首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the whole-cell mode of the patch-clamp technique, we attempted to record inward currents in response to cAMP, inositol 1,4, 5-trisphosphate (IP(3)) and odorants from sensory neurons in the olfactory epithelium of the Xenopus laevis lateral diverticulum (water nose). Dialysis of 100 microM of IP(3) induced inward currents, while dialysis of 1 mM of cAMP into olfactory neurons did not induce any response under the voltage-clamp conditions. Changes in membrane conductance were examined by applying ramp pulses. The slope of the current-voltage (I-V) curve during the IP(3)-induced response was steeper than that after the response, indicating that IP(3) increased the membrane conductance. The water nose olfactory neurons have been shown to respond to both amino acids and volatile odorants. The slopes of I-V curves during responses to amino acids and a volatile odorant, lilial, were similar to those before the responses, suggesting that the total membrane conductance was not changed during responses to amino acids and the volatile odorant.  相似文献   

2.
The role of phosphoinositide signaling in olfactory transduction is still being resolved. Compelling functional evidence for the transduction of odor signals via phosphoinositide pathways in olfactory transduction comes from invertebrate olfactory systems, in particular lobster olfactory receptor neurons. We now provide molecular evidence for two components of the phosphoinositide signaling pathway in lobster olfactory receptor neurons, a G protein alpha subunit of the G(q) family and an inositol 1,4, 5-trisphosphate-gated channel or an inositol 1,4,5-trisphosphate (IP(3)) receptor. Both proteins localize to the site of olfactory transduction, the outer dendrite of the olfactory receptor neurons. Furthermore, the IP(3) receptor localizes to membranes in the ciliary transduction compartment of these cells at both the light microscopic and electron microscopic levels. Given the absence of intracellular organelles in the sub-micron diameter olfactory cilia, this finding indicates that the IP(3) receptor is associated with the plasma membrane and provides the first definitive evidence for plasma membrane localization of an IP(3)R in neurons. The association of the IP(3) receptor with the plasma membrane may be a novel mechanism for regulating intracellular cations in restricted cellular compartments of neurons.  相似文献   

3.
Electrophysiological properties of frog olfactory supporting cells   总被引:1,自引:0,他引:1  
Trotier  D 《Chemical senses》1998,23(3):363-369
Cells, identified as supporting cells by Lucifer Yellow injection, were recorded from slices of frog olfactory epithelium using patch-clamp recordings. Cell-attached single-channel recordings indicated that the intracellular potential (IP) was -68 +/- 7 mV (n = 22) with 4 mM K+ in the bath ([K+]o). IP was -67 +/- 4 mV (n = 32) in whole-cell conditions with 100 mM KCl inside the cell, suggesting a low membrane permeability for Cl-. IP depended on [K+]o in a manner described by the Goldman- Hodgkin-Katz equation with a permeability ratio pk+:PNa+ of 40. The input resistance was 32 +/- 14 M omega (n = 15), indicating a high membrane conductance at rest. Odorant stimulations evoked passive membrane depolarizations, probably reflecting an increase in [K+]o due to the neuronal activation. Whole-cell recordings with 100 mM CsCl instead of KCl in the pipette, together with the block of gap-junctions with octanol, indicated the existence of an electrical coupling between supporting cells. The electrical coupling between these glial-like cells could facilitate the clearance of K+ ions released by olfactory receptor neurons during odorant stimulation.   相似文献   

4.
Although cAMP is well established as a second messenger for olfactory transduction in vertebrates, the role of inositol 1,4,5-trisphosphate (IP3) in this process remains controversial. We addressed this issue by comparing currents evoked by cAMP and IP3 in native and reconstituted membranes from olfactory cilia. We detected only a cyclic nucleotide-gated conductance in the native membrane but both cyclic nucleotide-gated and IP3-gated conductances in the reconstituted membrane. The magnitudes of the cyclic nucleotide- and IP3-gated conductances were not correlated with each other in reconstituted membranes, suggesting that cyclic nucleotide- and IP3-gated channels originate in different cellular compartments.  相似文献   

5.
D A Fadool  B W Ache 《Neuron》1992,9(5):907-918
Inositol 1,4,5-trisphosphate (IP3) selectively evokes an inward (excitatory) current in cultured lobster olfactory receptor neurons (ORNs) and directly activates two types of channels in cell-free patches of plasma membrane from the ORNs. The IP3-activated channels have kinetic properties of odor-activated channels in the ORNs and pharmacological properties of intracellular IP3-activated channels in other systems. An antibody directed against an intracellular, cerebellar IP3 receptor recognizes a protein with a molecular weight similar to the mammalian receptor in the ORNs. The antibody selectively increases odor-evoked inward currents and IP3-activated unitary currents in the ORNs. The data provide further evidence for IP3 as an olfactory second messenger and implicate at least one and possibly two novel plasma membrane IP3 receptors in olfactory transduction.  相似文献   

6.
The vomeronasal organ (VNO) is the receptor portion of the accessory olfactory system and transduces chemical cues that identify social hierarchy, reproductive status, conspecifics and prey. Signal transduction in VNO neurons is apparently accomplished via an inositol 1,4,5-trisphosphate (IP3)-activated calcium conductance that includes a different set of G proteins than those identified in vertebrate olfactory sensory neurons. We used immunohistochemical (IHC) and SDS-PAGE/western analysis to localize three IP3 receptors (IP3R) in the rat VNO epithelium. Type-I IP3R expression was weak or absent. Antisera for type-II and -III IP3R recognized appropriate molecular weight proteins by SDS-PAGE, and labeled protein could be abolished by pre-adsorption of the respective antibody with antigenic peptide. In tissue sections, type-II IP3R immunoreactivity was present in the supporting cell zone but not in the sensory cell zone. Type-III IP3R immunoreactivity was present throughout the sensory zone and overlapped that of transient receptor potential channel 2 (TRPC2) in the microvillar layer of sensory epithelium. Co-immunoprecipitation of type-III IP3R and TRPC2 from VNO lysates confirmed the overlapping immunoreactivity patterns. The protein-protein interaction complex between type-III IP3R and TRPC2 could initiate calcium signaling leading to electrical signal production in VNO neurons.  相似文献   

7.
Odorants evoke an outward current in cultured lobster olfactory receptor neurons voltage clamped at -60 mV. The reversal potential of the outward current is independent of the reversal potential of potassium, but shifts with imposed changes in the reversal potential of chloride. The slope of the current-voltage relationship is negative, suggesting that the current is mediated by the odorant suppressing a steady-state conductance. Anthracene-9-carboxylic acid, a specific chloride channel blocker, reversibly inhibits the steady-state conductance. Local application of odorants to the outer dendrites evokes a hyperpolarizing receptor potential in lobster olfactory receptor neurons current-clamped at -70 mV in situ. Consistent with the current characterized in the cultured cells, hyperpolarizing receptor potentials in some cells are voltage sensitive, blocked by anthracene-9-carboxylic acid and associated with a decrease in membrane conductance. These results support the hypothesis that odorants suppress a steady-state chloride conductance in lobster olfactory receptor neurons. Evidence that the chloride conductance can coexist with a 4-aminopyridine-blockable potassium conductance reported earlier in these cells suggests that two distinct mechanisms can mediate odorant-evoked inhibition in lobster olfactory receptor neurons.  相似文献   

8.
Olfactory receptor neurons respond to odorants with G protein-mediated increases in the concentrations of cyclic adenosine 3',5'-monophosphate (cAMP) and/or inositol-1,4,5-trisphosphate (IP3). This study provides evidence that both second messengers can directly activate distinct ion channels in excised inside-out patches from the dendritic knob and soma membrane of rat olfactory receptor neurons (ORNs). The IP3-gated channels in the dendritic knob and soma membranes could be classified into two types, with conductances of 40 +/- 7 pS (n = 5) and 14 +/- 3 pS (n = 4), with the former having longer open dwell times. Estimated values of the densities of both channels from the same inside-out membrane patches were very much smaller for IP3-gated than for CNG channels. For example, in the dendritic knob membrane there were about 1000 CNG channels x microm(-2) compared to about 85 IP3-gated channels x microm(-2). Furthermore, only about 36% of the dendritic knob patches responded to IP3, whereas 83% of the same patches responded to cAMP. In the soma, both channel densities were lower, with the CNG channel density again being larger ( approximately 57 channels x microm(-2)) than that of the IP3-gated channels ( approximately 13 channels x microm(-2)), with again a much smaller fraction of patches responding to IP3 than to cAMP. These results were consistent with other evidence suggesting that the cAMP-pathway dominates the IP3 pathway in mammalian olfactory transduction.  相似文献   

9.
Snake vomeronasal receptor neurons in slice preparations were studied using the patch-clamp technique in the conventional and nystatin-perforated whole-cell configurations. The mean resting potential was approximately -70 mV; the average input resistance was 3 GOmega. Neurons required current injection of only 1-10 pA to display a variety of spiking patterns. Intracellular dialysis of 100 microM inositol 1,4,5-trisphosphate (IP(3)) evoked an inward current in 38% of neurons, with an average peak amplitude of 16.4 +/- 2.8 pA at a holding potential of -70mV. Application of 100 microM 3-deoxy-3-fluoro-D-myo-inositol 1,4,5-trisphosphate (F-IP(3)), a derivative of IP(3), also evoked an inward current in 4/8 (50%) neurons (32.6 +/- 58 pA at -70 mV, n = 4). The reversal potentials of the induced components were estimated to be -14 +/- 5 mV for IP(3) and -17 +/- 3 mV for F-IP(3). Bathing the neurons in 10 microM ruthenium red solution greatly reduced the IP(3)-evoked inward current to 1.6 +/- 1.1 pA at -70 mV (n = 6). With Cs(+)-containing internal solution, neither the Ca(2+)-ATPase inhibitor thapsigargin (1-50 microM) nor the Ca(2+)-ionophore ionomycin (10 microM) evoked a significant current response, suggesting that IP(3) can elicit current response in the neurons without mediation by intracellular Ca(2+) stores. Intracellular application of 1 mM cAMP evoked no detectable current response. Extracellular application of chemoattractant for snakes evoked a very large inward current. The reversal potential of the chemoattractant-induced current was similar to that of the IP(3)-induced current. The present results suggest that IP(3) may act as a second messenger in the transduction of chemoattractants in the garter snake vomeronasal organ.  相似文献   

10.
Odors affect the excitability of an olfactory neuron by altering membrane conductances at the ciliated end of a single, long dendrite. One mechanism to increase the sensitivity of olfactory neurons to odorants would be for their dendrites to support action potentials. We show for the first time that isolated olfactory dendrites from the mudpuppy Necturus maculosus contain a high density of voltage-activated Na+ channels and produce Na-dependent action potentials in response to depolarizing current pulses. Furthermore, all required steps in the transduction process beginning with odor detection and culminating with action potential initiation occur in the ciliated dendrite. We have previously shown that odors can modulate Cl- and K+ conductances in intact olfactory neurons, producing both excitation and inhibition. Here we show that both conductances are also present in the isolated, ciliated dendrite near the site of odor binding, that they are modulated by odors, and that they affect neuronal excitability. Voltage- activated Cl- currents blocked by 4,4'-diisothiocyanatostilbene-2,2' disulfonic acid and niflumic acid were found at greater than five times higher average density in the ciliated dendrite than in the soma, whereas voltage-activated K+ currents inhibited by intracellular Cs+ were distributed on average more uniformly throughout the cell. When ciliated, chemosensitive dendrites were stimulated with the odorant taurine, the responses were similar to those seen in intact cells: Cl- currents were increased in some dendrites, whereas in others Cl- or K+ currents were decreased, and responses washed out during whole-cell recording. The Cl- equilibrium potential for intact neurons bathed in physiological saline was found to be -45 mV using an on-cell voltage- ramp protocol and delayed application of channel blockers. We postulate that transduction of some odors is caused by second messenger-mediated modulation of the resting membrane conductance (as opposed to a specialized generator conductance) in the cilia or apical region of the dendrite, and show how this could alter the firing frequency of olfactory neurons.  相似文献   

11.
H Higashida  D A Brown 《FEBS letters》1987,220(2):302-306
Application of bradykinin to voltage-clamped N1E-115 mouse neuroblastoma cells evoked sequential outward and inward membrane currents, accompanied by an increase and decrease of membrane conductance, respectively. Methacholine produced an inward current with a decreased conductance. The outward current response to bradykinin was imitated by intracellular inositol 1,4,5-trisphosphate (IP3). Bath application of phorbol dibutyrate induced an inward current and potentiated the response to IP3. We conclude that the response of these cells to bradykinin is identical to that of NG108-15 hybrid cells, and therefore may be attributed to the dual effects of inositol trisphosphate and diacylglycerol formed by hydrolysis of phosphatidylinositide.  相似文献   

12.
Hu HY  Sun ZP  Zhao YM  Si JQ  Zheng Y 《生理学报》2004,56(1):107-111
为研究血管升压素(arginine vasopressin,AVP)对大鼠背根神经节(dorsal root ganglion,DRG)神经元的作用及其机制,用细胞内微电极记录技术记录离体灌流DRG神经元的膜电位。结果如下:(1)在受检的120个细胞中,大多数(81.67%)在滴加AVP后产生明显的超极化反应。(2)滴加AVP(10μmol/L)后膜电导增加约19.34%(P<0.05)。(3)灌流平衡液巾的NaCl以氯化胆碱(CH-Cl)置代和用Cd2+阻断Ca2+通道后,AVP引起超极化反应的幅值均无明显变化(P>0.05),而加入K+通道阻断剂四乙铵(TEA)后,AVP引起的超极化反应幅值明显减小(P<0.05)。(4)AVP引起的超极化反应可被AVP V.受体拈抗剂阻断。结果捉示,AVP可使DRG大多数神经元膜产生超极化,DRG神经元膜上存在AVP V,受体,且AVP引起的超极化反应是通过神经元膜上AVP V.受体介导的K+外流所致.AVP可能参与了初级感觉信息传入的调制。  相似文献   

13.
Although many studies have reported that odorants can elicit inhibitory responses as well as excitatory responses in vertebrate olfactory receptor neurons, the cellular mechanisms that underlie this inhibition are unclear. Here we examine the inhibitory effect of odorants on newt olfactory receptor neurons using whole cell patch clamp recording. At high concentrations, odorant stimulation decreased the membrane conductance and inhibited depolarization. Various odorants (anisole, isoamyl acetate, cineole, limonene and isovaleric acid) suppressed the depolarizing current in a dose-dependent manner. Furthermore, one odorant could suppress the depolarization caused by another odorant. The depolarization caused by isoamyl acetate was inhibited by anisole in cells that were excited by isoamyl acetate but not by anisole. Odorants were able to hyperpolarize cells that were depolarized by cAMP-induced conductance. Given that this inhibitory effect of odorants can affect excitation caused by other odorants, we suggest that it might play a role in coding odorants in olfactory receptor neurons.  相似文献   

14.
Pun RY  Kleene SJ 《Biophysical journal》2003,84(5):3425-3435
The basal conductance of unstimulated frog olfactory receptor neurons was investigated using whole-cell and perforated-patch recording. The input conductance, measured between -80 mV and -60 mV, averaged 0.25 nS in physiological saline. Studies were conducted to determine whether part of the input conductance is due to gating of neuronal cyclic-nucleotide-gated (CNG) channels. In support of this idea, the neuronal resting conductance was reduced by each of five treatments that reduce current through CNG channels: external application of divalent cations or amiloride; treatment with either of two adenylate cyclase inhibitors; and application of AMP-PNP, a competitive substrate for adenylate cyclase. The current blocked by divalent cations or by a cyclase inhibitor reversed near 0 mV, as expected for a CNG current. Under physiological conditions, gating of CNG channels contributes approximately 0.06 nS to the resting neuronal conductance. This implies a resting cAMP concentration of 0.1-0.3 micro M. A theoretical model suggests that a neuron containing 0.1-0.3 micro M cAMP is poised to give the largest possible depolarization in response to a very small olfactory stimulus. Although having CNG channels open at rest decreases the voltage change resulting from a given receptor current, it more substantially increases the receptor current resulting from a given increase in [cAMP].  相似文献   

15.
Acetylcholine-induced membrane conductance was investigated in superior cervical ganglion neurons using a patch-clamp technique. It was found that hyperpolarization and depolarization produce an increase and a reduction in acetylcholine (ACh) conductance. This reduction was unconnected with either reversal of the current induced by iontophoretic ACh application or the presence of Ca ions in the external solution. The time constant of relaxation (r) of this current, produced by a jump in membrane potential, was found to increase e-fold when the membrane was hyperpolarized by 70 mV, matching the voltage dependence of ACh conductance. This led to the hypothesis that voltage-dependent ACh-induced conductance is entirely determined by the voltage dependence of nicotinic receptor channel gating kinetics.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 167–171, March–April, 1988.  相似文献   

16.
Elevation of extracellular Ca(2+) concentration induces intracellular Ca(2+) signaling in parathyroid cells. The response is due to stimulation of the phospholipase C/Ca(2+) pathways, but the direct mechanism responsible for the rise of intracellular Ca(2+) concentration has remained elusive. Here, we describe the electrophysiological property associated with intracellular Ca(2+) signaling in frog parathyroid cells and show that Ca(2+)-activated Cl(-) channels are activated by intracellular Ca(2+) increase through an inositol 1,4,5-trisphophate (IP(3))-independent pathway. High extracellular Ca(2+) induced an outwardly-rectifying conductance in a dose-dependent manner (EC(50) ~6 mM). The conductance was composed of an instantaneous time-independent component and a slowly activating time-dependent component and displayed a deactivating inward tail current. Extracellular Ca(2+)-induced and Ca(2+) dialysis-induced currents reversed at the equilibrium potential of Cl(-) and were inhibited by niflumic acid (a specific blocker of Ca(2+)-activated Cl(-) channel). Gramicidin-perforated whole-cell recording displayed the shift of the reversal potential in extracellular Ca(2+)-induced current, suggesting the change of intracellular Cl(-) concentration in a few minutes. Extracellular Ca(2+)-induced currents displayed a moderate dependency on guanosine triphosphate (GTP). All blockers for phospholipase C, diacylglycerol (DAG) lipase, monoacylglycerol (MAG) lipase and lipoxygenase inhibited extracellular Ca(2+)-induced current. IP(3) dialysis failed to induce conductance increase, but 2-arachidonoylglycerol (2-AG), arachidonic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HPETE) dialysis increased the conductance identical to extracellular Ca(2+)-induced conductance. These results indicate that high extracellular Ca(2+) raises intracellular Ca(2+) concentration through the DAG lipase/lipoxygenase pathway, resulting in the activation of Cl(-) conductance.  相似文献   

17.
Acute and chronic effects of γ-butyrolactone-γ-carbonyl-histidyl-prolinamide (DN-1417) were investigated on motor activity, dopamine (DA) metabolites and DA receptors in various brain regions of rats. The motor activity, as measured with Automex recorder, was enhanced after a single injection with DN-1417 (20 mg/kg, IP), and the motor stimulating action persisted during 21 daily injections. Acute DN-1417 elevated both homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in 7 brain regions, prefrontal cortex polar, medial and lateral fields, nucleus accumbens, olfactory tubercles, amygdala and striatum. After chronic treatment for 7 days, the acute effect of DN-1417 on DA metabolites disappeared in all regions except for the striatum in which DN-1417 still increased HVA and DOPAC. The response of striatal DA metabolites was also observed after chronic treatment for 21 days. Chronic DN-1417 produced no significant change in 3H-spiperone binding in the prefrontal cortex, nucleus accumbens, olfactory tubercles and striatum, while striatal 3H-DA binding displaced by 30 nM spiperone was enhanced after chronic treatment. These results indicate that DN-1417 interacts with mesocortical, mesolimbic and nigrostriatal DA systems in the different modes of action. The lack of tolerance to motor hyperactivity, however, raises the question as to whether DN-1417-induced hyperactivity may be mediated by the activation of mesolimbic DA neurons. The involvement of nigrostriatal neurons in DN-1417-induced motor hyperactivity is suggested.  相似文献   

18.
Calcium-dependent release of neurotrophic factors plays an important role in the maintenance of neurons, yet the release mechanisms are understudied. The inositol triphosphate (IP3) receptor is a calcium release channel that has a physiological role in cell growth, development, sensory perception, neuronal signaling and secretion. In the olfactory system, the IP3 receptor subtype 3 (IP3R3) is expressed exclusively in a microvillous cell subtype that is the predominant cell expressing neurotrophic factor neuropeptide Y (NPY). We hypothesized that IP3R3-expressing microvillous cells secrete sufficient NPY needed for both the continual maintenance of the neuronal population and for neuroregeneration following injury. We addressed this question by assessing the release of NPY and the regenerative capabilities of wild type, IP3R3+/−, and IP3R3−/− mice. Injury, simulated using extracellular ATP, induced IP3 receptor-mediated NPY release in wild-type mice. ATP-evoked NPY release was impaired in IP3R3−/− mice, suggesting that IP3R3 contributes to NPY release following injury. Under normal physiological conditions, both IP3R3−/− mice and explants from these mice had fewer progenitor cells that proliferate and differentiate into immature neurons. Although the number of mature neurons and the in vivo rate of proliferation were not altered, the proliferative response to the olfactotoxicant satratoxin G and olfactory bulb ablation injury was compromised in the olfactory epithelium of IP3R3−/− mice. The reductions in both NPY release and number of progenitor cells in IP3R3−/− mice point to a role of the IP3R3 in tissue homeostasis and neuroregeneration. Collectively, these data suggest that IP3R3 expressing microvillous cells are actively responsive to injury and promote recovery.  相似文献   

19.
This aim of this review is to describe the dynamics of learning-induced cellular modifications in the rat piriform (olfactory) cortex after olfactory discrimination learning and to describe their functional significance to long-term memory consolidation. The first change to occur is in the intrinsic properties of the neurons. One day after learning, pyramidal neurons show enhanced neuronal excitability. This enhancement results from reduction in calcium-dependent conductance that mediates the post burst after-hyperpolarization. Such enhanced excitability lasts for 3 days and is followed by a series of synaptic modifications. Several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons in the piriform cortex accompany olfactory learning. Enhanced synaptic release is indicated by reduced paired-pulse facilitation. Post-synaptic enhancement of synaptic transmission is indicated by reduced rise time of post-synaptic potentials and formation of new synaptic connections is indicated by increased spine density along dendrites of these neurons. Such modifications last for up to 5 days. Thus, olfactory discrimination rule learning is accompanied by a series of cellular modifications which occur and then disappear at different times. These modifications overlap partially, allowing the maintenance of the cortical system in a ‘learning mode’ in which memories for specific odors can be acquired rapidly and efficiently.  相似文献   

20.
Applying GABA (1 microM-1 mM) to the soma of cultured lobster olfactory receptor neurons evokes an inward current (V(m) = -60 mV) accompanied by an increase in membrane conductance, with a half-effect of 487 microM GABA. The current-voltage relationship of this current is linear between -100 and 100 mV and reverses polarity at the equilibrium potential for Cl(-). The current is blocked by picrotoxin and bicuculline methiodide, and is evoked by trans-aminocrotonic acid, isoguvacine, muscimol, imidazole-4-acetic acid, and 3-amino-1-propanesulfonic acid, but not by the GABA(C)-receptor agonist cis-4-aminocrotonic acid and the GABA(B)-receptor agonist 3-aminopropylphosphonic. Applying GABA to the soma of the cells in situ reversibly suppresses the spontaneous discharge and substantially decreases the odor-evoked discharge. The effects of GABA on the cell soma in situ are antagonized by both picrotoxin and bicuculline methiodide. Taken together with evidence that GABA directly activates a chloride channel in outside-out patches excised from the soma of these neurons, we conclude that lobster olfactory receptor neurons express an ionotropic GABA receptor that can potentially regulate the output of these cells. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号