首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Construction of transgenic Anopheles mosquitoes refractory to Plasmodium requires knowledge of mosquito developmental biology. In order to study Anopheles embryology the removal or, alternatively, the permeabilization of the melanized and sclerotized egg chorion were attempted. The protocol classically used for chorion removal of Drosophila eggs was applied, with partial efficacy, to Anopheles albitarsis, a neotropical malaria vector. Each step was monitored by scanning electron microscopy and the results suggest differences in chorion composition between the two taxa. As an alternative to chorion removal, mosquito eggs were permeabilized with benserazide, an inhibitor of Dopa Decarboxylase, one of the enzymes needed for mosquito eggshell sclerotization. Embryo morphology and viability were not affected by this treatment. Permeabilization of the egg chorion allowed the ultrastructural observation of an internal homogeneous endochorion and an external compound exochorion, the latter consisting of a basal lamellar layer and protruding tubercles.  相似文献   

2.

Background  

Anopheles (Nyssorhynchus) albitarsis (Diptera: Culicidae) is one of the very few South American mosquito vectors of malaria successfully colonized in the laboratory. These vectors are very hard to breed because they rarely mate in artificial conditions. A few years ago a free-mating laboratory colony of An. albitarsis sensu stricto was established after about 30 generations of artificial-mating. To begin to understand the process of adaptation of these malaria vectors to the laboratory we have compared the insemination rates of colony mosquitoes to those from the original population in both artificial and free-mating crosses. We also carried out crossing experiments between the two types of mosquitoes for a preliminary analysis of the genetic basis of such adaptation.  相似文献   

3.
The external morphology and fine structure of the eggshell of Ommatissus binotatus Fieber (Homoptera : Tropiduchidae) was investigated by light, scanning and transmission electron microscopy. The egg surface has 2 main regions: a specialized area and an unspecialized egg capsule. The specialized area is characterized by a large respiratory plate containing the operculum and a short respiratory horn. The latter consists of an external hollow tube and an internal coneshaped projection hosting a micropylar canal. The eggshell has 4 layers: the vitelline envelope, a wax layer, the chorion and an outer mucous layer. The chorion has inner, intermediate and outer parts. The functions of the different parts of the eggshell are discussed. Characters useful to define the eggs and the oviposition habit in the family Tropiduchidae were provided. The size and morphology of the egg, plate, respiratory horn and operculum are suggested as useful characters for ootaxonomic analysis.  相似文献   

4.
The eggshell fine structure of the dark-winged fungus-gnat Bradysia aprica (Winnertz) (Diptera : Sciaridae) was investigated by scanning and transmission electron microscopy. At the anterior pole of the ovoid egg is a single micropyle, centrally located in a well-defined micropylar area. The latter is covered by many long drumstick-like chorionic processes that are longer and more numerous than those of the rest of the egg surface. Cross-sections of the eggshell show 3 concentric envelopes: the vitelline envelope, wax layer and chorion. The chorion consists of 3 components with different morphological features: the inner, intermediate and outer chorion. The latter 2 layers, involved in the organization of the drumstick-like processes, have homogeneous features, whereas the former is crystalline and resembles the innermost chorionic layer of other Diptera.  相似文献   

5.
The blood meal of the female malaria mosquito is a pre-requisite to egg production and also represents the transmission route for the malaria parasite. The proper and rapid assimilation of proteins and nutrients in the blood meal creates a significant metabolic challenge for the mosquito. To better understand this process we generated a global profile of metabolite changes in response to blood meal of Anopheles gambiae, using Gas Chromatography-Mass Spectrometry (GC-MS). To disrupt a key pathway of amino acid metabolism we silenced the gene phenylalanine hydroxylase (PAH) involved in the conversion of the amino acid phenylalanine into tyrosine. We observed increased levels of phenylalanine and the potentially toxic metabolites phenylpyruvate and phenyllactate as well as a reduction in the amount of tyrosine available for melanin synthesis. This in turn resulted in a significant impairment of the melanotic encapsulation response against the rodent malaria parasite Plasmodium berghei. Furthermore silencing of PAH resulted in a significant impairment of mosquito fertility associated with reduction of laid eggs, retarded vitellogenesis and impaired melanisation of the chorion. Carbidopa, an inhibitor of the downstream enzyme DOPA decarboxylase that coverts DOPA into dopamine, produced similar effects on egg melanization and hatching rate suggesting that egg chorion maturation is mainly regulated via dopamine. This study sheds new light on the role of amino acid metabolism in regulating reproduction and immunity.  相似文献   

6.
Although sexual selection has been predominantly used to explain the rapid evolution of sexual traits, eggs of oviparous organisms directly face both the challenges of sexual selection as well as natural selection (environmental challenges, survival in niches, etc.). Being the outermost membrane in most insect eggs, the chorion layer is the interface between the embryo and the environment, thereby serving to protect the egg. Adaptive ecological radiations such as divergence in ovipositional substrate usage and host-plant specializations can therefore influence the evolution of eggshell proteins. We can hypothesize that proteins localized on the outer eggshell may be affected to a greater degree by ecological challenges compared with inner eggshell proteins, and therefore, proteins localized in the outer eggshell (chorion membrane) may evolve differently (faster) than proteins localized in the inner egg membrane (vitelline membrane). We compared the evolutionary divergence of vitelline with chorion membrane proteins in species of the melanogaster subgroup and found that chorion proteins as a group are indeed evolving faster than vitelline membrane proteins. At least one vitelline membrane protein (Vm32E), specifically localized on the outer eggshell, is also evolving faster than other vitelline membrane proteins suggesting that all proteins localized on the outer eggshell may be evolving rapidly. We also found evidence that specific codons in chorion proteins cp15 and cp16 are evolving under positive selection. Polymorphism surveys of cp16 revealed inflated levels of divergence relative to polymorphism in specific regions of the gene, indicating that these regions are under strong selection. At the morphological level, we found notable difference in eggshell surface morphologies between specialist (Drosophila sechellia and Drosophila erecta) and generalist species of Drosophila. We do not know if any of the chorion proteins actually interact with spermatozoids, therefore leaving the possibility of rapid evolution through gametic interaction wide open. At this point, however, our results support previous suggestions that divergences in ecology, particularly, ovipositional substrate divergences may be a strong force driving the evolution of eggshell proteins.  相似文献   

7.
Mosquito eggs are laid in water but freshly laid eggs are susceptible to dehydration, if their surroundings dry out at the first hours of development. During embryogenesis of different mosquito vectors the serosal cuticle, an extracellular matrix, is produced; it wraps the whole embryo and becomes part of the eggshell. This cuticle is an essential component of the egg resistance to desiccation (ERD). However, ERD is variable among species, sustaining egg viability for different periods of time. While Aedes aegypti eggs can survive for months in a dry environment (high ERD), those of Anopheles aquasalis and Culex quinquefasciatus in the same condition last, respectively, for one day (medium ERD) or a few hours (low ERD). Resistance to desiccation is determined by the rate of water loss, dehydration tolerance and total amount of water of a given organism. The ERD variability observed among mosquitoes probably derives from diverse traits. We quantified several attributes of whole eggs, potentially correlated with the rate of water loss: length, width, area, volume, area/volume ratio and weight. In addition, some eggshell aspects were also evaluated, such as absolute and relative weight, weight/area relationship (herein called surface density) and chitin content. Presence of chitin specifically in the serosal cuticle as well as aspects of endochorion external surface were also investigated. Three features could be related to differences on ERD levels: chitin content, directly related to ERD, the increase in the egg volume during embryogenesis and the eggshell surface density, which were both inversely related to ERD. Although data suggest that the amount of chitin in the eggshell is relevant for egg impermeability, the participation of other yet unidentified eggshell attributes must be considered in order to account for the differences in the ERD levels observed among Ae. aegypti, An. aquasalis and Cx. quinquefasciatus.  相似文献   

8.
9.
10.
Summary The thick rigid chorion of the egg of Triatoma secreted by the follicle cells shows two porous layers: an aerial layer in the exochorion, an alveolar one in the endochorion. The anterior part of the eggshell is closed up by an operculum which is heaved up by the hatching larva. The operculum has no alveolar layer. The air enters through the numerous holes of the shell surface into the aerial layer and through the micropyles into the alveolar layer. The egg has no respiratory plastron.The follicle cells produce also a vitelline envelope whose structure shows a rapid condensation at fertilization time. During its development the embryo secretes two layers: serosal and embryonic cuticle.At high humidities, at low temperatures the egg is able to increase its weight during the early stages of embryogenesis, and this increase stops when the serosal cuticle is secreted. In a dry atmosphere the egg loses water but can develop if the temperature is higher than 20°C.The little permeability of the egg is related to the structure of its envelopes. The chorion and the vitelline envelope prevent the water from getting out of the egg. The serosal cuticle seems to be opposed to the penetration of the water into the egg. The role of the embryonic cuticle is probably limited in the transit of water.
Nous remercions Messieurs les Professeurs Maillet et Folliot qui ont mis le microscope R.C.A. à notre disposition, Madame Allo et Mademoiselle Le Gac, technicienne au microscope à balayage J.S.M. S1, pour leur collaboration technique.  相似文献   

11.
Formation of the egg shell (chorion) inDrosophila and Scaptomyza (Diptera : Drosophilidae) is a complex developmental process involving coordinated synthesis and secretion of multiple proteins by the monolayer of follicle cells surrounding the egg. Using scanning electron microscopy, the ultrastructure of the chorion in 37 endemic Hawaiian drosophilids, representing the genera Drosophila and Scaptomyza, were analyzed and compared with 7 representative species of continental Drosophila. The detailed structure of the chorion was described for 8 chorionic regions: the respiratory filaments, follicle imprints, operculum, micropyle, dorsal ridge, ventral rim, posterior pole, and the chorion cross-section. The morphology of each region is similar among related species, but strikingly different among groups. The main functions of the chorion are to protect the developing embryo from the vicissitudes of the environment and to provide channels for gas exchange during embryogenesis. Adaptation to the diverse ovipositional substrates used by Drosophila in general, and the Hawaiian species in particular, has resulted in extraordinary diversity in the various chorionic structures. The respiratory filaments differ in number and have evolved to different lengths and degrees of porosity. Furthermore, other regions also involved in respiratory exchange (the operculum, follicle imprints, the pole region, and the dorsal ridge) have diverged in parallel to the ecological divergence. The thickness and complexity of the outer endochorion are dramatically different in various groups, providing varying degrees of mechanical strength to the eggshell, which promotes embryonic survival in the diverse microenvironments. These varied chorionic structures have been found to provide useful morphological characters for phylogenetic analyses of the drosophilids.  相似文献   

12.
Plasmodium vivax in southern Mexico exhibits different infectivities to 2 local mosquito vectors, Anopheles pseudopunctipennis and Anopheles albimanus. Previous work has tied these differences in mosquito infectivity to variation in the central repeat motif of the malaria parasite's circumsporozoite (csp) gene, but subsequent studies have questioned this view. Here we present evidence that P. vivax in southern Mexico comprised 3 genetic populations whose distributions largely mirror those of the 2 mosquito vectors. Additionally, laboratory colony feeding experiments indicate that parasite populations are most compatible with sympatric mosquito species. Our results suggest that reciprocal selection between malaria parasites and mosquito vectors has led to local adaptation of the parasite. Adaptation to local vectors may play an important role in generating population structure in Plasmodium. A better understanding of coevolutionary dynamics between sympatric mosquitoes and parasites will facilitate the identification of molecular mechanisms relevant to disease transmission in nature and provide crucial information for malaria control.  相似文献   

13.
The eggshell structure of four sandfly species: Phlebotomus perniciosus Newstead, P.perfiliewi Parrot, P.papatasi Scopoli and P.duboscqi Neveu-Lemaire, was examined by scanning and transmission electron microscopy (SEM and TEM). At the TEM level, the eggshell appears to have a homogeneous vitelline envelope and a thick chorion. At SEM level, the eggshell of all species is characterized by the outer chorion forming a series of fifteen to twenty longitudinal sinuous ridges, cross-linked in places to form a pattern of polygons, each line of the chorion consisting of columns arranged in a palisade. The aeropyle region of the egg is described for the first time in phlebotomine sandflies. Specific characters of the eggshell topography are described for distinguishing between these and other species of Phlebotomus.  相似文献   

14.
Antarctic teleosts perform their physiological activities at constant subzero temperatures. We previously described the gross morphology and the biochemical composition of the Antarctic teleost Chionodraco hamatus eggshell. In this work, we investigate thoroughly the chorion ultrastructure, showing a previously unknown external layer, and describe the preparation and use of monoclonal antibodies against eggshell proteins of this species. The main chorion polypeptide at 46 kDa was purified by preparative electrophoresis and used as immunogen in mice. After spleen-myeloma fusion, hybdridomas were screened by immunoblotting against eggshell homogenates, and two of the most interesting hybridomas were cloned by limiting dilution, and established in culture: CHE-1 (IgG) and CHE-5 (IgM). They stained intensely the eggshell in indirect immunofluorescence and in immunoelectron microscopy. The CHE-5 localisation on thin sections by immunogold staining was peculiar for the various vitelline envelope layers. By western blot analysis of eggshell, CHE-1 recognised two polypeptides at 46 kDa and 92 kDa, whereas CHE-5 recognised a single polypeptide at 92 kDa.  相似文献   

15.
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.  相似文献   

16.
The mosquito Anopheles stephensi is an important malaria vector in India, Pakistan, Iran and Afghanistan. Differences in egg morphology and chromosomal characters have been described between urban and rural forms of this mosquito but the population genetic structure remains unclear. In India this species is mainly urban, rural populations are largely zoophilic and not thought to transmit malaria. In eastern Afghanistan and the Punjab and Northwest Frontier Province, Pakistan, it is the major malaria vector. We have developed primers for 16 microsatellite loci to assist in defining the population structure and epidemiological importance of this mosquito.  相似文献   

17.
BACKGROUND: One method of collecting mosquitoes is to use human beings as bait. This is called human landing collection and is a reference method for evaluating mosquito density per person. The Mbita trap, described by Mathenge et al in the literature, consists of an entry-no return device whereby humans are used as bait but cannot be bitten. We compared the Mbita trap and human landing collection in field conditions to estimate mosquito density and malaria transmission. METHODS: Our study was carried out in the highlands of Madagascar in three traditional villages, for 28 nights distributed over six months, with a final comparison between 448 men-nights for human landing and 84 men-nights for Mbita trap, resulting in 6,881 and 85 collected mosquitoes, respectively. RESULTS: The number of mosquitoes collected was 15.4 per human-night and 1.0 per trap-night, i.e. an efficiency of 0.066 for Mbita trap vs. human landing. The number of anophelines was 10.30 per human-night and 0.55 per trap-night, i.e. an efficiency of 0.053. This efficiency was 0.10 for indoor Anopheles funestus, 0.24 for outdoor An. funestus, and 0.03 for Anopheles arabiensis. Large and unexplained variations in efficiency were observed between villages and months. CONCLUSION: In the highlands of Madagascar with its unique, highly zoophilic malaria vectors, Mbita trap collection was poor and unreliable compared to human landing collections, which remains the reference method for evaluating mosquito density and malaria transmission. This conclusion, however, should not be extrapolated directly to other areas such as tropical Africa, where malaria vectors are consistently endophilic.  相似文献   

18.
Anopheles mosquitoes are major vectors of human malaria in Africa. Large variation exists in the ability of mosquitoes to serve as vectors and to transmit malaria parasites, but the molecular mechanisms that determine vectorial capacity remain poorly understood. We report that the hemocyte-specific complement-like protein TEP1 from the mosquito Anopheles gambiae binds to and mediates killing of midgut stages of the rodent malaria parasite Plasmodium berghei. The dsRNA knockdown of TEP1 in adults completely abolishes melanotic refractoriness in a genetically selected refractory strain. Moreover, in susceptible mosquitoes this knockdown increases the number of developing parasites. Our results suggest that the TEP1-dependent parasite killing is followed by a TEP1-independent clearance of dead parasites by lysis and/or melanization. Further elucidation of the molecular mechanisms of TEP1-mediated parasite killing will be of great importance for our understanding of the principles of vectorial capacity in insects.  相似文献   

19.
Chorion is the major component of silkmoth eggshell. More than 95% of its dry mass consists of proteins that have remarkable mechanical and chemical properties protecting the oocyte and the developing embryo from a wide range of environmental hazards. We present data from electron microscopy (negative staining and shadowing), X-ray diffraction and modeling studies of synthetic peptide analogues of silkmoth chorion proteins indicating that chorion is a natural amyloid. The folding and self-assembly models of chorion peptides strongly support the beta-sheet helix model of amyloid fibrils proposed recently by Blake and Serpell [Structure 4 (1996) 989-998].  相似文献   

20.
The eggshells of 3 moths, Cydia pomonella (Tortricidae), Heliothis virescens, and Spodoptera littoralis (Noctuidae) were investigated by scanning (SEM) and transmission (TEM) electron microscopy. The surface of the noctuid eggs shows structural elements (micropylar rosette, ribs, cross-ribs, and aeropyles) and regional differentiation, all typical of Lepidoptera. The egg of C. pomonella shows a different regional morphology due to its watch-glass shape and its position, lying on the flank. The micropylar structures are on the lower egg face in contact with the substrate. For S. littoralis, the surface structure (sculpturing) of the egg is not species-specific, being indistinguishable from that of S. frugiperda (Salkeld, 1984).In all 3 moths, the eggshell fine structure is basically identical, as revealed by TEM. Both the vitelline envelope and the chorion consist of several distinct layers. The vitelline envelope, bi-layered and several μm thick, undergoes a marked structural change when embryogenesis begins. At the same time, Golgi vesicles bearing dense particles, appear in the periplasm of the egg cell in fertilized eggs of H. virescens and S. littoralis. The chorion of all 3 species consists of a basal layer (C-1), a cavity layer (C-2) supported by trabecles and opening to the exterior via aeropylar canals, and a lamellar layer (C-3), which probably consists of helicoidally arranged stacks of fibrils. In H. virescens and S. littoralis, an additional epicuticle-like layer (C-4) is present. Available data from the literature are summarized and a basic scheme of the radial eggshell fine structure of ditrysian Lepidoptera is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号