首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Systemic and pulmonary vascular reactivity to graded doses of angiotensin I (ANG I), angiotensin II (ANG II), and, as a control, phenylephrine were examined in 14- or 28-day hypoxia-exposed and air control rats. Hypoxic rats exhibited pulmonary hypertension that was reversible on return to room air, but systemic arterial pressure was not altered by hypoxia. Systemic pressor responses to ANG I and ANG II were significantly less in the hypoxic rats than in the control rats at 14 and 28 days but returned to control levels in hypoxic animals that were then returned to room air, demonstrating reversibility of the hypoxia-induced changes in vascular reactivity. Pulmonary pressor responses to ANG I were significantly less at 14 days, whereas responses to ANG II were significantly greater at 28 days, in hypoxic rats than in controls. There were no significant differences in systemic and pulmonary pressor responses to phenylephrine between the hypoxic and air control animals. The altered systemic and pulmonary pressor responsiveness to ANG I and ANG II in hypoxic rats is probably related to mechanisms specific to the renin-angiotensin system, such as inhibition of intrapulmonary angiotensin-converting enzyme activity and down regulation of ANG II receptors in the systemic circulation. Further study is needed to elucidate these mechanisms.  相似文献   

3.
Angiotensin II (ANG II) causes a systemic pressor effect when injected into the cerebral ventricles. In the rat fourth ventricle, the effective doses for the ANG II pressor effect are over 100 times larger than in the systemic circulation. Considering the discrepancy of doses, the possibility that ANG II may reach the systemic circulation and promote pressor effects, following injection into the fourth ventricle, was investigated. The effects on blood pressure of different vasoactive peptides that produce pressor responses when injected into the central nervous system were compared. Dose-response curves were obtained for intravenous or fourth cerebroventricular injections of ANG II, lysyl-vasopressin (LVP), bradykinin (BK), or endothelin-1 (ET-1). The ED50 ratios for intracerebroventricular/intraveneous injections were 110 for ANG II, 109 for LVP, 0.01 for BK, and approximately 0.4 for ET-1. In cross-circulation preparations, pressor responses occurred in the donor rat following injection into the fourth cerebral ventricle of the recipient animal, showing that effective doses of ANG II, administered to the fourth cerebral, reach the systemic circulation. The same results were obtained for the microinjection of 4 nmol of LVP into the fourth cerebral ventricle of recipient animals. High-performance reverse-phase liquid chromatography analyses of arterial blood showed that approximately 1% of the [125I]ANG II injected into the fourth cerebral ventricle may be recovered from the systemic circulation a few seconds after the microinjection. The systemic administration of the ANG II receptor antagonist losartan blocked the response to ANG II injected into the fourth ventricle whereas antagonist administration in the same ventricle did not. Angiotensin injections into the lateral ventricle produced pressor responses that were reduced by antagonist administration to the same ventricle but not by systemic administration of the antagonist. The data suggest that the pressor effect resulting from ANG II or LVP injections into the fourth cerebral ventricle may be due to the action of this peptide in the systemic circulation. On the other hand, the pressor effect due to ANG II microinjection into the lateral ventricle apparently results from the direct stimulation of central periventricular structures.  相似文献   

4.
We previously found that ANG II infusion into rats causes iron deposition in the kidney and heart, which may have a role in the regulation of profibrotic gene expression and tissue fibrosis. In the present study, we have investigated whether ANG II can also induce iron accumulation in the liver. Prussian blue staining detected frequent iron deposition in the interstitium of the liver of rats treated with pressor dose ANG II for 7 days, whereas iron deposition was absent in the livers of control rats. Immunohistochemical and histological analyses showed that some iron-positive nonparenchymal cells were positive for ferritin and heme oxygenase-1 (HO-1) protein and TGF-beta1 mRNA and were judged to be monocytes/macrophages. It was shown that ANG II infusion caused about a fourfold increase in ferritin and HO-1 protein expression by Western blot analysis and about a twofold increase in TGF-beta1 mRNA expression by Northern blot analysis, which were both suppressed by treating ANG II-infused rats with losartan and deferoxamine. In addition, mild interstitial fibrosis was observed in the liver of rats that had been treated with pressor dose ANG II for 7 days or with nonpressor dose ANG II for 30 days, the latter of which also caused loss of hepatocytes and intrahepatic hemorrhage in the liver. Taken together, our data suggest that ANG II infusion induces aberrant iron homeostasis in the liver, which may have a role in the ANG II-induced upregulation of profibrotic gene expression in the liver.  相似文献   

5.
We studied the effects of synthetic atrial natriuretic factor (ANF, 28-amino acid peptide) on base-line perfusion pressures and pressor responses to hypoxia and angiotensin II (ANG II) in isolated rat lungs and on the following hemodynamic and renal parameters in awake, chronically instrumented rats: cardiac output (CO), systemic (Rsa) and pulmonary (Rpa) vascular resistances, ANG II- and hypoxia (10.5% O2)-induced changes in Rsa and Rpa, and urine output. Intra-arterial ANF injections lowered base-line perfusion pressures and blunted hypoxia- and ANG II-induced pressor responses in the isolated lungs. Bolus intravenous injection of ANF (10 micrograms/kg) into intact rats decreased CO and arterial blood pressures of both systemic and pulmonary circulations and increased Rsa. ANG II (0.4 micrograms/kg) increased both Rsa and Rpa, and hypoxia increased Rpa alone in the intact rats. ANF (10 micrograms/kg) inhibited both ANG II- and hypoxia-induced increases in Rpa but did not significantly affect the ANG II-induced increase in Rsa. The antagonistic effect of ANF on pulmonary vasoconstriction was reversible and dose-dependent. The threshold doses of ANF required to inhibit pulmonary vasoconstriction were in the same range as those required to elicit diuresis and natriuresis. The data demonstrate that ANF has a preferential relaxant effect on pulmonary vessels constricted by hypoxia or ANG II. Both the renal and the pulmonary vascular effects of ANF may represent fundamental physiological actions of ANF. These actions may serve as a negative feedback control system that protects the right ventricle from excessive mechanical loads.  相似文献   

6.
7.
Pressor responses to increases in cerebrospinal fluid (CSF) sodium in Wistar rats and to high salt intake in spontaneously hypertensive rats (SHR) involve both brain ouabainlike activity ("ouabain") and the brain renin-angiotensin system (RAS). Because some of the effects of "ouabain" are mediated by the median preoptic nucleus (MnPO) and this nucleus contains all elements of the RAS, the present study assessed possible interactions of "ouabain" and ANG II in this nucleus. In conscious Wistar rats, injection of ANG II into the MnPO significantly increased mean arterial pressure (MAP) and heart rate (HR). This response was not affected by pretreatment with a subpressor dose of ouabain. MAP and HR increases by ouabain in the MnPO were significantly attenuated by MnPO pretreatment with losartan. In Wistar rats, losartan in the MnPO also abolished pressor and HR responses to intracerebroventricular 0.3 M NaCl and attenuated MAP and HR responses to intracerebroventricular ouabain. Five weeks of a high-salt diet in SHRs resulted in exacerbation of hypertension and increased responses to air-jet stress and intracerebroventricular guanabenz. Losartan injected into the MnPO reversed the salt-sensitive component of the hypertension and normalized the depressor response to guanabenz but did not change responses to air-jet stress. We conclude that in the MnPO, ANG II via AT(1) receptors mediates cardiovascular responses to an acute increase in CSF sodium as well as the chronic pressor responses to high sodium intake in SHR.  相似文献   

8.
Intravenous angiotensin II (ANG II) increases uterine vascular resistance (UVR), whereas uterine intra-arterial infusions do not. Type 2 ANG II (AT(2)) receptors predominate in uterine vascular smooth muscle; this may reflect involvement of systemic type 1 ANG II (AT(1)) receptor-mediated alpha-adrenergic activation. To examine this, we compared systemic pressor and UVR responses to intravenous phenylephrine and ANG II without and with systemic or uterine alpha-receptor blockade and in the absence or presence of AT(1) receptor blockade in pregnant and nonpregnant ewes. Systemic alpha-receptor blockade inhibited phenylephrine-mediated increases in mean arterial pressure (MAP) and UVR, whereas uterine alpha-receptor blockade alone did not alter pressor responses and resulted in proportionate increases in UVR and MAP. Although neither systemic nor uterine alpha-receptor blockade affected ANG II-mediated pressor responses, UVR responses decreased >65% and also were proportionate to increases in MAP. Systemic AT(1) receptor blockade inhibited all responses to intravenous ANG II. In contrast, uterine AT(1) receptor blockade + systemic alpha-receptor blockade resulted in persistent proportionate increases in MAP and UVR. Uterine AT(2) receptor blockade had no effects. We have shown that ANG II-mediated pressor responses reflect activation of systemic vascular AT(1) receptors, whereas increases in UVR reflect AT(1) receptor-mediated release of an alpha-agonist and uterine autoregulatory responses.  相似文献   

9.
10.
In addition to the long-term renal complications, previous studies suggested that after acute renal failure (ARF), rats manifest an increased pressor response to an overnight infusion of ANG II. The present study tested whether recovery from ARF results in alterations in sensitivity to the peripheral vasculature. ARF was induced in Sprague-Dawley rats by 45 min of bilateral renal ischemia and reperfusion. Animals were allowed to recover renal structure and function for 5-8 wk, after which the acute pressor responses to ANG II were evaluated either in vivo in in situ skeletal muscle arterioles or in isolated gracilis muscle arteries in vitro. Baseline arterial pressure was not different in ARF rats vs. sham-operated controls, although ARF rats exhibited an enhanced pressor response to bolus ANG II infusion compared with control rats. Steady-state plasma ANG II concentration and plasma renin activity were similar between ARF and control rats. Constrictor reactivity of in situ cremasteric arterioles from ARF rats was enhanced in response to increasing concentrations of ANG II; however, no difference was observed in arteriolar responses to elevated PO2, norepinephrine, acetylcholine, or sodium nitroprusside. Isolated gracilis muscle arteries from ARF rats also showed increased vasoconstriction in response to ANG II but not norepinephrine. In conclusion, recovery from ischemic ARF is not associated with hypertension but is associated with increased arteriolar constrictor reactivity to ANG II. Although the mechanisms of this altered responsiveness are unclear, such changes may relate, in part, to cardiovascular complications in patients with ARF and/or after renal transplant.  相似文献   

11.
《Life sciences》1981,28(21):2329-2336
The effect of intraventricular (IVT) infusion of a subpressor dose (6.25 or 12.5 ng/kg/min) of angiotensin II (AII) on the pressor responses to intravenous (IV) infusion of AII were studied in pentobarbital anesthetized rats. This study was undertaken to determine whether the central iso-renin angiotensin system alters pressor responsiveness to IV infused AII. Pressor responses to IV infusion of AII were potentiated by concurrent IVT infusion of a subpressor dose of AII. IVT pressor doses of AII decreased plasma renin activity, however, IVT subpressor doses of AII did not. These results suggest that the central iso-renin angiotensin system plays an important role in pressor responsiveness to IV AII and that the potentiation of IV AII is not related to decreases in endogenous AII as a result of IVT administered AII.  相似文献   

12.
Increased dietary sodium enhances both excitatory and inhibitory blood pressure responses to stimulation of the central sympathetic nervous system (SNS) centers. In addition, long-term (hours to days) administration of ANG II increases blood pressure by activation of the SNS. These studies investigated the effects of increased dietary sodium on SNS control of blood pressure during 0- to 24-h infusion of ANG II in conscious, male rats consuming either tap water or isotonic saline (Iso) for 2 to 3 wk. The SNS component (evaluated by ganglionic blockade with trimetaphan) of both control blood pressure and the pressor response to intravenous ANG II was reduced in Iso animals. Furthermore, although the pressor response to intravenous ANG II infusion was similar between groups, the baroreflex-induced bradycardia during the initial 6 h of ANG II infusion was significantly greater, whereas the tachycardia accompanying longer infusion periods was significantly attenuated in Iso animals. These data suggest that in normal rats increased dietary sodium enhances sympathoinhibitory responses during intravenous ANG II.  相似文献   

13.
A small percentage of pathologically obese subjects with fatty livers develop histological signs of necroinflammation and fibrosis, suggesting a variety of cofactors in the pathogenesis of obesity-related liver diseases including nonalcoholic steatohepatitis. Since several observations have linked bacterial endotoxins to liver damage, the aim of this study was to determine the effect of obesity on intestinal mucosal integrity and portal blood endotoxemia in two strains of obese mice: leptin-deficient (ob/ob) and hyperleptinemic (db/db) mice. Murine intestinal mucosal barrier function was assessed using a Ussing chamber, whereas ileum tight junction proteins were analyzed by immunocytochemistry and Western blot analysis. Circulating proinflammatory cytokines and portal blood endotoxin levels were measured by ELISA and the limulus test, respectively. The inflammatory and fibrogenic phenotype of murine hepatic stellate cells (HSCs) was determined by ELISA and quantitative RT-PCR. Ob/ob and db/db mice showed lower intestinal resistance, profoundly modified distribution of occludin and zonula occludens-1 in the intestinal mucosa, and higher circulating levels of inflammatory cytokines and portal endotoxemia compared with lean control mice. Moreover, HSCs isolated from ob/ob and db/db mice showed higher membrane CD14 mRNA levels and more pronounced lipopolysaccharide-induced proinflammatory and fibrogenic responses than HSCs from lean animals. In conclusion, genetically obese mice display enhanced intestinal permeability leading to increased portal endotoxemia that makes HSCs more sensitive to bacterial endotoxins. We suggest that in metabolic syndrome, patients may likewise have a greater intestinal mucosa permeability and increased lipopolysaccharide levels in portal blood that can contribute to the liver inflammatory damage.  相似文献   

14.
To study expression and function of methylthioadenosine phosphorylase (MTAP), the rate-limiting enzyme in the methionine and adenine salvage pathway, in chronic liver disease.

Design

MTAP expression was analyzed by qRT-PCR, Western blot and immunohistochemical analysis. Levels of MTA were determined by liquid chromatography-tandem mass spectrometry.

Results

MTAP was downregulated in hepatocytes in murine fibrosis models and in patients with chronic liver disease, leading to a concomitant increase in MTA levels. In contrast, activated hepatic stellate cells (HSCs) showed strong MTAP expression in cirrhotic livers. However, also MTA levels in activated HSCs were significantly higher than in hepatocytes, and there was a significant correlation between MTA levels and collagen expression in diseased human liver tissue indicating that activated HSCs significantly contribute to elevated MTA in diseased livers. MTAP suppression by siRNA resulted in increased MTA levels, NFκB activation and apoptosis resistance, while overexpression of MTAP caused the opposite effects in HSCs. The anti-apoptotic effect of low MTAP expression and high MTA levels, respectively, was mediated by induced expression of survivin, while inhibition of survivin abolished the anti-apoptotic effect of MTA on HSCs. Treatment with a DNA demethylating agent induced MTAP and reduced survivin expression, while oxidative stress reduced MTAP levels but enhanced survivin expression in HSCs.

Conclusion

MTAP mediated regulation of MTA links polyamine metabolism with NFκB activation and apoptosis in HSCs. MTAP and MTAP modulating mechanisms appear as promising prognostic markers and therapeutic targets for hepatic fibrosis.  相似文献   

15.
Chronic elevation of circulating ANG II is associated with cardiac remodeling in patients with hypertension and heart failure. The underlying mechanisms, however, are not completely defined. Herein, we studied ANG II-induced molecular and cellular events in the rat heart as well as their links to the redox state. We also addressed the potential contribution of aldosterone (ALDO) on ANG II-induced cardiac remodeling. In ANG II-treated rats, and compared with controls, we found: 1) the expression of proinflammatory/profibrogenic mediators was significantly increased in the perivascular space and at the sites of microscopic injury in both ventricles; 2) macrophages and myofibroblasts were primary repairing cells at these sites, together with increased fibrillar collagen volume; 3) apoptotic macrophages and myofibroblasts were evident at the same sites; 4) NADPH oxidase (gp91phox) was significantly enhanced at these regions and primarily expressed by macrophages, whereas superoxide dismutase and catalase levels remained unchanged; 5) plasma 8-isoprostane levels were significantly increased; and 6) blood pressure was significantly elevated. Losartan treatment completely prevented cardiac oxidative stress as well as molecular/cellular responses and normalized blood pressure. Spironolactone treatment partially suppressed the cardiac inflammatory/fibrogenic responses and redox state. Thus chronic elevation of circulating ANG II is accompanied by a proinflammatory/profibrogenic phenotype involving vascular and myocardial remodeling in both ventricles. Enhanced reactive oxygen species production at these sites and increased plasma 8-isoprostane indicate the involvement of oxidative stress in ANG II-induced cardiac injury. ALDO contributes, in part, to ANG II-induced cardiac molecular and cellular responses.  相似文献   

16.
Bone morphogenetic proteins (BMPs) are the important cytokine involving in cell differentiation especially in bone morphogenesis. Hepatic stellate cells (HSCs) undergo a trans-differentiation during their activation after liver injury. Although it has been demonstrated that BMP2 and BMP4 significantly increased the abundance of smooth muscle alpha actin (alpha-SMA) in cultured HSCs, the expression of BMPs has not been examined during the activation of HSCs. In current study, we documented the expression of BMP4 in bile duct ligation (BDL) rats and HSCs in culture. We have found that the expression of BMP4 was significantly elevated in the liver of BDL rats. The increase in BMP4 protein showed two peaks during 6 weeks after BDL. The expression and phosphorylation of Smad1, ERK1/2 and p38 were also elevated after BDL. Moreover, there was a gradual elevation of BMP4 mRNA abundance during 24 days' in vitro culture of HSCs. Furthermore, BMP4 stimulated phosphorylation of Smad1 and ERK1/2 in HSCs. In conclusion, BMP4 expression was significantly increased in the liver of BDL rats and HSCs in culture. These findings indicate that BMP4 may mediate HSC activation through activation of Smad1 and ERK1/2.  相似文献   

17.
《Journal of Physiology》1997,91(1):31-37
We investigated the influence of ibotenic acid lesions of the medial hypothalamus (MH) on salt appetite and arterial blood pressure responses induced by angiotensinergic and adrenergic stimulation of the median preoptic nucleus (MnPO) of rats. Previous injection of the adrenergic agonists norepinephrine, clonidine, phenylephrine, and isoproterenol into the MnPO of sham MH-lesioned rats caused no change in the sodium intake induced by ANG II. ANG II injected into the MnPO of MH-lesioned rats increased sodium intake compared with sham-lesioned rats. Previous injection of clonidine and isoproterenol increased, whereas phenylephrine abolished the salt intake induced by ANG II into the MnPO of MH-lesioned rats. Previous injection of norepinephrine and clonidine into the MnPO of sham MH-lesioned rats caused no change in the mean arterial pressure (MAP) induced by ANG II. Under the same conditions, previous injection of phenylephrine increased, whereas isoproterenol reversed the increase in MAP induced by angiotensin II (ANG II). ANG II injected into the MnPO of MH-lesioned rats induce a decrease in MAP compared with sham-lesioned rats. Previous injection of phenylephrine or norepinephrine into the MnPO of MH-lesioned rats induced a negative MAP, whereas pretreatment with clonidine or isoproterenol increased the MAP produced by ANG II injected into the MnPO of sham- or MH-lesioned rats. These data show that ibotenic acid lesion of the MH increases the sodium intake and pressor responses induced by the concomitant angiotensinergic, α2 and β adrenergic activation of the MnPO, whereas α1 activation may have opposite effects. MH involvement in excitatory and inhibitory mechanisms related to sodium intake and MAP control is suggested.  相似文献   

18.
Xiaoming Tang  Juntao Yang  Jun Li 《Life sciences》2009,84(15-16):552-557
AimsHepatic fibrosis is reversible, associated with apoptosis of activated hepatic stellate cells (HSCs) as injury subsides, thus providing potential targets for therapy. Little is known, however, about the course of this condition. The objective of this study was to elucidate the mechanism by which Kupffer cells regulate HSC biology during regression of hepatic fibrosis and the effect of leflunomide on this process.Main methodsWe harvested Kupffer cells from rats during spontaneous recovery from liver fibrosis induced by carbon tetrachloride (CCl4) and prepared recovery Kupffer cell conditioned medium (KCCM). Culture-activated HSCs were pretreated in the absence or presence of A771726, the active metabolite of leflunomide, and then stimulated with recovery KCCM.Key findingsFollowing stimulation with recovery KCCM, HSCs showed a decrease in proliferation and an increase in apoptosis by a caspase-dependent mechanism. Furthermore, pretreatment with A771726 markedly enhanced these effects. Real-time quantitative PCR (Q-PCR) analysis showed increased expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in Kupffer cells during the spontaneous recovery phase. The pro-apoptotic function of KCCM prepared from TRAIL siRNA-treated Kupffer cells was obviously decreased, suggesting that TRAIL played an important role in recovery from hepatic fibrosis. Moreover, A771726 enhanced recovery KCCM-induced apoptosis of HSCs by a mechanism involving the inhibition of nuclear factor-kappa B (NF-κB) activation.SignificanceOur results showed the role of TRAIL in the apoptosis of activated HSCs that is induced by Kupffer cells prepared from livers recovering from CCI4-induced fibrosis and provided insights into the resolution of fibrosis and the mechanisms by which leflunomide might act upon liver fibrosis.  相似文献   

19.
The effect of subpressor doses of angiotensin II (ANG II) on vascular Na-K pump activity and Na-H exchange, two transmembrane signals of trophic stimulation of vascular muscle, was investigated. Male Sprague-Dawley rats (350-400 g) were given subpressor doses of ANG II by osmotic minipump intraperitoneally for 24 hr or 7-10 days. Control rats received sham procedure/vehicle infusion. Na-K pump activity (86Rb uptake), total and intracellular (Li exchange at 4 degrees C) Na content, and amiloride-sensitive and -insensitive Na uptake of aortas were measured ex vivo. Ouabain-sensitive 86Rb uptake of aortas of rats receiving 80-100, 160-180, and 240-260 ng/kg.min-1 of ANG II for 24 hr was 26.6 +/- 3.5, 28.8 +/- 3.4, and 29.1 +/- 2.6 nmol/mg dry wt.15 min-1 (mean +/- SD, n = 7-12), respectively, compared with 25.2 +/- 3.8 in controls (n = 23, P less than 0.01). These increases were maintained at 7-10 days. After 24 hr and 7-10 days of ANG II treatment, the total Na content of aortas was increased by 9.2% (P less than 0.01) and 7.6% (P less than 0.02), respectively, without a change in intracellular Na content, indicating accumulation of excess extracellular Na. Total and amiloride-sensitive Na uptake of the aorta was unchanged after 24 hr or 7-10 days of ANG II administration. The dry weight of anatomically defined segments of the aorta was 40 +/- 3.8 mg/kg body wt (n = 25) after 24 hr and 42 +/- 4.4 (n = 20) after 7-10 days of ANG II administration, compared with 37 +/- 4.8 (n = 15, P less than 0.05) and 37 +/- 4.9 (n = 17, P less than 0.01) in appropriate controls. Increased Na-K pump activity may signal the onset of trophic stimulation of vascular muscle by ANG II.  相似文献   

20.
We recently observed that ANG II receptor blocker therapy improved the overproduction of triglyceride (TG) in fructose-fed rats and Zucker fatty rats with insulin resistance, which in turn suggests that ANG II may stimulate TG production. Accordingly, we investigated the effects of ANG II on TG production and the association with insulin resistance in normal rats. Male Wistar rats were continuously infused with ANG II (100 ng.min(-1).kg body wt(-1)) via an osmotic minipump for 14 days. ANG II infusion markedly elevated both the systolic and diastolic blood pressure. The plasma TG level increased twofold, but cholesterol was unchanged. ANG II infusion stimulated the TG secretion rate (TGSR) by twofold and increased the hepatic TG content by 31%. Lipogenesis determined by [2-(3)H]glycerol incorporation into hepatic TG was also significantly increased in ANG II-infused rats. The stimulatory effect of ANG II on TGSR was dose dependent and was not observed until 2 wk after the start of infusion. ANG II infusion significantly reduced insulin sensitivity index (SI) without affecting glucose effectiveness determined by Bergman's minimal model. The plasma TG level was positively correlated with TGSR (r = 0.88, P < 0.001) and inversely with SI (r = -0.80, P < 0.005). These results suggest that chronic ANG II infusion stimulates hepatic TG production, which is partly associated with simultaneous development of insulin resistance. Our results may suggest a new mechanism for the intimate association between hypertension and dyslipidemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号