首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Juvenile hormone paces behavioral development in the adult worker honey bee   总被引:1,自引:0,他引:1  
Behavioral development in the adult worker honey bee (Apis mellifera), from performing tasks inside the hive to foraging, is associated with an increase in the blood titer of juvenile hormone III (JH), and hormone treatment results in precocious foraging. To study behavioral development in the absence of JH we removed its glandular source, the corpora allata, in 1-day-old adult bees. The age at onset of foraging for allatectomized bees in typical colonies was significantly older compared with that of sham-operated bees in 3 out of 4 colonies; this delay was eliminated by hormone replacement in 3 out of 3 colonies. To determine the effects of corpora allata removal on sensitivity to changes in conditions that influence the rate of behavioral development, we used "single-cohort" colonies (composed of only young bees) in which some colony members initiate foraging precociously. The age at onset of foraging for allatectomized bees was significantly older compared with that of sham-operated bees in 2 out of 3 colonies, and this delay was eliminated by hormone replacement. Allatectomized bees initiated foraging at significantly younger ages in single-cohort colonies than in typical colonies. These results demonstrate that JH influences the pace of behavioral development in honey bees, but is not essential for either foraging or altering behavioral development in response to changes in conditions.  相似文献   

2.
A rising blood titer of juvenile hormone (JH) in adult worker honey bees is associated with the shift from working in the hive to foraging. We determined whether the JH increase occurs in anticipation of foraging or whether it is a result of actual foraging experience and/or diurnal changes in exposure to sunlight. We recorded all foraging flights of tagged bees observed at a feeder in a large outdoor flight cage. We measured JH from bees that had taken 1, 3-5, or >100 foraging flights and foragers of indeterminate experience leaving or entering the hive. To study diurnal variation in JH, we sampled foragers every 6h over one day. Titers of JH in foragers were high relative to nurses as in previous studies, suggesting that conditions in the flight cage had no effect on the relationship between foraging behavior and JH. Titers of JH in foragers showed no significant effects of foraging experience, but did show significant diurnal variation. Our results indicate that the high titer of JH in foragers anticipates the onset of foraging and is not affected by foraging experience, but is modulated diurnally.  相似文献   

3.
The behavioral maturation of adult worker honey bees is influenced by a rising titer of juvenile hormone (JH), and is temporally correlated with an increase in the volume of the neuropil of the mushroom bodies, a brain region involved in learning and memory. We explored the stability of this neuropil expansion and its possible dependence on JH. We studied the volume of the mushroom bodies in adult bees deprived of JH by surgical removal of the source glands, the corpora allata. We also asked if the neuropil expansion detected in foragers persists when bees no longer engage in foraging, either because of the onset of winter or because colony social structure was experimentally manipulated to cause some bees to revert from foraging to tending brood (nursing). Results show that adult exposure to JH is not necessary for growth of the mushroom body neuropil, and that the volume of the mushroom body neuropil in adult bees is not reduced if foraging stops. These results are interpreted in the context of a qualitative model that posits that mushroom body neuropil volume enlargement in the honey bee has both experience-independent and experience-dependent components.  相似文献   

4.
Previous research has shown that juvenile hormone (JH) titers increase as adult worker honey bees age and treatments with JH, JH analogs and JH mimics induce precocious foraging. Larvae from genotypes exhibiting faster adult behavioral development had significantly higher levels of juvenile hormone during the 2nd and 3rd larval instar. It is known that highly increased JH during this period causes the totipotent female larvae to differentiate into a queen. We treated third instar larvae with JH to test the hypothesis that this time period may be a developmental critical period for organizational effects of JH on brain and behavior also in the worker caste, such that JH treatment at a lower level than required to produce queens will speed adult behavioral development in workers. Larval JH treatment did not influence adult worker behavioral development. However, it made pre-adult development more queen-like in two ways: treated larvae were capped sooner by adult bees, and emerged from pupation earlier. These results suggest that some aspects of honey bee behavioral development may be relatively insensitive to pre-adult perturbation. These results also suggest JH titer may be connected to cues perceived by the adult bees indicating larval readiness for pupation resulting in adult bee cell capping behavior.  相似文献   

5.
Methoprene, a juvenile hormone (JH) analog, is a widely used insecticide that also accelerates behavioral development in honey bees (Apis mellifera). JH regulates the transition from nursing to foraging in adult worker bees, and treatment with JH or methoprene have both been shown to induce precocious foraging. To determine how methoprene changes honey bee behavior, we compared JH titers of methoprene‐treated and untreated bees. Behavioral observations confirmed that methoprene treatment significantly increased the number of precocious foragers in 3 out of 4 colonies. In only 1 out of 4 colonies, however, was there a significant difference in JH titers between the methoprene‐treated and control bees. Further, in all 4 colonies, there was no significant differences in JH titers between precocious and normal‐aged foragers. These results suggest that methoprene did not directly affect the endogenous JH secreted by corpora allata. Because methoprene caused early foraging without changing workers’ JH titers, we conclude that methoprene most likely acts directly on the JH receptors as a substitute for JH.  相似文献   

6.
Summary. Foragers inhibit the behavioural development of young adult worker honey bees, delaying the age at onset of foraging. But the similar effect caused by pheromones produced by both the queen and brood raised the possibility that some of the previously attributed forager effects might be due to queen, brood, or both. Here we studied whether physical contacts between young bees and old foragers can inhibit behavioural development while controlling for queen and brood effects. Results demonstrated that foragers inhibit the behavioural development of young adult worker bees independent of the queen and brood, via a mechanism that requires physical contact.Received 24 November 2003; revised 27 March 2004; accepted 21 April 2004.  相似文献   

7.
The biogenic amine neurochemical octopamine is involved in the onset of foraging behaviour in honey bees. We tested the hypothesis that octopamine influences honey bee behavioural development by modulating responsiveness to task-related stimuli. We examined the effect of octopamine treatment on responsiveness to brood pheromone (an activator of foraging) and to the presence of older bees in the colony (an inhibitor of foraging in young bees). Octopamine treatment increased responsiveness to brood pheromone and decreased responsiveness to social inhibition. These results identify octopamine both as an important source of variation in response thresholds and as a modulator of pheromonal communication in insect societies. We speculate that octopamine plays more than one role in the organisation of behavioural development indicating a very high level of integration between the neurochemical system and the generation of complex behaviour.  相似文献   

8.
9.
Hormone analyses and exocrine gland measurements were made to probe for physiological correlates of division of labor among similarly aged adult worker honey bees (Apis mellifera L.). Middle-age bees (ca. 2 weeks old) performing different tasks showed significant differences in both juvenile hormone (JH) biosynthesis rates and hemolymph titers; guards and undertakers had high JH, and wax producers and food storers, low JH. Guards and undertakers had similar hormone levels to foragers, even though they were 10 days younger than foragers. No differences in JH were detected among young bees (1-week-old queen attendants and nurses) or older bees (3–4 week-old pollen foragers, non-pollen foragers, and soldiers). Hypopharyngeal gland size was inversely correlated with worker age and rate of JH biosynthesis, but soldiers had significantly larger hypopharyngeal glands than did foragers, despite their similar age and JH level. Results from soldiers indicate that exocrine gland development is not always linked with age-related behavior and endocrine development; they also support the recent claim that soldiers constitute a group of older bees that are distinct from foragers. Hormonal analyses indicate that the current model of JH's role in honey bee division of labor needs to be expanded because high levels of JH are associated with several other tasks besides foraging. JH may be involved in the regulation of division of labor among similarly aged workers in addition to its role in age-related division of labor.Abbreviations JH Juvenile hormone - RIA radioimmunoassay - CA corpora allata - HPLC high performance liquid chromatography - TLC thin layer chromatography  相似文献   

10.
We measured the age at onset of foraging in colonies derived from three races of European honey bees, Apis mellifera mellifera, Apis mellifera caucasica and Apis mellifera ligustica , using a cross-fostering design that involved six unrelated colonies of each race. There was a significant effect of the race of the introduced bees on the age at onset of foraging: cohorts of A. m. ligustica bees showed the earliest onset, regardless of the race of the colony they were introduced to. There also was a significant effect of the race of the host colony: cohorts of bees introduced into mellifera colonies showed the earliest onset of foraging, regardless of the race of the bees introduced. Significant inter-trial differences also were detected, primarily because of a later onset of foraging in trials conducted during the autumn (September–October). These results demonstrate differences among European races of honey bees in one important component of colony division of labor. They also provide a starting point for analyses of the evolution of division of labor under different ecological conditions.  相似文献   

11.
Previous findings showed that high levels of octopamine and serotonin in the antennal lobes of adult worker honey bees are associated with foraging behavior, and octopamine treatment induces precocious foraging. To better characterize the relationship between amines and foraging behavior in honey bees, we performed a detailed correlative analysis of amine levels in the antennal lobes as a function of various aspects of foraging behavior. Flight activity was measured under controlled conditions in a large outdoor flight cage. Levels of octopamine in the antennal lobes were found to be elevated immediately subsequent to the onset of foraging, but they did not change as a consequence of preforaging orientation flight activity, diurnal pauses in foraging, or different amounts of foraging experience, suggesting that octopamine helps to trigger and maintain the foraging behavioral state. In contrast, levels of serotonin and dopamine did not show changes that would implicate them as either causal agents of foraging, or as neurochemical systems affected by the act of foraging. Serotonin treatment had no effect on the likelihood of foraging. These results provide further support for the hypothesis that an increase in octopamine levels in the antennal lobes plays a causal role in the initiation and maintenance of the behavioral state of foraging, and thus is involved in the regulation of division of labor in honey bees.  相似文献   

12.
All members of the solitary bee species Osmia lignaria (the orchard bee) forage upon emergence from their natal nest cell. Conversely, in the honey bee, days-to-weeks of socially regulated behavioral development precede the onset of foraging. The social honey bee's behavioral transition to foraging is accompanied by neuroanatomical changes in the mushroom bodies, a region of the insect brain implicated in learning. If these changes were general adaptations to foraging, they should also occur in the solitary orchard bee. Using unbiased stereological methods, we estimated the volume of the major compartments of the mushroom bodies, the neuropil and Kenyon cell body region, in adult orchard bees. We compared the mushroom bodies of recently emerged bees with mature bees that had extensive foraging experience. To separate effects of general maturation from field foraging, some orchard bees were confined to a cage indoors. The mushroom body neuropil of experienced field foragers was significantly greater than that of both recently emerged and mature caged orchard bees, suggesting that, like the honey bee, this increase is driven by outdoor foraging experience. Unlike the honey bee, where increases in the ratio of neuropil to Kenyon cell region occur in the worker after emerging from the hive cell, the orchard bee emerged from the natal nest cell with a ratio that did not change with maturation and was comparable to honey-bee foragers. These results suggest that a common developmental endpoint may be reached via different development paths in social and solitary species of foraging bees.  相似文献   

13.
Forager honey bees have high circulating levels of juvenile hormone (JH) and high brain levels of octopamine, especially in the antennal lobes, and treatment with either of these compounds induces foraging. Experiments were performed to determine whether octopamine acts more proximally than JH to affect the initiation of foraging behavior. Bees treated with octopamine became foragers more rapidly than bees treated with the JH analog methoprene. Bees treated with methoprene showed an increase in antennal lobe levels of octopamine, especially after 12 days. Bees with no circulating JH (corpora allata glands removed) treated with octopamine became foragers in similar numbers to bees with intact corpora allata. These results suggest that JH affects the initiation of foraging at least in part by increasing brain levels of octopamine, but octopamine can act independently of JH. Effects of JH that are not related to octopamine also are possible, as bees treated with both octopamine and methoprene were more likely to become foragers than bees treated with only octopamine or methoprene.  相似文献   

14.
After confirming that worker honey bees (Apis mellifera) can revert from foraging to brood care, we determined whether juvenile hormone (JH) mediates this form of plasticity in behavioral development and whether worker age and genotype influence the probability of its expression. Measurements of JH titers support the hypothesis that plasticity in honey bee behavioral development is a consequence of modulation of JH by extrinsic factors. Observations of individually marked bees in a colony composed of two phenotypically distinguishable subfamilies revealed that the likelihood of undergoing behavioral reversion was influenced by worker age but not by worker genotype. The effect of worker age on reversion is consistent with a previously formulated model for the regulation of age polyethism in honey bees that predicts that workers of different ages have different response thresholds for task-associated stimuli. The lack of a genotypic effect on reversion is in contrast to results for other forms of behavioral plasticity.  相似文献   

15.
The fundamental determinants of division of labor among honey bee workers are age, genotype, and environment. These determinants work through intermediate physiological channels to realize particular patterns of division of labor. The change of juvenile hormone (JH) titer in worker bees is one such channel. Previous studies concentrated on the impact of JH on timing of in-hive and foraging activity. Here we examined the effects of JH on task specialization and the collection of pollen or nectar by same-age bees and we tested the possible impact on JH titer on foraging performance. Methoprene treatments were conducted after workers began to forage inside a flight room. We found that methoprene, a JH analogue, had no effect on preferences for pollen or nectar and, also, did not influence nectar foraging rate, nectar load size, and foraging span.  相似文献   

16.
Summary: The onset of foraging, proportion of pollen collectors, and weight of pollen loads were compared in individual honey bees (Apis mellifera) infested by zero, one (Acarapis woodi, the honey bee tracheal mite, or Varroa jacobsoni,varroa), or both species of parasitic mites. Phoretic varroa host choice also was compared between bees with and without tracheal mites, and tracheal mite infestation of hosts was compared between bees parasitized or not by varroa during development. The proportion of pollen collectors was not significantly different between treatments, but bees parasitized by both mites had significantly smaller pollen loads than uninfested bees. Mean onset of foraging was earliest for bees parasitized by varroa during development, 15.9 days. Bees with tracheal mites began foraging latest, at 20.5 days, and foraging ages were intermediate in bees with no mites and both, 17.6 and 18.0 days respectively. Phoretic varroa were found equally on bees with and without tracheal mite infestations, but bees parasitized by varroa during development were almost twice as likely to have tracheal mite infestations as bees with no varroa parasitism, 63.9 % and 35.5 %, respectively. These results indicate that these two parasites can have a biological interaction at the level of individual bees that is detrimental to their host colonies.  相似文献   

17.
Swarming is an important mechanism by which honey bee, Apis mellifera L., colonies reproduce, yet very little is known about the physiological changes in workers that are preparing to swarm. In this study, we determined the endocrine status of worker honey bees in preswarming colonies and in normal (nonswarming) colonies. Juvenile hormone (JH) titers in worker bees were similar in both groups before queen cells were present, but they became significantly lower in preswarming colonies compared with normal colonies when queen cells occurred in preswarming colonies. The lower JH titers in the preswarming colonies suggest that behavioral development is delayed in these colonies, consistent with previous reports that preswarming colonies have reduced foraging activities. Understanding the endocrine status of bees preparing for swarming will help us to better understand the biology of swarming.  相似文献   

18.
Studies on the role of juvenile hormone (JH) in adult social Hymenoptera have focused on the regulation of two fundamental aspects of colony organization: reproductive division of labor between queens and workers and age-related division of labor among workers. JH acts as a gonadotropin in the primitively eusocial wasp and bumble bee species studied, and may also play this role in the advanced eusocial fire ants. However, there is no evidence that JH acts as a traditional gonadotropin in the advanced eusocial honey bee or in the few other ant species that have recently begun to be studied. The role of JH in age-related division of labor has been most thoroughly examined in honey bees. Results of these studies demonstrate that JH acts as a “behavioral pacemaker,” influencing how fast a worker grows up and makes the transition from nest activities to foraging. Hypotheses concerning the evolutionary relationship between the two functions of JH in adult eusocial Hymenoptera are discussed. Arch. Insect Biochem. Physiol. 35:559–583, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Accurate thermoregulation in honey bees is crucial for colony survival. Multiple factors influence how colonies manage in-hive temperature, including genetic diversity. We explored the influence of genetic diversity on thermoregulatory behavior under three conditions: natural foraging, supplemental feeding, and exposure to the fungal pathogen shown to induce a social fever in honey bees. Our data suggest that (1) the degree of genetic diversity expected under normal conditions is not predictive of thermoregulatory stability, (2) the social fever response of honey bees is not a simple stimulus–response mechanism but appears to be influenced by ambient temperature conditions, and (3) a temperature-based circadian rhythm emerges under high nectar flow conditions. Taken together, these data suggest that a richer, context-dependent thermoregulatory system exists in honey bees than previously understood.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号