首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of low temperature on completion of winter diapause was investigated in the onion maggot, Delia antiqua (Diptera: Anthomyiidae). Diapause was completed under constant diapause-inducing conditions of 15 degrees C and 12L-12D, without any exposure to lower temperature. The pupal period for 50% adult emergence was 117 days. None of the cold treatments at 5.6 degrees C examined in the present study advanced adult emergence; on the contrary, they delayed it. Detailed analyses of the results revealed that diapause development in D. antiqua comprises two phases which differ in sensitivity to low temperature, with the phase shift occurring at around day 60 at 15 degrees C and 12L-12D. In the first phase of diapause development, low temperature (5.6 degrees C) had no effect on diapause development. In the latter phase, by contrast, diapause development was retarded in proportion to the duration of cold treatment.  相似文献   

2.
Photoperiodic response during induction of larval hibernal diapause of Chymomyza costata was characterized and the course of diapause development was analyzed in the laboratory. C. costata becomes sensitive to photoperiodic stimuli during an unspecified stage of its early development (embryo, 1st larval instar); the sensitivity gradually increases during the 2nd and early 3rd larval instars and reaches its maximum just before the moment when it abruptly ceases at the age of 15-19 days after oviposition. Diapause intensifies during a period of 2-3 weeks after induction and, later, is maintained without apparent development until death (between 150 and 250 days) under 18 degrees C and a short-day photoperiod (L10:D14, SD). Diapause may be terminated in a horotelic process by exposure to a low temperature (2 degrees C) during which larvae subsequently (1) synchronize their post-diapause development (requires up to 14 days of chilling), (2) lose photoperiodic sensitivity (2 months), and finally (3) terminate diapause (5 months). Alternatively, diapause may be terminated in a tachytelic process by exposure to a high temperature (18 degrees C) and long-day photoperiod (L16:D8, LD) during which no synchronization occurs and pupariation takes place after a mean of 25.2 days (with a broad range from 8 to more than 50 days). Larvae that are transferred from LD to SD during their sensitive period switch their developmental programming from pupariation to diapause. Proliferation of adult primordial structures (imaginal discs, neuroblasts) slows down within 1 day after transfer. In contrast, whole body growth continues for at least 3 days before its rate slows down and matches the rate characteristic for SD conditions.  相似文献   

3.
Larvae of the blow fly, Lucilia sericata (Meigen), enter diapause in the third instar after cessation of feeding. The effects of temperature and photoperiod on the termination of diapause were examined. The diapause terminated spontaneously under the diapause-inducing condition of 20 degrees C and LD 12:12, although pupariation was not synchronous. Diapause development proceeded under a low temperature of 7.5 degrees C. Transfer to long-day conditions of LD 16:8 or to a high temperature of 25 degrees C induced prompt and synchronous pupariation. Low temperatures in winter probably play a predominant role in the termination of diapause under natural conditions.  相似文献   

4.
Kost;l V 《Cryobiology》1993,30(5):524-531
Supercooling point (SCP) values and cold-hardiness were measured in individual ontogenetic stages of Delia radicum (Diptera:Anthomyiidae) in various physiological states (winter diapause, summer quiescence, and normal development). Winter diapause-destined mature third-instar larvae had a lower SCP (-9.9 degrees C) than their nondiapause counterparts (-5.2 degrees C), and more of them survived exposure to -10 degrees C for 5 h to pupariation and adult emergence. Values of SCPs were equal in both diapause and nondiapause states of prepupal and pupal stages. The lowest SCP (ca. -20 degrees C) was found in the stage of phanerocephalic pupa (PCP) regardless of the physiological state. The cold-hardiness of PCP corresponded with a low SCP value only in diapausing pupae stored for 80 days at 3 degrees C and in pupae which had terminated their diapause and whose further development was inhibited by storage at low temperatures (3 degrees C). Such pupae survived exposure to temperatures close to their SCP (14 days at -17 degrees C). However, this high cold-hardiness was only acquired after some time and/or exposure to 3 degrees C, as the PCP at the beginning of diapause showed significantly impaired cold-hardiness despite the fact that their SCP was low. The cold-hardiness of nondiapausing PCP did not correspond at all to that of low SCP, as no pupa survived the exposure to -17 degrees C for 1 day; survival rates at temperatures of -13.5 and -10 degrees C were also remarkably lower than those in diapausing pupae. Cold-hardiness in D. radicum was closely connected with the diapause syndrome but the changes in SCP value corresponded rather with the ontogeny of this insect. Copyright 1993, 1999 Academic Press.  相似文献   

5.
When pupae of Delia antiqua were transferred to constant darkness (DD) from light-dark (LD) cycles or constant light (LL), the sensitivity to light of the circadian clock controlling eclosion increased with age. The daily rhythm of eclosion appeared in both non-diapause and diapause pupae only when this transfer was made during late pharate adult development. When transferred from LL to DD in the early pupal stage, the adult eclosion was weakly rhythmic in non-diapause pupae but arrhythmic in diapause pupae. However, the sensitivity of the circadian clock to temperature cycles or steps was higher in diapause pupae than in non-diapause pupae; in the transfer to a constant 20 degrees C from a thermoperiod of 25 degrees C (12 h)/20 degrees C (12 h) on day 10 after pupation or from chilling (7.5 degrees C) in DD, the adult eclosion from diapause pupae was rhythmic but that from non-diapause pupae arrhythmic. In a transfer to 20 degrees C from the thermoperiod after the initiation of eclosion, rhythmicity was observed in both types of pupae. The larval stage was insensitive to the effect of LD cycle initiating the eclosion rhythm. In D. antiqua pupae in the soil under natural conditions, therefore, the thermoperiod in the late pupal stage would be the most important 'Zeitgeber' for the determination of eclosion timing.  相似文献   

6.
7.
Wu SH  Yang D  Lai XT  Xue FS 《Journal of insect physiology》2006,52(11-12):1095-1104
The seasonal life cycle of the zygaenid moth, Pseudopidorus fasciata is complicated by two different developmental arrests: a winter diapause as a fourth larval instar and a summer diapause as a prepupa in a cocoon. Both larval diapause induction and termination are under photoperiodic control. Short days induce larval diapause with a critical daylength of 13.5h and long days terminate diapause with a critical daylength of 14h. In the present study photoperiodic control of summer diapause was investigated in Pseudopidorus fasciata. Under long photoperiods ranging from LD 14:10 to LD 18:6, only part of the population entered summer diapause, the rest continued to develop. The lowest number of prepupae entered diapause at LD 14:10, followed by LD 16:8 and LD 17:7. The highest incidence of diapause occurred with photoperiods of LD 15:9 and LD 18:6. By transferring the diapausing prepupae induced by various long photoperiods (LD 14:10, LD 15:9, LD 16:8, LD 17:7, LD 18:6) to LD 13:11, 25 degrees C, the duration of diapause induced by LD 14:10 was significantly shorter than those induced by longer photoperiods. By keeping aestivating prepupae induced by LD 15:9, 28 degrees C or by natural conditions at short photoperiods (LD 11:13 and LD 13:11) and at a long photoperiod (LD 15:9), the duration of diapause at LD 15:9 was more than twice as long as than those at LD 11:13 and LD 13:11. Moreover, adult emergence was highly dispersed with a high mortality at LD 15:9 but was synchronized with low mortality at LD 11:13 and LD 13:11. When the naturally induced aestivating prepupae were kept under natural conditions, the early aestivating prepupae formed in May exhibited a long duration of diapause (mean 126 days), whereas the later-aestivating prepupae formed in July exhibited a short duration of diapause (mean 69 days). These results indicate that aestivating prepupae require short or shortening photoperiod to terminate their diapause successfully. By transferring naturally induced aestivating prepupae to 25, 28 and 30 degrees C, the duration of diapause at the high temperature of 30 degrees C was significantly longer than those at 25 and 28 degrees C, suggesting that high temperature during summer also plays an important role in the maintenance of summer diapause in Pseudopidorus fasciata. All results reveal that summer diapause can serve as a "bet hedging" against unpredictable risks due to fluctuating environments or as a feedback mechanism to synchronize the period of autumn emergence.  相似文献   

8.
彭竹清  郝友进 《昆虫学报》2019,62(12):1359-1368
【目的】本研究旨在调查葱蝇Delia antiqua夏滞育蛹体内DaFOXO1对超氧化物歧化酶(SOD)基因表达及蛹发育历期的调控作用。【方法】从葱蝇转录组数据中鉴定DaFOXO1下游铜锌超氧化物歧化酶基因DaCu/Zn SOD和锰超氧化物歧化酶基因DaMn SOD;利用生物信息学工具对DaCu/Zn SOD和DaMn SOD的氨基酸序列特征、亚细胞定位和系统发育关系进行分析。通过qRT-PCR方法分析DaFOXO1, DaCu/Zn SOD和DaMn SOD基因在葱蝇夏滞育蛹不同发育阶段的表达特点;进一步分析DaFOXO1基因被干扰后,葱蝇夏滞育蛹中DaCu/Zn SOD和DaMn SOD基因的表达特点、酶活性变化及对葱蝇夏滞育蛹发育历期的影响。【结果】鉴定到的葱蝇DaCu/Zn SOD(GenBank登录号: KR072551)的开放阅读框长459 bp,编码153个氨基酸,预测蛋白分子量为22.4 kD,等电点为6.44,属于细胞质型铜锌超氧化歧化酶;DaMn SOD(GenBank登录号: KR072549)的开放阅读框长648 bp,编码216个氨基酸,预测蛋白分子量为24.4 kD,等电点为8.85,属于线粒体型锰超氧化物歧化酶。氨基酸序列比对结果显示,DaCu/Zn SOD和DaMn SOD与其他10种双翅目昆虫的同源蛋白有75%~94%的氨基酸序列一致性,且具有典型的SOD家族序列特征;系统发育分析显示它们与铜绿蝇Lucilia cuprina同源蛋白形成高支持率的一支。qRT-PCR分析表明,DaFOXO1基因在滞育前期和滞育后期的表达量较高,而在滞育期的表达量低; DaCu/Zn SOD基因在滞育期和滞育后期呈高表达;但DaMn SOD基因在滞育前期和滞育期的表达量最高,在滞育后期次之。干扰DaFOXO1可显著抑制DaCu/Zn SOD和DaMn SOD的基因表达及相应酶活性,并能明显延长夏滞育蛹的滞育期。【结论】结果说明,DaCu/Zn SOD和DaMn SOD是FOXO1信号网络中的重要成员;DaFOXO1对葱蝇夏滞育蛹蛹期有重要调控作用。  相似文献   

9.
Seasonal changes in metabolic rate and the potential for morphological development demonstrated that third-instar larvae of the goldenrod gall fly, Eurosta solidaginis Fitch, exhibit a distinct winter diapause. Metabolic rate (CO2 production) was significantly lower from 15 October to 9 February than in early autumn (9 September) and spring (1 March) samples. The induction of diapause coincided with the development of cold-hardening, maximum larval mass, and gall senescence, but our experiments did not identify specific cues triggering diapause induction. We examined the influence of exposure to 0 degrees C and -20 degrees C on diapause development. Diapause development in larvae stored at 0 degrees C occurred at approximately the same rate as in nature. Until 15 December the larvae were in the refractory phase of diapause (incapable of morphological development, even at permissive temperatures), but afterward moved to the activated phase within which diapause intensity decreased until termination in February. Diapause development occurred in larvae collected during the winter and stored at -20 degrees C for periods of 1 week to 3 months. Diapause intensity decreased in frozen larvae through the winter but at a slower rate than in larvae stored at 0 degrees C.  相似文献   

10.
Diapause induction and termination responses of a northern strain (Minnesota [MN]) of Ostrinia nubilalis were compared with those of a southern strain (Georgia [GA]). A thermoperiod in constant light (12 hr at 25 degrees C alternating with 12 hr at 4 degrees C) failed to induce diapause in GA larvae, but approximately 50% diapause induction was observed in the MN population. Moreover, the 50% of MN larvae that continued their development (i.e., underwent pupation and adult development) did so at a slower rate, as measured by days to pupation, than GA larvae. In the laboratory, diapausing MN larvae responded more slowly to the optimal light-dark (LD) cycle for terminating diapause, LD 16:8, than did GA larvae. In the field MN populations are univoltine (i.e., are characterized by one generation per year). A delayed termination response in the spring, coupled with a longer critical daylength for diapause induction as daylength decreases during late summer (earlier diapause) restricts the time during which development can occur as contrasted with GA populations. In addition, it is postulated that these two phenomena, coupled with a possibly slower growth rate in the MN insects as revealed under laboratory conditions, may collectively represent the basis for univoltinism in the field.  相似文献   

11.
The role of photoperiod and temperature in the induction of overwintering diapause inPhyllonorycter blancardella (F.) (Lepidoptera: Gracillariidae) was examined in the laboratory and field using leafminers from commercial apple orchards in Ontario, Canada.P. blancardella exhibited a long-day response to photoperiod: long daylengths resulted in uninterrupted development whereas short daylengths induced diapause. The estimated critical photoperiod for diapause induction was L14.25∶D9.75. The larvae of leafminers destined to enter diapause took ca. 3× longer to complete development than the larvae of non-diapausing leafminers. The development prolonging effect of photoperiod decreased with decreasing daylength. Temperature modified the diapause inducing effect of photoperiod. At L14.25∶D9.75, diapause incidence was similar at 15 and 20°C but was lower at 25°C. Photoperiod also altered the normal relationship between development rate and temperature. At L14.25∶D9.75, the duration of larval development of diapausing leafminers was similar at 15, 20 and 25°C. Temperature alone is unlikely to have a role in the induction of diapause because leafminers exposed to natural late summer and fall temperature regimes and L16∶D8 did not enter diapause.  相似文献   

12.
司风玲  何正波  陈斌 《昆虫学报》2016,59(4):402-410
【目的】低分子量(12~43 kDa)热激蛋白(sHSPs)具有抗逆应答的功能,滞育是昆虫抵抗不良环境的特殊发育形式,但sHSPs在昆虫滞育发育过程中的作用仍不清楚。本研究克隆和特征化葱蝇Delia antiqua sHSP基因,并研究它在夏滞育和冬滞育发育过程中的表达模式,为阐明sHSPs在滞育发育上的功能奠定基础。【方法】通过RACE-PCR方法克隆了葱蝇HSP23基因,通过相似性比较分析了其特征、结构域及与双翅目代表性同源基因的系统发育关系;采用实时荧光定量PCR研究了该基因在葱蝇冬滞育蛹和夏滞育蛹发育过程中的表达情况,通过表达的差异比较揭示了该基因与滞育发育的关系。【结果】克隆出了葱蝇HSP23基因,命名为DaHSP23(GenBank登录号:HQ392521.1),其cDNA全长序列为904 bp,编码186个氨基酸,推测蛋白分子量为20.9 kDa,等电点为6.42。该基因的编码蛋白与其他双翅目昆虫的sHSPs有超过66%的氨基酸序列一致性,与已报道的其他双翅目昆虫的滞育相关HSP23基因同源。基因组测序显示该基因无内含子。DaHSP23基因在葱蝇非滞育蛹的发育过程中一直保持在较低的水平,各发育阶段间的表达量不存在显著差异。但在冬滞育和夏滞育蛹中,该基因从滞育起始期开始逐渐显著升高表达,到滞育维持期的中后期达到峰值,在滞育终止期逐渐降到较低的水平。【结论】DaHSP23基因在葱蝇冬滞育和夏滞育发育过程中明显上调表达,但存在差异,它在滞育期的调控可能是种专化的。DaHSP23可能在葱蝇两种类型的滞育上起重要作用。  相似文献   

13.
The intensity of adult diapause in Pyrrhocoris apterus was measured in two series of experiments as the duration of pre-oviposition period at a constant temperature of 25 degrees C after transfer from short (12L:12D) to long day conditions (18L:6D). Higher diapause intensity was induced with a thermoperiod than at constant temperatures. After the induction throughout larval instars 3-5 and during 4 weeks of adult life at short days and a thermoperiod of 25/15 degrees C the pre-oviposition period was 30+/-4 and 26+/-3 days. After induction at constant 25 degrees C the pre-oviposition period was 22+/-3 and 23+/-4 days, while after induction at constant 20 degrees C it was 17+/-4 and 19+/-4 days. Induction at a lower constant temperature of 20 degrees C was thus followed by a less intense diapause than the induction at a higher constant temperature of 25 degrees C. These counterintuitive results are discussed. The oxygen consumption rate measured at experimental temperatures prior to transfer from short to long days was higher at thermoperiodic conditions than at constant temperatures and it was similar at constant 20 and 25 degrees C. Thus, the oxygen consumption rate measured prior to the transfer was highest (indication of the least intense diapause) in the insects that showed later, after the transfer to long days, the longest pre-oviposition period (indication of the most intense diapause). Within the first two days after transfer to constant 25 degrees C, oxygen consumption rate measured at 25 degrees C decreased in the thermoperiodic insects, while it transiently increased in insects from constant 20 degrees C. Two days and later after the transfer, oxygen consumption rate was similar in all groups. Cold hardiness was not correlated with diapause intensity. The low lethal temperature in diapausing insects was correlated with the night temperature during diapause induction.  相似文献   

14.
Diapause hormone (DH) effectively terminated pupal diapause in Helicoverpa zea. This effect was temperature-dependent, with an optimum of 21 degrees C. The dose-response curve indicated an ED50 of DH for diapause termination of approximately 100 pmol. The core sequence and essential amino acids were determined by bioassays using modified and truncated DH analogs. A C-terminal hepta-peptide, LWFGPRLa, was the core sequence required for diapause termination. Activity was lost when Alanine was substituted for any of the amino acids in the hepta-peptide, with the exception of Glycine. A fragment series of analogs suggested that the amide and Arginine were the most important components needed for terminating diapause. Leucine, Tryptophan, and Phenylalanine at the N-terminus of the hepta-peptide were also critical for activity. The C-terminal Leucine was less important: deletion resulted in decreased activity, although it could not be substituted by Alanine. The fact that a portion of the DH sequence is similar to the pyrokinin that accelerates fly pupariation prompted us to also evaluate the capability of DH to accelerate development in the flesh fly, Sarcophaga bullata. The threshold dose of DH essential to accelerate fly pupariation was 5 pmol for immobilization/retraction and longitudinal contraction and 10 pmol for tanning, approximately one or two orders of magnitude lower than the effective dose required for diapause termination in H. zea. Tensiometric measurements revealed that DH affected neuromuscular patterns of pupariation behavior and associated cuticular changes in a manner similar to that of the fly pyrokinins and their analogs.  相似文献   

15.
Thermal responses controlling pupariation and adult eclosion in a citrus fruit fly,Dacus tsuneonis (Miyake), were studied to understand the winter biology of this species. When mature larvae were exposed to various temperature conditions, the highest percentage of pupariation was obtained at 15 °C, although the variance at this temperature was greater than at 20 °C or 25 °C. Pupariation occurred most rapidly at 20 °C and an alternating temperature with a mean of 15 °C. At constant 15 °C, pupae failed to emerge as adults. Pupae were characterized by a reduced respiration rate, which is typical of a diapausing pupa. When insects were stored at different temperatures for 45 days after pupariation, and then transferred to 25 °C, adult eclosion occurred earlier when the initial temperature was 10 °C than when it was 5 °C or 15 °C. Adult eclosion occurred most synchronously and pupal mortality was lowest when insects were stored at 15 °C for 90 days before incubation at 25 °C. These results strongly suggest thatD. tsuneonis enters a pupal diapause.  相似文献   

16.
Abstract. Effects of temperature and photoperiod on the induction and re-induction of adult diapause were examined in Dybowskyia reticulata (Dallas) (Heteroptera: Pentatomidae). Adults collected from the field after overwintering in early summer continued oviposition under long-day conditions of LD 16:8 h at 20 or 25°C, while they re-entered diapause under short-day conditions of LD 12:12 h at 25, 27.5 or 30°C. By contrast, adults reared in the laboratory from eggs at 20 or 25°C entered diapause under both long-day and short-day conditions, whereas those reared at 27.5 and 30°C entered diapause only under short-day conditions. Under quasi-natural conditions in 1993, when summer temperature was low, most adults of the first generation entered diapause in late July. However, in the warmer summer of 1996, oviposition was recorded in many females that ecdysed into adults from July to early August. Even though the seeds of the host plants occur in a restricted period from early summer to early autumn, in warmer years D. reticulata may produce a second generation. The response to temperature with a threshold between 25 and 27.5°C in D. reticulata brings about a switch between the univoltine and bivoltine life cycles.  相似文献   

17.
Helicoverpa armigera (Hübner) exhibits a facultative pupal diapause, which depends on temperature and photoperiod. Pupal diapause is induced at 20 degrees C by short photoperiods and inhibited by long photoperiods during the larval stage. However, in some pupae (35% of males and 57% of females) of a non-selected field population from Okayama Prefecture (34.6 degrees N), diapause is not induced by short photoperiods. In the present experiment, the importance of temperature for diapause induction was studied in the non-diapausing strain, which was selected from such individuals reared at 20 degrees C under a short photoperiod of 10L:14D. Furthermore, the sensitive stage for thermal determination of pupal diapause was determined by transferring larvae of various instars and pupae between 20 degrees C and 15 degrees C. Diapause was induced by 15 degrees C without respect to photoperiod. When larvae or pupae reared from eggs at 20 degrees C under a short or a long photoperiod were transferred to 15 degrees C in the periods of the middle fifth instar to the first three days after pupation, the diapause induction rate was significantly reduced in both males and females, especially in females. In contrast, when larvae or pupae reared at 15 degrees C were transferred to 20 degrees C in the same periods, diapause was induced in males, but not in females. However, the diapause induction rate of pupae transferred to 20 degrees C on the fourth day after pupation was significantly increased in females. The results show that temperature is the major diapause cue in the photoperiod-insensitive strain and the periods of middle fifth larval instar to early pupal stage are the thermal sensitive stages for pupal diapause induction with some different responses to temperatures between males and females in H. armigera.  相似文献   

18.
Effects of photoperiod and temperature on diapause induction and termination were investigated in both aestival and hibernal pupae of Pegomyia bicolor Wiedemann under field and laboratory conditions. In the field, summer diapause had occurred already in part of the first pupal population; the proportion of diapause gradually rose as the day length and temperature increased. This fly is a short-day species with a pupal summer and winter diapause. Summer diapause was induced by both long day-lengths and mild temperatures. The whole larval life is sensitive to photoperiod. Winter diapause was induced mainly by low temperatures, especially in the first 10 days after pupation. High temperatures strongly enhanced summer diapause induction regardless of photoperiod. The diapause-averting influence of short photoperiods was fully expressed only at moderately low temperatures. High temperatures delayed diapause development, resulting in a rather long summer diapause; whereas low temperatures hastened it, leading to a short winter diapause and showing a low thermal threshold for diapause development. In the field, the post-diapause development started in January, the coldest month, suggesting that the thermal requirements for post-diapause development is also low.  相似文献   

19.
Developmental patterns of low-temperature tolerance and glycerol production were determined for larval, pupal and adult stages of the flesh fly Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae). Both diapause and non-diapause-destined flies were reared at relatively high temperatures, 20° or 25°C, prior to testing. Cold tolerance was greatest for diapause pupae aged 12–35 days after pupariation. Among non-diapause-destined flies, pupae exhibited a greater level of low temperature tolerance than larvae or adults. Although diapause pupae were more tolerant than non-diapause pupae maximal cold tolerance was not attained in either group until 10 days after pupariation. Non-diapause-destined feeding and wandering larvae had higher glycerol levels than larvae destined for diapause. During the first 6 weeks after pupariation glycerol titres increased steadily in diapause pupae. Rapid loss of glycerol is associated with the termination of pupal diapause.  相似文献   

20.
In the cabbage butterfly, Pieris melete, summer and winter diapause are induced principally by long and short daylengths, respectively; the intermediate daylengths (12-13 h) permit pupae to develop without diapause. In this study, photoperiodic control of summer and winter diapause was systematically investigated in this butterfly by examining the photoperiodic response, the number of days required to induce 50% summer and winter diapause and the duration of diapausing pupae induced under different photoperiods. Photoperiodic response curves at 18 and 20 degrees C showed that all pupae entered winter diapause at short daylengths (8-11 h), the incidence of diapause dropped to 82.3-85.5% at 22 degrees C without showing a significant difference between short daylengths, whereas the incidence of summer diapause induced by different long daylengths (14-18 h) was varied and was obviously affected by temperature. By transferring from various short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) to an intermediate daylength (LD 12.5:11.5) at different times after hatching, the number of cycles required to induce 50% winter diapause (7.28 at LD 8:16, 7.16 at LD 9:15, 7.60 at LD 10:14 and 6.94 at LD 11:13) showed no significant difference, whereas by transferring from various long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) to an intermediate daylength (LD 12.5:11.5) at different times, the number of cycles required to induce 50% summer diapause (5.95 at LD 14:10, 8.02 at LD 15:9, 6.80 at LD 16:8, 7.64 at LD 17:7) were significantly different. The intensity of winter diapause induced under different short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) was not significantly different with an average diapause duration of 87 days at a constant temperature of 20 degrees C and 92 days at a mean daily temperature of 19.0 degrees C, whereas the intensity of summer diapause induced under different long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) was significantly different (the diapause duration ranged from 75 to 86 days at a constant temperature of 20 degrees C and from 76 to 88 days at a mean daily temperature of 19.0 degrees C). All results suggested that photoperiodic control of diapause induction and termination is significantly different between aestivation and hibernation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号