首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Partial clones for two members of Leptinotarsa decemlineata inducible 70kDa heat shock protein family (LdHSP70A and B) were developed using RT-PCR. LdHSP70A, but not LdHSP70B, was upregulated during adult diapause. The ability of L. decemlineata to express these two genes in response to subzero temperatures depended on the thermal history of the beetles. Chilling diapausing beetles increased the rate at which both LdHSP70A and B were expressed following a cold shock at -10 degrees C. Following cold shock at -10 degrees C, LdHSP70B expression peaked after 3h at 15 degrees C for chilled diapausing individuals, decreasing to near background levels by the sixth hour. In contrast, nonchilled diapausing beetles expressed their highest level of LdHSP70B only after 6h at 15 degrees C. Diapausing beetles exposed to a thermoperiod with a mean temperature of either 0 or -2.5 degrees C expressed significantly higher levels of both LdHSP70A and B than beetles exposed to constant 0 or -2.5 degrees C. These results demonstrate that the expression of LdHSP70A and B is differentially regulated in response to diapause and environmental conditioning.  相似文献   

3.
Accumulation of Hsp70 mRNA was investigated with relation to heat and cold tolerance in adult males of three Drosophila species. The subtropical lowland species (D. watanabei) and the cool-temperate species (D. triauraria) were more tolerant to heat than the subtropical highland species (D. trapezifrons), and the cool-temperate species were much more tolerant to cold than the two subtropical species. Thus, heat and cold tolerance was related to temperature conditions in the habitats. The threshold temperatures for the induction of Hsp70 mRNA at heat and cold were higher in D. watanabei than in D. trapezifrons or D. triauraria, but were not different between the latter two species in spite of the difference in their heat and cold tolerance. In D. trapezifrons, exposures to 0 degrees C for 12h and 6 degrees C for 24h killed about 40% of individuals, but the former treatment induced Hsp70 mRNA while the latter one did not. Thus, the relation between the heat- and cold-shock responses and temperature tolerance was not rigid in the species studied. In D. triauraria, the threshold temperatures for the induction of Hsp70 mRNA at heat and cold were lower when reared at a lower temperature.  相似文献   

4.
Three geographical strains of the blow fly, Calliphora vicina, were tested for cold tolerance at 0 degrees, -4 degrees and -8 degrees C. Survival to eclosion after 1 to 18 days of cold exposure was greater for diapause-destined larvae than for nondiapause-destined larvae of the two northern strains (Nallikari, Finland 65 degrees N and Edinburgh, Scotland 55 degrees N) but not for the southernmost strain (Barga, Italy 44 degrees N) where no clear differences were apparent. Diapause-destined larvae of the Edinburgh strain were more cold tolerant than those from Nallikari, at both -4 degrees and -8 degrees C, a difference possibly attributable to the long-lasting snow cover in the more northern locality, which might insulate the overwintering soil microclimate. At 0 degrees C, however, Nallikari larvae were more cold tolerant than Edinburgh or Barga. This was also the case for nondiapause-destined larvae, indicating that cold tolerance may occur, in part, independently of the diapause programme. In all three strains diapausing larvae were more cold tolerant than same-age (nondiapausing) pupae. For Nallikari, but not Barga, wandering larvae from short-day exposed flies, therefore initially programmed for diapause, but diverted from the diapause pathway by larval breeding at 19 degrees C, were significantly more cold tolerant than nondiapause larvae from long-day parents, indicating some maternal regulation of larval cold tolerance. There was, however, no evidence for an additional cold hardiness in larvae acclimatised to cold by a gradual reduction of temperature.  相似文献   

5.
Abstract Developing larvae of the apple maggot Rhagoletis pomonella are frequently exposed to summertime apple temperatures that exceed 40 °C and, during their overwintering diapause, pupae are exposed to sub‐zero soil temperatures for prolonged periods. To investigate the potential involvement of heat shock proteins (Hsps) in response to these environmental extremes, the genes encoding Hsp70 and Hsp90 in R. pomonella are cloned and expression monitored during larval feeding within the apple and during overwintering pupal diapause. Larvae reared in the laboratory at constant temperatures of 25, 28 or 35 °C express Hsp90 but very little Hsp70. Larvae do not survive rearing at 40 °C. The temperature cycles to which larvae were exposed inside apples in the field, ranging 16–46.9 °C over a 24‐h period, elicit strong Hsp70 and Hsp90 expression, which begins at mid‐day and reaches a peak in late afternoon, coinciding with peak air and apple temperatures. Heat shock proteins are also expressed strongly by pupae during their overwintering diapause. Hsp70 is not expressed in nondiapausing pupae but is highly expressed throughout diapause. Hsp90 is constitutively expressed in both diapausing and nondiapausing pupae. Rhagoletis pomonella thus strongly expresses its Hsps during pupal diapause, presumably as a protection against low temperature injury, and during larval development to cope with natural temperature cycles prevailing in late summer.  相似文献   

6.
Two actin genes cloned from Culex pipiens L. are upregulated during adult diapause. Though actins 1 and 2 were expressed throughout diapause, both genes were most highly expressed early in diapause. These changes in gene expression were accompanied by a conspicuous redistribution of polymerized actin that was most pronounced in the midguts of diapausing mosquitoes that were exposed to low temperature. In nondiapausing mosquitoes reared at 25 degrees C and in diapausing mosquitoes reared at 18 degrees C, polymerized actin was clustered at high concentrations at the intersections of the muscle fibers that form the midgut musculature. When adults 7-10 days post-eclosion were exposed to low temperature (-5 degrees C for 12 h), the polymerized actin was evenly distributed along the muscle fibers in both nondiapausing and diapausing mosquitoes. Exposure of older adults (1 month post-eclosion) to low temperature (-5 degrees C for 12 h) elicited an even greater distribution of polymerized actin, an effect that was especially pronounced in diapausing mosquitoes. These changes in gene expression and actin distribution suggest a role for actins in enhancing survival of diapausing adults during the low temperatures of winter by fortification of the cytoskeleton.  相似文献   

7.
Diapause and cold tolerance are essential for temperate insects to pass the winter, with the mechanisms controlling these two traits varying considerably among insects. In the present study, diapause and cold tolerance are compared among three Leptopilina species: Leptopilina japonica Novkovi? & Kimura, Leptopilina victoriae Nordlander and Leptopilina ryukyuensis Novkovi? & Kimura, all larval parasitoids of frugivorous drosophilid flies, with the aim of understanding their climatic adaptations. The first species is divided into the temperate (Leptopilina japonica japonica) and subtropical subspecies (Leptopilina japonica formosana), and the latter two species are distributed in the tropical and subtropical regions. The temperate subspecies of L. japonica enters prepupal diapause at low temperatures (15 or 18 °C), irrespective of photoperiod, and some individuals enter diapause when exposed to 0 °C for 1 or 2 day(s) or when placed at low humidity. Leptopilina victoriae also shows signs of diapause initiation at 15 °C, although L. ryukyuensis and L. j. formosana from the subtropical regions do not. Preimaginal viability at low temperature (13, 14 or 15 °C) is usually lower in L. victoriae from the tropical regions compared with L. japonica or L. ryukyuensis from the temperate or subtropical regions. Diapausing prepupae of the temperate subspecies appear to be cold tolerant. However, the cold tolerance of nondiapausing prepupae, pupae and adult females varies little among the tropical, subtropical and temperate species or subspecies, and adult males of the temperate subspecies of L. japonica are less cold tolerant than those of the tropical or subtropical species or subspecies. Cold tolerance may be unnecessary, except for diapausing individuals of the temperate species, because nondiapausing individuals appear in warmer seasons.  相似文献   

8.
Supercooling points (SCPs) and low temperature survival were determined for diapausing and nondiapausing larvae of the ectoparasitoid Nasonia vitripennis. Neither nondiapausing nor diapausing larvae could survive tissue freezing. The SCP profiles were nearly identical for nondiapause-destined (-27 degrees C) and diapausing larvae (-25 degrees C), but these values were not indicative of the lower limits of tolerance in either type of larvae: larvae were killed by chilling at temperatures well above the SCP. Diapausing larvae could withstand low temperature exposures 3-8 times longer than their nondiapausing counterparts. Low temperature survival was enhanced in diapausing and nondiapausing larvae by their encasement within the puparium of the host flesh fly, SARCOPHAGA CRASSIPALPIS: the LT(50)s determined for nondiapausing and diapausing larvae enclosed by fly puparia were 2-3 times higher than values calculated for larvae removed from the puparia. Additional low temperature protection was gained through acquisition of host cryoprotectants during larval feeding: nondiapausing parasitoid larvae that fed on diapausing flesh fly pupae with high levels of glycerol were able to survive exposure to a subzero temperature 4-9 times longer than wasps reared on nondiapausing fly pupae that contained lower quantities of glycerol. Alanine may also contribute to the cold hardiness of N. vitripennis, as evidenced by the fact that larvae feeding on diapausing fly pupae both contained higher concentrations of alanine and exhibited greater cold hardiness. The results thus demonstrate that several critical features of cold hardiness in the wasp are derived from biochemical and physical attributes of the host.  相似文献   

9.
Abstract A proportion of Helicoverpa armigera collected from fields in Okayama Prefecture (Western Japan; 34.6°N, 134.1°E) does not enter diapause when reared under a short days at 20 °C during the larval stages. However, diapause in such photo‐insensitive individuals can be induced when they are reared at moderately low temperatures, such as 15 °C, regardless of photoperiod. To determine whether such photo‐insensitive individuals can survive overwintering in fields, the present study compares the cold hardiness and sugar content between nondiapausing and diapausing pupae of photo‐insensitive individuals selected over several generations at 20 °C under a short day photoperiod (LD 10 : 14 h). Diapausing and nondiapausing pupae are obtained under the short days by rearing at 15 and 20 °C, respectively, during larval and pupal stages. These pupae are stepwise acclimated at a reduction of 5 °C every 5 days to 0 °C. Maximum survival periods of nondiapausing and diapausing pupae at 0 °C are approximately 30 and 90 days, respectively. Trehalose content in diapausing pupae increases, reaches a maximum level (1.95 mg 100 mg?1 in males and 2.1 mg 100 mg?1 in females) 28 days after exposure to 0 °C and then decreases. On the other hand, glucose content in diapausing pupae increases (maximum level: 0.32 mg 100 mg?1 in males and 0.21 mg 100 mg?1 in females) with decreasing trehalose content 42 days after exposure to 0°C. The decrease in trehalose content and the increase in glucose content may be linked to termination of diapause in H. armigera. These results suggest that, in Japan, the photo‐insensitive individuals can only survive in the mild winters of southern regions, and not in the severe winters of northern regions.  相似文献   

10.
Kost;l V 《Cryobiology》1993,30(5):524-531
Supercooling point (SCP) values and cold-hardiness were measured in individual ontogenetic stages of Delia radicum (Diptera:Anthomyiidae) in various physiological states (winter diapause, summer quiescence, and normal development). Winter diapause-destined mature third-instar larvae had a lower SCP (-9.9 degrees C) than their nondiapause counterparts (-5.2 degrees C), and more of them survived exposure to -10 degrees C for 5 h to pupariation and adult emergence. Values of SCPs were equal in both diapause and nondiapause states of prepupal and pupal stages. The lowest SCP (ca. -20 degrees C) was found in the stage of phanerocephalic pupa (PCP) regardless of the physiological state. The cold-hardiness of PCP corresponded with a low SCP value only in diapausing pupae stored for 80 days at 3 degrees C and in pupae which had terminated their diapause and whose further development was inhibited by storage at low temperatures (3 degrees C). Such pupae survived exposure to temperatures close to their SCP (14 days at -17 degrees C). However, this high cold-hardiness was only acquired after some time and/or exposure to 3 degrees C, as the PCP at the beginning of diapause showed significantly impaired cold-hardiness despite the fact that their SCP was low. The cold-hardiness of nondiapausing PCP did not correspond at all to that of low SCP, as no pupa survived the exposure to -17 degrees C for 1 day; survival rates at temperatures of -13.5 and -10 degrees C were also remarkably lower than those in diapausing pupae. Cold-hardiness in D. radicum was closely connected with the diapause syndrome but the changes in SCP value corresponded rather with the ontogeny of this insect. Copyright 1993, 1999 Academic Press.  相似文献   

11.
Heat treatments have been suggested as alternatives to chemical fumigants for control of postharvest insects in dried fruits and nuts. Conventional forced hot air treatments heat product too slowly to be practical, but radio frequency treatments are capable of more rapid product heating. While developing radio frequency heat treatments for dried fruits and nuts, the heat tolerance of nondiapausing and diapausing fifth-instar larvae of the Indianmeal moth, Plodia interpunctella (Hübner), was determined using a heating block system developed by Washington State University. Both a 0.5th order kinetic model and a classical empirical model were used to estimate lethal exposure times for temperatures of 44-52 degrees C for nondiapausing fifth-instar larvae. We obtained 95% mortality at exposures suitable for practical radio frequency treatments (< or = 5 min) with temperatures of 50 and 52 degrees C. Diapausing larvae were significantly more tolerant than nondiapausing larvae at the lowest treatment temperature and shortest exposure, but differences were not significant at more extreme temperature-time combinations. Previous studies showed that fifth-instar larvae of the navel orangeworm, Amyelois transitella (Walker), were more heat tolerant than either diapausing or nondiapausing Indianmeal moth larvae. Consequently, efficacious treatments for navel orangeworm would also control Indianmeal moth.  相似文献   

12.
Abstract The age‐dependent cold hardiness profile of Ostrinia nubilalis is compared between nondiapausing and diapausing larvae, as well as with field‐collected larvae. The results suggest that both cold tolerance and accumulation of cryoprotectants depends upon the age of O. nubilalis larva. Late fifth‐instar nondiapausing larvae are more cold tolerant than younger fifth‐instars because they show enhanced ability to withstand sub‐zero temperatures. No appreciable difference is observed between the experimental groups of diapausing larvae as far as their supercooling ability and tolerance at sub‐zero temperatures above the supercooling point. In general, both field‐collected and diapausing larvae are more cold tolerant than nondiapausing larvae, indicating a direct link between diapause and cold hardiness. The age of diapausing larvae affects the ability to accumulate glycerol. Glycerol levels of 45‐day‐old diapausing larvae are significantly higher (2.7‐fold) compared with 90‐day‐old diapausing larvae. Moreover, diapausing larvae display a five‐ to 13‐fold higher glycerol content compared with nondiapausing larvae. There is a trend for an age‐dependent cold hardiness profile in O. nubilalis and further tests that could demonstrate a causal relationship between age and cold tolerance are needed.  相似文献   

13.
In an effort to understand whether heat shock protein 70 (Hsp70) participates in the environmental 5 °C signal reception/transduction toward breaking embryonic diapause of the silkworm Bombyx mori, we isolated a cDNA for Hsp70a and examined the expression of Hsp70a mRNA in B. mori diapause and nondiapause eggs by quantitative real-time PCR. Hsp70a mRNA gradually increased in diapause eggs continuously kept at 25 °C after oviposition to maintain diapause. When diapause eggs were exposed to the diapause-terminating condition of 5 °C beginning at 2 days post-oviposition, Hsp70a mRNA increased beginning at 5 days post-cold treatment. Even in nondiapause eggs, Hsp70a mRNA increased slightly with exposure to 5 °C. These results suggest that Hsp70a is involved in reception/transduction of the diapause-terminating (5 °C) signal via gene activation. The expression patterns of Hsp70a mRNA are discussed in relation to those of the cold-response gene Samui.  相似文献   

14.
Individuals of widely spread species are expected to show local adaption in temperature tolerance as they encounter a range of thermal conditions. We tracked thermal adaptations of the Colorado potato beetle (Leptinotarsa decemlineata) that invaded Europe within the last 100 years. It has occupied various conditions although, like the majority of invasive species, it lost a measurable amount of neutral genetic variation due to bottleneck effect when it invaded Europe. We exposed diapausing beetles originated from three different latitudes (54°N, 59°N, 60°N) to cold shock (-5°C, 1.5 hrs) in order to test if beetles from the northern populations express differential levels of cold-induced and constitutive Hsp70 compared to the beetles from milder temperature regime. The level of cold-induced Hsp70 was lowest in the northernmost beetle populations while the level of constitutive Hsp70 did not differ with the population. Moreover, the southernmost beetles were more plastic in their response to cold shock than the northernmost beetles. These results suggest that physiological adaptation, like the synthesis of Hsp70, can evolve very quickly.  相似文献   

15.
张国军  王稳  南江磊  成卫宁  朱克岩 《昆虫学报》2021,64(12):1398-1406
[目的]本研究旨在明确破茧率和破茧所需时间作为典型的专性幼虫期滞育昆虫麦红吸浆虫Sitodiplosis mosellana滞育解除指标的可行性,探讨蜕皮激素受体基因EcR和热激蛋白基因Hsp70和Hsp90在低温解除滞育中的作用.[方法]9月上旬采自田间的麦红吸浆虫滞育幼虫在低温(4℃)和自然变温处理不同时间(0~9...  相似文献   

16.
17.
ABSTRACT. Supercooling points (SCP) and low temperature tolerance were determined for larval, pupal and adult stages of Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae). No stage tolerates tissue-freezing. Ontogenetic changes in SCP profiles are similar for comparable developmental stages of diapause and non-diapause groups. Feeding larvae have SCPs near -7°C which decrease to -11°C in the postfeeding wandering phase of the final larval instar. The lowest SCPs are recorded for pupae at -23°C. The capacity to survive at -17°C varies with age of the diapausing pupae: 10-day-old pupae are less cold tolerant than pupae that have been in diapause for 45–80 days. Although the SCP of non-diapausing pupae is as low as in diapausing pupae, non-diapausing pupae are extremely sensitive to low temperature exposure and do not survive to adult eclosion when exposed to -17°C for as little as 20 min. The use of hexane to break pupal diapause has no effect on SCPs or low temperature tolerance.  相似文献   

18.
Abstract.  The influence of long- and short-day cycles on ovipostion and egg hatch of the corn stalk borer, Sesamia nonagrioides were investigated at a range of temperatures. Oviposition was suppressed when insects are exposed to long days through their immature stages and then transferred to short days after mating. Moreover, mean oviposition and egg hatch increased from 15 to 27.5 °C, whereas oviposition declined significantly at 30 °C at both photoperiodic regimes. Females derived from a diapausing population exposed to long days after mating showed a significantly higher egg production compared to females derived from a nondiapausing population. However, when females from a diapausing population were left to oviposit under short days, fewer eggs were produced compared to those exposed to long days after mating. Thus, photoperiod appears to affect reproductive traits of this species in a quantitative manner. Larval diapause duration is positively correlated with fecundity of the adults. There is also a positive correlation between pupal weight of individuals derived from a diapausing population and the postdiapause fecundity of adults.  相似文献   

19.
Cold hardiness of Helicoverpa zea (Lepidoptera: Noctuidae) pupae   总被引:1,自引:0,他引:1  
An insect's cold hardiness affects its potential to overwinter and outbreak in different geographic regions. In this study, we characterized the response of Helicoverpa zea (Boddie) pupae to low temperatures by using controlled laboratory measurements of supercooling point (SCP), lower lethal temperature (LT(50)), and lower lethal time (LLTime). The impact of diapause, acclimation, and sex on the cold hardiness of the pupae also were evaluated. Sex did not significantly affect the SCP, LT(50), or LLTime. However, the mean SCP of diapausing pupae (-19.3°C) was significantly lower than nondiapausing pupae (-16.4°C). Acclimation of nondiapausing pupae to constant temperatures from 10 to 20°C before supercooling also produced a significantly lower SCP than nondiapausing pupae held at 25°C. The LT(50)s of nondiapausing and diapausing were not significantly different, but confirmed that H. zea pupae are chill-intolerant because these lethal temperatures are warmer than the corresponding mean SCPs. Diapausing pupae survived longer than nondiapausing pupae at the same, constant, cold temperatures, a finding consistent with the SCP results. Both of these results suggest enhanced cold hardiness in diapausing pupae. When laboratory results were compared with field temperatures and observed distributions of H. zea in the contiguous United States, the laboratory results corroborated what is currently perceived to be the northern overwintering limit of H. zea; approximately the 40(th) parallel. Moreover, our research showed that areas north of this limit are lethal to overwintering pupae not because of low temperature extremes, but rather the length of time spent at near-zero temperatures.  相似文献   

20.
Concerns over insect resistance, regulatory action, and the needs of organic processors have generated renewed interest in developing nonchemical alternative postharvest treatments to fumigants used on dried fruits and nuts. Low-temperature storage has been identified as one alternative for the Indianmeal moth, Plodia interpunctella (Hiibner), and navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), common postharvest pests in California dried fruits and nuts. The response of eggs, nondiapausing larvae, and pupae of both species to exposure to low temperatures (0, 5, and 10 degrees C) was evaluated. Eggs of both species were the least tolerant of low temperatures. At 0 and 5 degrees C, pupae were most tolerant, but at 10 degrees C, nondiapausing larvae of both species were most tolerant, with lethal time (LT)95 values of 127 and 100 d for Indianmeal moth and navel orangeworm, respectively. The response of diapausing Indianmeal moth larvae to subfreezing temperatures also was evaluated. Diapausing larvae were very cold tolerant at -10 degrees C, with LT95 values of 20 and 17 d for long-term laboratory and recently isolated cultures, respectively. Diapausing larvae were far less tolerant at lower temperatures. At -15 degrees C, LT95 values for both cultures were <23 h, and at -20 degrees C, LT95 values were <7 h. Refrigeration temperatures of 0-5 degrees C should be useful in disinfesting product contaminated with nondiapausing insects, with storage times of 3 wk needed for adequate control. Relatively brief storage in commercial freezers, provided that the temperature throughout the product was below -15 degrees C for at least 48 h, also shows potential as a disinfestation treatment, and it is necessary when diapausing Indianmeal moth larvae are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号