首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of nuclear magnetic resonance (NMR)-visible mobile lipid (ML) domains in apoptotic lymphoblasts suggests alterations in neutral lipid metabolism and compartmentation during programmed cell death. The detection of similar ML signals in activated lymphocytes raises questions about common mechanisms of ML formation during apoptosis and upon lymphoblast stimulation. Structure and subcellular localization of ML domains were therefore investigated by NMR, fluorescence and electron microscopy in Jurkat T-lymphoblasts either induced to apoptosis (by anthracyclines or dexamethasone or by serum deprivation) or activated by phorbol myristate acetate (PMA) plus ionomycin. ML contents in drug-treated cells correlated linearly with apoptosis, irrespective of the specific inducer and cell cycle arrest phase (r = 0.993, P < 0.001). Similar ML levels were measured in drug-induced apoptotic cells (A approximately 30-40%) and in non-apoptotic PMA/ionomycin-treated lymphoblasts (72 h). Lower ML contents were instead formed in serum-deprived apoptotic cells, with respect to controls. Increases in ML signals were associated, in either apoptotic or activated cells, with the accumulation of cytoplasmic, osmophilic lipid bodies (diameter < or = 1.0 microm), surrounded by own membrane, possessing intramembrane particles. The results support the hypothesis that ML are formed in the cytoplasm of drug-induced apoptotic cells during an early, 'biochemically active' phase of programmed cell death.  相似文献   

2.
The presence of nuclear magnetic resonance (NMR)-visible mobile lipid (ML) domains in apoptotic lymphoblasts suggests alterations in neutral lipid metabolism and compartmentation during programmed cell death. The detection of similar ML signals in activated lymphocytes raises questions about common mechanisms of ML formation during apoptosis and upon lymphoblast stimulation. Structure and subcellular localization of ML domains were therefore investigated by NMR, fluorescence and electron microscopy in Jurkat T-lymphoblasts either induced to apoptosis (by anthracyclines or dexamethasone or by serum deprivation) or activated by phorbol myristate acetate (PMA) plus ionomycin. ML contents in drug-treated cells correlated linearly with apoptosis, irrespective of the specific inducer and cell cycle arrest phase (r=0.993, P<0.001). Similar ML levels were measured in drug-induced apoptotic cells (A≈30–40%) and in non-apoptotic PMA/ionomycin-treated lymphoblasts (72 h). Lower ML contents were instead formed in serum-deprived apoptotic cells, with respect to controls. Increases in ML signals were associated, in either apoptotic or activated cells, with the accumulation of cytoplasmic, osmophilic lipid bodies (diameter≤1.0 μm), surrounded by own membrane, possessing intramembrane particles. The results support the hypothesis that ML are formed in the cytoplasm of drug-induced apoptotic cells during an early, ‘biochemically active’ phase of programmed cell death.  相似文献   

3.
Pea leaf epidermis incubated with cyanide displayed ultrastructural changes in guard cells that are typical of apoptosis. Cycloheximide, an inhibitor of cytoplasmic protein synthesis, and lincomycin, an inhibitor of protein synthesis in chloroplasts and mitochondria, produced different effects on the dynamics of programmed death of guard cells. According to light microscopy data, cycloheximide reinforced and lincomycin suppressed the CN(-)-induced destruction of cell nuclei. Lincomycin lowered the effect of cycloheximide in the light and prevented it in the dark. According to electron microscopy data, the most pronounced effects of cycloheximide in the presence of cyanide were autophagy and a lack of apoptotic condensation of nuclear chromatin, the prevention of chloroplast envelope rupturing and its invagination inside the stroma, and the appearance of particular compartments with granular inclusions in mitochondria. Lincomycin inhibited the CN(-)-induced ultrastructural changes in guard cell nuclei. The data show that programmed death of guard cells may have a combined scenario involving both apoptosis and autophagy and may depend on the action of both cytoplasm synthesized and chloroplast and mitochondrion synthesized proteins.  相似文献   

4.
凋亡,也称Ⅰ型程序性细胞死亡,是细胞在面临严重威胁时发起的保护性主动死亡机制. 凋亡对于个体的生长发育及各种生理功能具有不可或缺的作用. 作为涉及整个细胞的复杂过程,凋亡的顺利进行有赖于众多凋亡相关因子的协调合作与精确调控. 细胞受到凋亡刺激后,核内的某些蛋白质转运出核,将凋亡信号传递到核外,胞质内的多种蛋白质则转运入核,在细胞核这一信息整合的大本营直接发挥作用. 这种双向交流机制在胞核与胞质间建立起密切的联系,同时使得相关蛋白质在特定场所发挥促进或抑制凋亡的作用,确保凋亡信号及时、通畅、有序地传递. 因此,蛋白质的核质转运作为介导胞核与胞质物质交换、信号交流的关键机制,在凋亡过程中就显得尤为重要. 本文主要就核质转运的机制、通过核质转运调节凋亡的蛋白质及其作用机理作一综述.  相似文献   

5.
Apoptosis or programmed cell death produces cells breaking into several fragments of nuclei, cytoplasm or both nuclei and cytoplasm, known as apoptotic bodies which can be visualized in haematoxylin-eosin staining. Some genes (promoters and suppressors) control this process and certain mutations may induce the expression of abnormal proteins, which can be detected by immunohistochemical staining. Apoptosis can be detected by the TUNEL method either identifying apoptotic bodies or cells at the initial stages of the fragmentation process. We have studied 186 cases of infiltrating ductal breast carcinoma, stages pT1-pT2, and analysed the prognostic significance of tumour recurrence and overall survival of apoptotic index (AI) through univariate and multivariate analysis. We have also studied the immunohistochemical protein expression of apoptosis promoter and suppressors gene (p53, nuclear expression; bcl-2 and Bax, cytoplasm expression; BAG-1, nuclear and cytoplasm expression). The results indicate prognostic significance of p53 and bcl-2 related to patient death and bcl-2 and tumour size to tumour recurrence, bcl-2 acting as a protector factor (apoptotic suppressor) in both situations. On the other hand, we have not found useful prognostic information of AI either to tumour recurrence or overall survival in univariate or multivariate studies. In this study, Bax expression does not provide a new prognostic role in breast carcinoma, although it contrasts to the bcl-2 action and accelerates death.  相似文献   

6.
 A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characteristic features of apoptosis in animal cells, such as typical changes in nuclear morphology, the fragmentation of the nucleus and DNA fragmentation. In search of processes involved in plant apoptotic cell death, specific enzyme inhibitors were tested for cell-death-inhibiting activity. Our results showed that proteolysis plays a crucial role in apoptosis in plants. Furthermore, caspase-specific peptide inhibitors were found to be potent inhibitors of the chemical-induced cell death in tomato cells, indicating that, as in animal systems, caspase-like proteases are involved in the apoptotic cell death pathway in plants. Received: 5 August 1999 / Accepted: 14 March 2000  相似文献   

7.
《The Journal of cell biology》1995,131(6):1587-1598
Deregulation of molecular pathways controlling cell survival and death, including programmed cell death, are thought to be important factors in tumor formation, disease progression, and response to therapy. Studies devoted to analyzing the role of programmed cell death in cancer have been carried out primarily using conventional monolayer cell culture systems. However the majority of cancers grow as three-dimensional solid tumors. Because gene expression, and possibly function, can be significantly altered under such conditions, we decided to analyze the control and characteristics of cell death using a compatible three- dimensional tissue culture system (multicellular spheroids) and compare the results obtained to those using two-dimensional monolayer cell culture. To do so we selected for study an immortalized, but nontumorigenic line of rat intestinal epithelial cells, called IEC-18, and several tumorigenic variants of IEC-18 obtained by transfection with a mutant (activated) c-H-ras oncogene. The rationale for choosing these cell lines was based in part on the fact that intestinal epithelial cells grow in vivo in a monolayer-like manner and form solid tumors only after sustaining certain genetic mutations, including those involving the ras gene family. We found that the IEC-18 cells, which grow readily and survive in monolayer cell culture, undergo massive cell death within 48-72 h when cultured as multicellular spheroids on a nonadhesive surface. This process was accompanied by a number of features associated with programmed cell death including chromatin condensation (Hoechst 33258 staining) apoptotic morphology, DNA degradation, and a virtual complete loss of colony forming (clonogenic) ability in the absence of apparent membrane damage as well as accumulation of lipid containing vacuoles in the cytoplasm. Moreover, enforced over-expression of a transfected bcl-2 gene could prevent this cell death process from taking place. In marked contrast, three different stably transfected ras clones of IEC-18 survived when grown as multicellular spheroids. In addition, an IEC cell line (called clone 25) carrying its mutant transfected ras under a glucocorticoid inducible promoter survived in three-dimensional culture only when the cells were exposed to dexamethasone. If exposure to dexamethasone was delayed for as long as 48 h the cells nevertheless survived, whereas the cells became irreversibly committed to programmed cell death (PCD) if exposed to dexamethasone after 72 h. These results suggest that intestinal epithelial cells may be programmed to activate a PCD pathway upon detachment from a physiologic two-dimensional monolayer configuration, and that this process of adhesion regulated programmed cell death (ARPCD) can be substantially suppressed by expression of a mutant ras oncogene.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Mechanosensory hair cells of the inner ear are especially sensitive to death induced by exposure to aminoglycoside antibiotics. This aminoglycoside-induced hair cell death involves activation of an intrinsic program of cellular suicide. Aminoglycoside-induced hair cell death can be prevented by broad-spectrum inhibition of caspases, a family of proteases that mediate apoptotic and programmed cell death in a wide variety of systems. More specifically, aminoglycoside-induced hair cell death requires activation of caspase-9. Caspase-9 activation requires release of mitochondrial cytochrome c into the cytoplasm, indicating that aminoglycoside-induced hair cell death is mediated by the mitochondrial (or "intrinsic") cell death pathway. The Bcl-2 family of pro-apoptotic and anti-apoptotic proteins are important upstream regulators of the mitochondrial apoptotic pathway. Bcl-2 is an anti-apoptotic protein that localizes to the mitochondria and promotes cell survival by preventing cytochrome c release. Here we have utilized transgenic mice that overexpress Bcl-2 to examine the role of Bcl-2 in neomycin-induced hair cell death. Overexpression of Bcl-2 significantly increased hair cell survival following neomycin exposure in organotypic cultures of the adult mouse utricle. Furthermore, Bcl-2 overexpression prevented neomycin-induced activation of caspase-9 in hair cells. These results suggest that the expression level of Bcl-2 has important effects on the pathway(s) important for the regulation of aminoglycoside-induced hair cell death.  相似文献   

9.
Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis?   总被引:32,自引:0,他引:32  
Y Chen  R Sun  W Han  Y Zhang  Q Song  C Di  D Ma 《FEBS letters》2001,509(2):191-196
The programmed cell death 5 (PDCD5) protein is a novel protein related to regulation of cell apoptosis. In this report, we demonstrate that the level of PDCD5 protein expressed in cells undergoing apoptosis is significantly increased compared with normal cells, then the protein translocates rapidly from the cytoplasm to the nucleus of cells. The appearance of PDCD5 in the nuclei of apoptotic cells precedes the externalization of phosphatidylserine and fragmentation of chromosome DNA. This phenomenon is parallel to the loss of mitochondrial membrane potential, independent of the feature of apoptosis-inducing stimuli and also independent of the cell types and the apoptosis modality. In conclusion, the nuclear translocation of PDCD5 is a universal earlier event of the apoptotic process, and may be a novel early marker for apoptosis.  相似文献   

10.
肠道病毒 71型(enterovirus type 71,EV71)感染常可引起婴幼儿手足口病(hand,foot and mouth disease,HFMD),还可引起中枢神经系统并发症等重症,甚至死亡。研究认为,EV71诱发重症的原因主要与病毒感染诱导细胞程序性死亡(programmed cell death,PCD)及诱导细胞产生大量炎症因子有关。病毒感染可通过激活不同的信号通路触发细胞程序性死亡,主要包括含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase,caspase)依赖的细胞凋亡、细胞焦亡,以及非caspase依赖的细胞坏死性凋亡。本研究旨在探讨EV71感染诱导细胞程序性死亡的形态学和分子生物学特征,利用显微镜和免疫荧光技术检测EV71感染后细胞形态变化,JC-1染色检测感染后细胞线粒体膜电位变化,流式细胞术及Annexin V-FITC/PI双染法、乳酸脱氢酶释放量法检测感染细胞的细胞膜损伤程度,结合蛋白免疫印迹法检测病毒感染后细胞中多聚ADP核糖聚合酶[poly(ADP-ribose) polymerase,PARP]、caspase-9、caspase-3等凋亡因子,以及细胞焦亡关键效应蛋白Gasdermin D、坏死性凋亡效应蛋白MLKL的磷酸化情况。结果显示,EV71感染后细胞主要呈现凋亡特征,并伴随少量细胞坏死。与细胞凋亡相关的PARP被剪切,caspase-9和caspase-3等相关因子被激活。经泛caspase抑制剂处理后,细胞程序性死亡被抑制,但仍有部分细胞坏死。结果提示,EV71感染以细胞凋亡为主,也可能存在非caspase依赖的细胞程序性死亡。  相似文献   

11.
Induction of cell death by apoptosis, also called programmed cell death, and clearance of apoptotic bodies by scavenger cells has long thought to be an efficient means to dispose of unwanted cells without causing inflammatory responses able to mediate specific reactions. However, a number of evidences have been accumulated suggesting that apoptotic cell death is implicated in the pathogenesis of systemic and organ specific autoimmune diseases. In addition, recognition and engulfement of apoptotic cells by professional antigen presenting cells, such as dendritic cells, and their interaction with effector immune cells have been recently described to result in apoptotic cell-derived antigen specific tolerance. This review will summarise the most recent findings on the immunogenic potential of cells undergoing programmed death.  相似文献   

12.
The role of mitochondria in Drosophila programmed cell death remains unclear, although certain gene products that regulate cell death seem to be evolutionarily conserved. We find that developmental programmed cell death stimuli in vivo and multiple apoptotic stimuli ex vivo induce dramatic mitochondrial fragmentation upstream of effector caspase activation, phosphatidylserine exposure, and nuclear condensation in Drosophila cells. Unlike genotoxic stress, a lipid cell death mediator induced an increase in mitochondrial contiguity prior to fragmentation of the mitochondria. Using genetic mutants and RNAi-mediated knockdown of drp-1, we find that Drp-1 not only regulates mitochondrial fission in normal cells, but mediates mitochondrial fragmentation during programmed cell death. Mitochondria in drp-1 mutants fail to fragment, resulting in hyperplasia of tissues in vivo and protection of cells from multiple apoptotic stimuli ex vivo. Thus, mitochondrial remodeling is capable of modifying the propensity of cells to undergo death in Drosophila.  相似文献   

13.
活性氧、线粒体通透性转换与细胞凋亡   总被引:2,自引:0,他引:2  
线粒体是真核细胞中非常重要的细胞器,细胞中的活性氧等自由基主要来源于此,线粒体膜的通透性转换(mitochondrial permeability transition,MPT)及其孔道(mitochondrialpermeability transition pore,MPTP)更是在内源性细胞凋亡中发挥了关键作用。持续性的线粒体膜通透性转换在凋亡的效应阶段起决定性作用,可介导细胞色素c等促凋亡因子从线粒体释放到胞浆中,进一步激活下游的信号通路,导致细胞不可逆地走向凋亡。瞬时性的线粒体膜通透性转换及其偶联的线粒体局部的活性氧爆发同样具有促凋亡的作用。线粒体通透性孔道的开放释放出大量活性氧,这些活性氧又能够进一步激活该孔道,以正反馈的形式进一步加剧孔道的打开,放大凋亡信号。活性氧、线粒体通透性转换与细胞凋亡之间具有密不可分的联系,本文根据已知的研究结果集中讨论了这三者的关系,并着重论述了该领域中的最新发现和成果。  相似文献   

14.
Mechanosensory hair cells of the inner ear are especially sensitive to death induced by exposure to aminoglycoside antibiotics. This aminoglycoside‐induced hair cell death involves activation of an intrinsic program of cellular suicide. Aminoglycoside‐induced hair cell death can be prevented by broad‐spectrum inhibition of caspases, a family of proteases that mediate apoptotic and programmed cell death in a wide variety of systems. More specifically, aminoglycoside‐induced hair cell death requires activation of caspase‐9. Caspase‐9 activation requires release of mitochondrial cytochrome c into the cytoplasm, indicating that aminoglycoside‐induced hair cell death is mediated by the mitochondrial (or “intrinsic”) cell death pathway. The Bcl‐2 family of pro‐apoptotic and anti‐apoptotic proteins are important upstream regulators of the mitochondrial apoptotic pathway. Bcl‐2 is an anti‐apoptotic protein that localizes to the mitochondria and promotes cell survival by preventing cytochrome c release. Here we have utilized transgenic mice that overexpress Bcl‐2 to examine the role of Bcl‐2 in neomycin‐induced hair cell death. Overexpression of Bcl‐2 significantly increased hair cell survival following neomycin exposure in organotypic cultures of the adult mouse utricle. Furthermore, Bcl‐2 overexpression prevented neomycin‐induced activation of caspase‐9 in hair cells. These results suggest that the expression level of Bcl‐2 has important effects on the pathway(s) important for the regulation of aminoglycoside‐induced hair cell death. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 89–100, 2004  相似文献   

15.
We identified a form of cell death called “liponecrosis.” It can be elicited by an exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA). Our data imply that liponecrosis is: (1) a programmed, regulated form of cell death rather than an accidental, unregulated cellular process and (2) an age-related form of cell death. Cells committed to liponecrotic death: (1) do not exhibit features characteristic of apoptotic cell death; (2) do not display plasma membrane rupture, a hallmark of programmed necrotic cell death; (3) akin to cells committed to necrotic cell death, exhibit an increased permeability of the plasma membrane for propidium iodide; (4) do not display excessive cytoplasmic vacuolization, a hallmark of autophagic cell death; (5) akin to cells committed to autophagic death, exhibit a non-selective en masse degradation of cellular organelles and require the cytosolic serine/threonine protein kinase Atg1p for executing the death program; and (6) display a hallmark feature that has not been reported for any of the currently known cell death modalities—namely, an excessive accumulation of lipid droplets where non-esterified fatty acids (including POA) are deposited in the form of neutral lipids. We therefore concluded that liponecrotic cell death subroutine differs from the currently known subroutines of programmed cell death. Our data suggest a hypothesis that liponecrosis is a cell death module dynamically integrated into a so-called programmed cell death network, which also includes the apoptotic, necrotic, and autophagic modules of programmed cell death. Based on our findings, we propose a mechanism underlying liponecrosis.  相似文献   

16.
Rat vaginal epithelial cells (VEC) undergo division and differentiation under the influence of oestradiol in a programmed manner. The differentiation process of VEC leads to keratinization, cornification and subsequent desquamation of the dead cells. This process of programmed cell death, referred to as terminal differentiation may share some common pathways with cell death by apoptosis but differ substantially in many aspects. Terminal differentiation of VEC is accompanied by the loss of majority of the organelles including the nucleus. To understand the mechanisms that underlie this process we have analysed the regulation of DNase I (a key effector of apoptotic cell death) in rat VEC under the influence of oestradiol. The present study demonstrates that under physiological conditions, cell death in the VEC is mainly through terminal differentiation although a few cells may undergo apoptotic death involving DNA fragmentation. Unaltered levels of bcl-2 message upon oestradiol administration suggest an important role played by this molecule in preventing death of the VEC by apoptosis.  相似文献   

17.
Apoptosis and other forms of programmed cell death are important contributors to lung pathophysiology. In this brief review, we discuss some of the implications of finding apoptotic cells in the lung and methods for their detection. The balance between induction of apoptosis and the normally highly efficient clearance of such cells shows that these are highly dynamic processes and suggests that abnormalities of apoptotic cell clearance may be an alternative explanation for their detection. Because recognition of apoptotic cells by other lung cells has additional effects on inflammation, immunity, and tissue repair, local responses to the dying cells may also have important consequences in addition to the cell death itself.  相似文献   

18.
Apoptosis, or programmed cell death, is a well-ordered process that allows damaged or diseased cells to be removed from an organism without severe inflammatory reactions. Multiple factors, including microbial infection, can induce programmed death and trigger reactions in both host and microbial cellular pathways. Whereas an ultimate outcome is host cell death, these apoptotic triggering mechanisms may also facilitate microbial spread and prolong infection. To gain a better understanding of the complex events of host cell response to microbial infection, we investigated the molecular role of the microorganism Enteropathogenic Escherichia coli (EPEC) in programmed cell death. We report that wild type strain of EPEC, E2348/69, induced apoptosis in cultured PtK2 and Caco-2 cells, and in contrast, infections by the intracellularly localized Listeria monocytogenes did not. Fractionation and concentration of EPEC-secreted proteins demonstrated that soluble protein factors expressed by the bacteria were capable of inducing the apoptotic events in the absence of organism attachment, suggesting adherence is not required to induce host cell death. Among the known EPEC proteins secreted via the Type III secretion (TTS) system, we identified the translocated intimin receptor (Tir) in the apoptosis-inducing protein sample. In addition, host cell ectopic expression of an EPEC GFP-Tir showed mitochondrial localization of the protein and produced apoptotic effects in transfected cells. Taken together, these results suggest a potential EPEC Tirmediated role in the apoptotic signaling cascade of infected host cells.  相似文献   

19.
Cleavage and shedding of E-cadherin after induction of apoptosis   总被引:11,自引:0,他引:11  
Apoptotic cell death induces dramatic molecular changes in cells, becoming apparent on the structural level as membrane blebbing, condensation of the cytoplasm and nucleus, and loss of cell-cell contacts. The activation of caspases is one of the fundamental steps during programmed cell death. Here we report a detailed analysis of the fate of the Ca(2+)-dependent cell adhesion molecule E-cadherin in apoptotic epithelial cells and show that during apoptosis fragments of E-cadherin with apparent molecular masses of 24, 29, and 84 kDa are generated by two distinct proteolytic activities. In addition to a caspase-3-mediated cleavage releasing the cytoplasmic domain of E-cadherin, a metalloproteinase sheds the extracellular domain from the cell surface during apoptosis. Immunofluorescence analysis confirmed that concomitant with the disappearance of E-cadherin staining at the cell surface, the E-cadherin cytoplasmic domain accumulates in the cytosol. In the presence of inhibitors of caspase-3 and/or metalloproteinases, cleavage of E-cadherin was almost completely blocked. The simultaneous cleavage of the intracellular and extracellular domains of E-cadherin may provide a highly efficient mechanism to disrupt cadherin-mediated cell-cell contacts in apoptotic cells, a prerequisite for cell rounding and exit from the epithelium.  相似文献   

20.
Chondroptosis: A variant of apoptotic cell death in chondrocytes?   总被引:3,自引:0,他引:3  
Evidence has accumulated in recent years that programmed cell death (PCD) is not necessarily synonymous with the classical apoptosis, as defined by Kerr and Wyllie, but that cells use a variety of pathways to undergo cell death, which are reflected by different morphologies. Although chondrocytes with the hallmark features of classical apoptosis have been demonstrated in culture, such cells are extremely rare in vivo. The present review focuses on the morphological differences between dying chondrocytes and classical apoptotic cells. We propose the term 'chondroptosis' to reflect the fact that such cells are undergoing apoptosis in a non-classical manner that appears to be typical of programmed chondrocyte death in vivo. Unlike classical apoptosis, chondroptosis involves an initial increase in the endoplasmic reticulum and Golgi apparatus, reflecting an increase in protein synthesis. The increased ER membranes also segment the cytoplasm and provide compartments within which cytoplasm and organelles are digested. In addition, destruction occurs within autophagic vacuoles and cell remnants are blebbed into the lacunae. Together these processes lead to complete self-destruction of the chondrocyte as evidenced by the presence of empty lacunae. It is speculated that the endoplasmic reticulum pathway of apoptosis plays a greater role in chondroptosis than receptor-mediated or mitochondrial pathways and that lysosomal proteases are at least as important as caspases. Because chondroptosis does not depend on phagocytosis, it may be more advantageous in vivo, where chondrocytes are isolated within their lacunae. At present the initiation factors or the molecular pathways involved in chondroptosis remain unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号