JH) decline and pupation in the 5th or 6th larval instar. The larvae grown under short-day (SD) conditions maintain a moderate JH titer and enter diapause during which they undergo several extra larval molts. Both types of larvae exhibit similar levels of juvenile hormone esterase (JHE) activity that increases in each instar during the period of low ecdysteroid titer and drops when the titer rises to a molt-inducing peak. A suppression of JHE activity within 24h after application of an ecdysteroid agonist suggests that the drop of activity is a rapid and possibly direct response to ecdysteroids or their agonist. Esterase inhibitor 3-octylthio-1,1,1-trifluoro-2-propanone (OTFP) suppressed more than 98% of the JHE activity without affecting pupation timing and adult development. The data indicate that JHE is not crucial for the switch between larval development, diapause, and metamorphosis in S. nonagrioides.  相似文献   

2.
3.
Larvae of the spruce budworm, Choristoneura fumiferana, infected with C. fumiferana entomopoxvirus (CfEPV) continue to feed and grow without undergoing metamorphosis and die as moribund larvae. The lethal dose (LD(50)) and lethal time (LT(50)) values for fourth instar larvae are 2.4 spheroids and 25.2 days, respectively. One hundred percent of the control fourth instar larvae, which were fed water instead of virus, pupated by 18 days post feeding (PF). Only 30% of the larvae that were fed the LD(50) dose and none of the larvae that were fed the LD(95) dose pupated by 18 days PF. Of the control larvae, 95% became adults by 24 days PF, whereas in the treated group only 2% of larvae that were fed the LD(50) dose and none of the larvae that were fed the LD(95) dose became adults by 24 days PF. Some of the virus-treated larvae died as either larval/pupal or pupal/adult intermediates. These phenotypic effects were similar to the larval/pupal and pupal/adult intermediates, resulting from treating larvae with juvenile hormone (JH) or its analogs, which suggests that EPV may cause such abnormalities by modulating JH and/or ecdysteroid titers. In untreated sixth instar larvae the JH titer decreased to low levels by 24 h after ecdysis and remained low throughout larval life. EPV-fed sixth instar larvae had 2112 pg/ml on day 0, 477 pg/ml on day 1 and 875 pg/ml on day 8 of the sixth instar. Control larvae contained 860 ng of ecdysteroids per ml hemolymph on day 8 of the sixth instar, whereas EPV-treated larvae of the same age (30 days PF) had only 107 ng of ecdysteroids per ml of hemolymph. Thus, EPV infection results in increased JH titer and decreased ecdysteroid titer. Northern hybridization analysis was performed using RNA isolated from control and EPV-fed larvae and cDNA probes for (i) juvenile hormone esterase (JHE), which is JH inducible, (ii) Choristoneura hormone receptor 3 (CHR3), which is ecdysteroid inducible, and (iii) larval specific diapause associated protein 1 (DAP1), whose expression is larval specific. EPV-treated larvae showed higher levels of JHE and DAP1 mRNA and lower levels of CHR3 mRNA, indicating that they had higher levels of JH and lower levels of ecdysteroids. Thus, our data show that EPV prevents metamorphosis by modulating ecdysteroid and JH levels.  相似文献   

4.
5.
The increase in the juvenile hormone (JH) III titer in the hemolymph of Lymantria dispar larvae that were parasitized by the endoparasitoid braconid, Glyptapanteles liparidis, during the host's premolt to third instar, coincided with the molt of the parasitoid larvae to the second instar between day 5 and 7 of the fourth host instar. It reached a maximum mean value of 89 pmol/ml on day 7 of the fifth instar while it remained below 1 pmol/ml in unparasitized larvae. Only newly molted fifth instar hosts showed a low JH III titer similar to that of the unparasitized larvae. JH II, which is the predominant JH homologue in unparasitized gypsy moth larvae, also increased relative to controls in the last two samples (days 7 and 9) from parasitized fourth and fifth instars. Compared to unparasitized larvae, a generally reduced activity of JH esterase (JHE) was found in parasitized larvae throughout both larval stages. The reduction in enzyme activity at the beginning and at the end of each instar, when the JHE activity in unparasitized larvae was high, may be in part responsible for the increased JH II and JH III titers in parasitized larvae. Ester hydrolysis was the only pathway of JH metabolism in the hemolymph of unparasitized and parasitized gypsy moth larvae as detected by chromatographic assays. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Juvenile hormone esterase (JHE) is the primary juvenile hormone (JH) metabolic enzyme in insects and plays important roles in the regulation of molt and metamorphosis. We investigated its mRNA expression profiles and hormonal control in Bombyx mori larvae. JHE mRNA was expressed at the end of the 4th and 5th (last) larval instars in the midgut and in all the three (anterior, middle, posterior) parts of the silk gland. In the fat body, JHE expression peaked twice in the 5th instar, at wandering and before pupation, while it gradually decreased through the 4th instar. When 20-hydroxyecdysone (20E) was injected into mid-5th instar larvae, JHE mRNA expression was induced in the anterior silk gland but suppressed in the fat body. Topical application of a juvenile hormone analog fenoxycarb to early-5th instar larvae induced JHE expression in both tissues. In the anterior silk gland, JHE expression was accelerated and strengthened by 20E plus fenoxycarb treatments compared with 20E or fenoxycarb single treatment, indicating positive interaction of 20E and JH. JHE mRNA is thus expressed in tissue-specific manners under the control of ecdysteroids and JH.  相似文献   

7.
Juvenile hormone (JH) plays a crucial role in preventing precocious metamorphosis and stimulating reproduction. Thus, its hemolymph titer should be under a tight control. As a negative controller, juvenile hormone esterase (JHE) performs a rapid breakdown of residual JH in the hemolymph during last instar to induce a larval-to-pupal metamorphosis. A whole genome of the diamondback moth (DBM), Plutella xylostella, has been annotated and proposed 11 JHE candidates. Sequence analysis using conserved motifs commonly found in other JHEs proposed a putative JHE (Px004817). Px004817 (64.61 kDa, pI = 5.28) exhibited a characteristic JHE expression pattern by showing high peak at the early last instar, at which JHE enzyme activity was also at a maximal level. RNA interference of Px004817 reduced JHE activity and interrupted pupal development with a significant increase of larval period. This study identifies Px004817 as a JHE-like gene of P. xylostella.  相似文献   

8.
Application of juvenile hormone esterase inhibitor 3-octylthio-1,1,1- trifluropropan-2-one (OTFP) to 5th instar nymphs and virgin females of D. cingulatus revealed the profound role played by juvenile hormone esterase (JHE) in metamorphosis and reproduction. The ability of OTFP to cause delay and the formation of malformed nymphs, suggests that inhibition of JHE in vivo maintains a higher than normal hemolymph JH titer. It is obvious that OTFP does inhibit in vivo JHE activity in late instar nymphs. Further, the application of JHE inhibitor, OTFP to virgin females demonstrates that substituted trifluropropanones can indirectly stimulate egg development by inhibiting JHE activity in virgin females.  相似文献   

9.
10.
Glyptapanteles liparidis is a gregarious, polydnavirus (PDV)-carrying braconid wasp that parasitizes larval stages of Lymantria dispar. In previous studies we showed that parasitized hosts dramatically increase juvenile hormone (JH) titers, whereas JH degradation is significantly inhibited in the hemolymph. Here we (i) quantified the effects of parasitism on JH esterase (JHE) activity in hemolymph and fat body of penultimate and final instars of L. dispar hosts and (ii) assessed the relative contribution of individual and combined wasp factors (PDV/venom, teratocytes, and wasp larvae) to the inhibition of host JHE activity. The effects of PDV/venom was investigated through the use of gamma-irradiated wasps, which lay non-viable eggs (leading to pseudoparasitization), while the effects of teratocytes and wasp larvae were examined by injection or insertion of these two components in either control or pseudoparasitized L. dispar larvae. Parasitism strongly suppressed host JHE activity in both hemolymph and fat body irrespective of whether the host was parasitized early (premolt-third instar) or late (mid-fourth instar). Down-regulation of JHE activity is primarily due to the injection of PDV/venom at the time of oviposition, with only very small additive effects of teratocytes and wasp larvae under certain experimental conditions. We compare the results with those reported earlier for L. dispar larvae parasitized by G. liparidis and discuss the possible role of JH alterations in host development disruption.  相似文献   

11.
Juvenile hormone esterase (JHE) is a catabolic enzyme that specifically degrades juvenile hormone (JH) and has been identified in hemolymph and tissues in both larvae and adults of numerous insect species. This study investigates the presence of JHE in ovaries of the viviparous cockroach, Diploptera punctata, and the in vitro release of JHE from these ovaries during the first gonadotrophic cycle. JHE is released in vitro from maturing basal (most posterior) follicles and from follicle cells isolated from oocytes during the short period of time between spermatophore release and chorion formation. Enzyme release is dependent upon the presence of calcium in the medium. This released ovarian JHE appears to be larger than and to display ionic characteristics that are different from the isolated hemolymph and fat body JHEs. In addition, JHE activity measured in homogenates of whole ovaries and subsequently oviposited basal oocytes increases dramatically following spermatophore release, coincident with a previously described decline in JH titer in the ovary. A likely role for ovarian JHE is the site-specific degradation of JH in and around the oocyte prior to fertilization and embryonic development.  相似文献   

12.
Juvenile hormone esterase (JHE), a selective enzyme that hydrolyzes the methyl ester of insect juvenile hormone plays an important role in regulating metamorphosis in nymphs as well as reproduction in adults. Studies on JH degradation provide insight into the possibilities of physiological disruption in the insects. In the present study, the JH degrading enzyme, JHE from the cotton pest Dysdercus cingulatus (Heteroptera) is characterized. Electrophoretic analysis of haemolymph during various developmental stages showed the JHE bands prominent only on the final day of 5th instar nymph, and the esterase substrate specificity confirmed the presence of JHE isoforms. In an attempt to clone cDNA of JHE gene from the final instar nymphs, mRNA isolated from fat bodies was coupled with JHE gene-specific primers and the cDNA was synthesized using RT-PCR. The PCR amplified cDNA showed the presence of JHE isoforms in D. cingulatus.  相似文献   

13.
The protein composition of larval and adult hemolymph from the Colorado potato beetle, Leptinotarsa decemlineata, was investigated and some abundant, high molecular weight proteins were identified and characterized. Diapause protein 1, which occurs in the hemolymph of last instar larvae and short-day adults, appeared to be a storage protein. This protein dissociated into two bands due to the high pH used in nondenaturing gels. Its quaternary structure was established by chemical crosslinking. It appeared to be a hexamer. Diapause protein 1 is composed of approximately 82,000 subunits. The amino acid composition and N-terminal sequence of this protein has been determined. Specific antibodies against diapause protein 1 have been developed. Topical application of 1 microgram pyriproxyfen, a juvenile hormone analog, to last instar larvae and short-day adults suppressed the appearance of this protein in the hemolymph. Pyriproxyfen prematurely induced vitellogenin, when applied to last instar larvae. A larval specific protein was also identified in the hemolymph. Its temporary appearance in the hemolymph of last instar larvae, its subunit composition (M(r) approximately 82,000) and its suppression by pyriproxyfen suggests that this protein is a storage protein as well.  相似文献   

14.
15.
At 25 degrees C and under a long-day photoperiod, all 5th instar Psacothea hilaris larvae pupate at the next molt. Under a short-day photoperiod, in contrast, they undergo one or two additional larval molts and enter diapause; the 7th instar larvae enter diapause without further molt. The changes in hemolymph juvenile hormone (JH III) titers, JH esterase activity, and ecdysteroid titers in pupation-destined, pre-diapause, and diapause-destined larvae were examined. JH titers of the 5th instar pupation-destined larvae decreased continuously from 1.3 ng/ml and became virtually undetectable on day 13, when JH esterase activity peaked. Ecdysteroids exhibited a small peak on day 8, 1 day before gut purge, and a large peak on day 11, 2 days before the larvae became pre-pupae. The two ecdysteroid peaks are suggested to be associated with pupal commitment and pupation, respectively. JH titers of the 5th instar pre-diapause larvae were maintained at approximately 1.5 ng/ml for 5 days and then increased to form a peak (3.3 ng/ml) on day 11. JH esterase activity remained at a low level throughout. Ecdysteroid levels exhibited a large peak of 40 ng/ml on day 18, coincident with the larval molt to the 6th instar. JH titers of the 7th instar diapause-destined larvae peaked at 1.9 ng/ml on day 3, and a level of approximately 1.1 ng/ml was maintained even 30-60 days into the instar, when they were in diapause. Ecdysteroid titers remained approximately 0.02 ng/ml. Diapause induction in this species was suggested to be a consequence of high JH and low ecdysteroid titers.  相似文献   

16.
Parasitization by the gregarious larval endoparasitoid Glyptapantles liparidis induces a dramatic increase in the hemolymph juvenile hormone (JH) titer (especially JH III) of its host larva, Lymantria dispar. Here, we investigated the role of the parasitoid larvae in JH synthesis and release by in vitro and in vivo experiments. GC-MS analyses confirmed that the rising hemolymph JH titer coincided with the time at which the parasitoids molt to the second larval instar. Peak values in host hemolymph titers were observed prior to parasitoid emergence, and titers dropped to negligible levels within 24 h after parasitoid emergence. Whole body extracts from excised second instar parasitoids yielded JH III and trace amounts of JH II. The in vitro secretory activity of the corpora allata (CA) of L. dispar larvae was not enhanced by parasitization. When the host's CA were separated by neck ligation, we found elevated JH III titers, but no JH II in the hemolymph of the posterior section, which contained the parasitoids. Parasitoids that were kept in in vitro culture produced and released only JH III. The parasitoids’ ability to secrete JH and to molt independently from their host's molting cycles indicates that at least second instar parasitoids are hormonally self-reliant.  相似文献   

17.
《Insect Biochemistry》1991,21(6):583-595
A major peak of juvenile hormone esterase (JHE) activity approaching 330 nmol JH III hydrolyzed/min/ml of hemolymph was observed during the last larval growth stage in Lymantria dispar. A smaller peak of JHE occurred 3–5 days after pupation. The gypsy moth JHE was purified from larval hemolymph using a classical approach. A specific activity of 766 units per mg of protein and a Km of 3.6 × 10−7 M for racemic JH III and the (10R, 11S) enantiomer of JH II was determined for the purified enzyme. The 62 kDa esterase was insensitive to inhibition by O,O-diisopropyl phosphorofluoridate (DFP), or by phenylmethylsulfonyl fluoride (PMSF). Two forms of JHE isolated by RP-HPLC were indistinguishable by HPLC tryptic peptide mapping and share an identical N-terminal amino acid sequence. Polyclonal antisera raised against gypsy moth enzyme cross-reacted with JHE from Trichoplusia ni but not with JHE from Manduca sexta. A weak cross-reactivity was observed with JHE from Heliothis virescens. Forty amino acid residues of the N-terminus were placed in sequence. The N-terminal sequence of JHE from L. dispar showed little homology to the sequence of JHE from H. virescens. The immunological and structural data support the conclusion that markedly different esterases, which catalyze the hydrolysis of juvenile hormone, are present in the hemolymph of different Lepidoptera.  相似文献   

18.
At 22°C and under a long-day photoperiod of L:D 16:8, all the last fifth instar Loxostege sticticalis larvae undergo prepupal stage and pupate without diapause. Under a short-day photoperiod of L:D 12:12, in contrast, they all enter diapause with approximately 36 days diapause maintenance and then terminate diapause spontaneously, although only 44% of the larvae terminated diapause successfully. Changes in hemolymph juvenile hormone (JH I) titers of diapause-destined larvae across diapause induction, maintenance and termination were examined using HPLC, and were compared with those of non-diapause-destined larvae from the fifth instar through pupation. JH I titer of the earliest fifth instar diapause-destined larvae remained at a high level with a peak of 220.4 ng/ml, though it decreased continuously to a minimum of 69.0 ng/ml on day 5 in the fifth instar when the larvae stopped feeding to enter diapause. During the diapause maintenance, JH I titer of the mature larvae increased significantly and maintained a high level until day 31 in prepupae. JH I titer declined and fluctuated at low level from 5 days before pupation. In contrast, JH I titer of both the fifth instar non-diapause-destined larvae and prepupae remained and fluctuated at low level consistently, as well as decreased before pupation. These results indicate that diapause induction and maintenance in this species might be a consequence of high JH, whereas diapause termination can be attributed to low JH titer, which was in agreement with the hormonal regulation observed in many other larval-diapausing insects.  相似文献   

19.
20.
The concentration of the juvenile hormone-binding protein (JHB) in hemolymph was determined throughout the last nymphal instar. It was found to be 3.9 μM at the molt to the instar, rising to 13 μM by mid-instar, and dropping to 6.7μM the day before emergence. Endocrine control of its production during the last nymphal instar could not be established. The apparent juvenile hormone esterase (JHF) activity was low at the molt to the last instar, but rose about fivefold by mid-instar, and then modestly declined. On the day of emergence, JHF activity rose to the highest level observed. A four- to fivefold increase in absolute JHF activity was determined during the first half of the last nymphal instar. This increase is not regulated by JH. Removal of the JHB from hemolymph samples by precipitation with a polyclonal specific antibody increased the JHF activity up to 1,000-fold. Thus, changes in the concentrations of JHB can affect the apparent activity of JHE, which is unrelated to the production or degradation of the JHF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号