首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is a central paradigm of comparative physiology that the effect of humidity on evaporative water loss (EWL) is determined for most mammals and birds, in and below thermoneutrality, essentially by physics and is not under physiological regulation. Fick''s law predicts that EWL should be inversely proportional to ambient relative humidity (RH) and linearly proportional to the water vapour pressure deficit (Δwvp) between animal and air. However, we show here for a small dasyurid marsupial, the little kaluta (Dasykaluta rosamondae), that EWL is essentially independent of RH (and Δwvp) at low RH (as are metabolic rate and thermal conductance). These results suggest regulation of a constant EWL independent of RH, a hitherto unappreciated capacity of endothermic vertebrates. Independence of EWL from RH conserves water and heat at low RH, and avoids physiological adjustments to changes in evaporative heat loss such as thermoregulation. Re-evaluation of previously published data for mammals and birds suggests that a lesser dependence of EWL on RH is observed more commonly than previously thought, suggesting that physiological independence of EWL of RH is not just an unusual capacity of a few species, such as the little kaluta, but a more general capability of many mammals and birds.  相似文献   

2.
Bacillus subtilis var. niger spores were tested for dry-heat resistance on stainless-steel strips hung in an oven. Heat resistance was dependent on the relative humidity before and during treatment, which in turn affected the water content of the spores. Higher humidities increased the heat resistance of the spores. D-values ranged from 16.1 min for spores conditioned at <2% relative humidity (RH) and treated at 0.34% RH to 37.6 min for spores conditioned at 89% RH and treated at 1.1% RH. The y-intercept of the regression line ranged from 6.94 x 10(4) for spores conditioned and treated at the low humidities to 2.00 x 10(5) for spores conditioned at 89% RH and treated at 0.34% RH. For a constant value of N(0), the y-intercept appears to be lowered by low-humidity conditions. The statistic log y(0)/log N(0) is used to measure the downward displacement of the regression line. Values obtained in this experiment range from 0.90 for spores conditioned at <2% RH and treated at 0.34% RH to 1.04 for spores conditioned at <2% RH and treated at 1.1% RH. A combination of linear regression and analysis of variance methods was used for data analysis. The former estimates D-values and y-intercepts, whereas the latter is sensitive to differences between treatments.  相似文献   

3.
In this paper we present a theoretical treatment of triplex B type DNA hydration using normal mode calculation techniques. Discrete solvent is added as spines of hydration in the Watson-Crick and Crick-Hoogsteen grooves as well as water bridges between the Phosphate groups. The effect of binding the discrete structural waters on the normal mode of vibration of the system was studied by introducing a parameter, Xw, that is proportional to the degree of water binding and inversely proportional to the relative humidity (RH) of the system. We examined the variation of the dipole moments of characteristic modes with Xw. The results show that there is a direct relationship between the degree of binding of the water molecules to the atoms in the triple helix, the relative humidity of the system and the conformation and stability of the triple helix. At high RH and Xw = 0:0 the triple helix has mostly B type conformation characteristics, with C'2 -endo sugars. The emergence of normal modes of vibration characteristic to the A type conformation (C'3 - endo sugars) at Xw = 0:4 and 60% RH indicates a conformational shift towards A-type for some of the sugars between Xw = 0.2 (80% RH) and Xw = 0.4 (60% RH). These results are in agreement with the "economy of hydration hypothesis" of Saenger (Saenger et al., 1986) which maintains that the main difference in the hydration of A- and B- forms of DNA is the presence of water bridges between adjacent Phosphate groups in the low-hydration A-form but not in the B- form. Free energy calculations for the triplex DNA with structural waters show that there is a minimum of the free energy at Xw = 0.2 and the free energy increases with Xw and becomes larger than the free energy of the B conformation without structural waters for Xw equal to and larger than 0.4. This result indicates that the B conformation is more stable with bound structural water molecules (for degrees of water binding that are not over 20% higher than the degree of binding between bulk water molecules). The structural water molecules are bound much tighter in the A conformation than in the B conformation. The model predicts that the B to A transition occurs at higher relative humidities in D2O than in H2O. Part of these results (Dadarlat, 1997) have been subsequently confirmed by the experimental work and MD simulations of Ouali (Ouali et al., 1997). The experimental results showed that the N-type sugars corresponding to the A conformation are clearly detected below 75% RH.  相似文献   

4.
We report that the ability to absorb water vapor from the air in larvae of the American dog tick, Dermacentor variabilis, changes depending upon moisture conditions where the eggs develop. When development occurs at lower relative humidities, resultant larvae can replenish water stores, maintain water balance, and survive at relative humidities as low as 75-85% RH, a range that agrees with previously published values for the critical equilibrium humidity or CEH. In contrast, exposure to high relative humidity conditions during development elevates the CEH to 93-97% RH. These larvae can survive only at relative humidities that are close to saturation, as 93% RH is a dehydrating atmosphere. For these larvae, absorption at 97% RH can be prevented by blocking the mouthparts with wax, indicating that an upward shift has occurred in the moisture threshold where the active mechanism for water vapor absorption operates. Based on transfer experiments between low and high relative humidities, the CEH of larvae is determined by the relative humidity experienced by the mother rather than the moisture conditions encountered by eggs after they are laid. The fact that no changes in body water content, dehydration tolerance limit and water loss rate were observed implies that adjustments to the CEH conferred by the mother have the adaptive significance of enabling larvae to maintain water balance by limiting the range of hydrating atmospheres.  相似文献   

5.
Immature and mature Biomphalaria glabrata are kept out of water at relative humidities varying from 0 to 100%. When snails are submitted to a saturated atmosphere, they show a slow weight loss and survival may be long. If relative humidity (RH) decreases, weight loss becomes important and survival is short. A reduced RH (0 to 65%) produces similar effects. During desiccation, fasting has no noticeable effect; survival depends essentially on weight loss.  相似文献   

6.
Beauveria bassiana conidia were bioassayed for pathogenicity against adult chinch bugs, Blissus leucopterus leucopterus, at varying percent relative humidities (RH). The conidia were found to be invasive and pathogenic at all humidities tested. Normal fungal replication and conidiogenesis, however, occurred only on the hosts incubated at the 75% or higher RH levels.  相似文献   

7.
Effect of Relative Humidity on Formaldehyde Decontamination   总被引:3,自引:1,他引:2       下载免费PDF全文
Death rate studies were conducted to determine the effect of varying the concentration, humidity, and type of surface on the sporicidal activity of formaldehyde gas. Washed and unwashed spores were similarly exposed to detect the influence of residual nutrient growth medium upon the rate of kill. The results indicated that the sporicidal activity of formaldehyde gas varies directly with its concentration. Relative humidities (RH) over 50% proved essential for sterility. Spores on a porous surface (cotton cloth) were more readily killed at lower RH than those on a nonporous surface (glass). The reverse occurred at very high RH. At 75% RH, the unwashed spores on glass were killed faster than the washed spores.  相似文献   

8.
Trichogramma ostriniae is a parasitoid wasp species that is used as a biological control for several lepidopteran agricultural pests. Our study examined the effects of relative humidity (RH) on the behaviour of female T. ostriniae. In Y-tube RH choice assays, wasps generally chose higher RH over lower RH but the latency time taken to make a choice displayed no clear patterns that could be ascribed to the magnitude of the RH difference between arms of the Y-tube. In trials conducted in glass arenas with fixed humidities, the conditional probabilities of transition from searching to interacting with the leaf disk, and from interacting with leaf disks to antennal egg drumming and oviposition, were not significantly different among the RH levels, nor were there differences in latency times. These findings suggest that the level of RH may influence habitat choice but have little effect on search efficacy.  相似文献   

9.
The effect of different temperatures (18, 22, 28, and 32.5 C, at constant 75% RH) and relative humidities (0, 15, 42, 60, 75, 84, and 92%, at constant 28 C) on the duration of the life cycle of Ornithodoros (Pavlovskyella) erraticus is studied in the laboratory. The egg incubation period is longer at 22 C than at the other temperatures tested; the percentage of hatched eggs was markedly increased at 28 C in comparison with other temperatures (T's) and relative humidities (RH's) tested. At constant 28 C, most larvae (86.2%) are ready to feed within 7.2 days posthatching; they feed for 5-52 min and molt to N1 in 7.8 days postfeeding. Five nymphal instars are recorded. Unfed N1-N5 survived for a longer period at 18 C than at other temperatures, whereas the effect of RH's was insignificant. After feeding, nymphal premolting periods differ from one instar to another and from one T or RH to another. At 28 C, the males emerge from N3, N4, and N5 in 9-15 days postfeeding, while females emerge only from N4 and N5 in 10-16 days. The overall sex ratio (3 male:5 female) is not affected by different T's and RH's. The female and male life spans were longer (means 720 and 500 days, respectively) at 22 C than at other T's and RH's. This study shows that the duration of the life cycle of O. erraticus decreases with rising T and increases with an increase in RH. However, the 28 C and 75% RH seem to be the optimum conditions for this species.  相似文献   

10.
Dehydration tolerance of in vitro orchid protocorms was investigated under controlled drying conditions and after abscisic acid (ABA) pretreatment. Protocorms were obtained by germinating seeds on Murashige and Skoog (MS) medium containing 10% (v/v) coconut water, 2% (w/v) sucrose and 0.8% (w/v) agar, and were dehydrated in relative humidities (RH) ranging from 7% to 93% at 25 degrees C. The critical water content of dehydration tolerance was determined, using the electrolyte leakage method. Drying rate affected the critical water content. Slow drying under high RH conditions achieved the greatest tolerance to dehydration. ABA pretreatment decreased the drying rate of protocorms, and increased dehydration tolerance. Improved tolerance to dehydration after ABA treatment was correlated with the effect of ABA on drying rate of protocorms. When critical water content of protocorms dried under different RH was plotted as a function of actual drying rate, no significant difference in tolerance to dehydration was observed between ABA-treated and control protocorms. ABA pretreatment and dehydration of orchid protocorms induced the synthesis of dehydrin, especially under the slow drying conditions. ABA pretreatment also promoted dry matter accumulation such as carbohydrates and soluble proteins and increased the concentration of K(+) and Na(+) ions in protocorms. The ABA-induced decrease in drying rate was correlated with lower osmotic potential, the enhanced maturity of protocorms and the accumulation of dehydrin in protocorms during pretreatment.  相似文献   

11.
A desiccation protocol was developed to evaluate the effect of different levels of desiccation on germination and plantlet regeneration of black spruce somatic embryos. Large desiccation chambers (80 l) with four liters of saturated salt solutions provided constant relative humidities (RH) of 63, 79, 88, and 97% (± 2%). Under these conditions, an embryo mass of 10 mg always dried fast even at 97% RH. In contrast, an embryo mass of 80 mg generated different kinetics of water loss, from fast drying at 63% RH to slow drying at 97% RH. Drying rates similar to those obtained with 80 mg embryos were also generated by combining 40 mg embryos with 40 mg water. The effects of drying rate and embryo MC on germination rate, root elongation, and plantlet regeneration were examined. A fast drying rate to 4–5% embryo MC, obtained under 63% RH, was detrimental to germination and plantlet development. However slower drying rates, obtained under 79–97% RH and generating 7–19% MC in the embryos, gave developmental responses similar to the control. Synchronization of root emergence was improved only for embryos desiccated to approx. 16% MC under 97% RH. The optimal desiccation protocol using large desiccation chamber at 97% RH and a constant embryo mass of 40 mg embryos plus 40 mg water was applied to five genotypes of black spruce. For all genotypes, desiccated embryos gave plantlet regeneration rates similar to the control undesiccated embryos. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
A mechanism for co-ordinating behaviour of stomata within an areole during patchy stomatal conductance has recently been proposed. This mechanism depends on hydraulic interactions among stomata that are mediated by transpiration-induced changes in epidermal turgor. One testable prediction that arises from this proposed mechanism is that the strength of hydraulic coupling among stomata should be proportional to evaporative demand and, therefore, inversely proportional to humidity. When a leaf is illuminated following a period of darkness, there is typically a period of time, termed the Spannungsphase, during which guard cell osmotic and turgor pressure are increasing, but the pore remains closed. If hydraulic coupling is proportional to evaporative demand, then variation among stomata in the duration of the Spannungsphase should be lower for leaves at low humidity than for leaves at high humidity. A similar prediction emerged from a computer model based on the proposed hydraulic mechanisms. These predictions were tested by measuring individual stomatal apertures on intact transpiring leaves at low and high humidity and on vacuum-infiltrated leaf pieces (to eliminate transpiration) as PFD was increased to high values from either darkness or a low value. Results showed that the range of Spannungsphasenamong stomata was reduced at low humidity compared to high humidities. Experiments that began at low PFD, rather than at darkness, showed no delay in stomatal opening. These results are discussed in the context of the proposed hydraulic coupling mechanisms.  相似文献   

13.
棉铃虫蛹期在极端湿度下的失水动态   总被引:5,自引:1,他引:4  
吴坤君  龚佩瑜 《昆虫学报》2001,44(4):512-517
研究了极端相对湿度 (0%、9%、22.5%、80%、90%和100%) 对棉铃虫Helicoverpa armigera蛹期发育、存活和水分动态的影响。发育蛹在25℃下,相对湿度≤9%时, 不能羽化;湿度为22.5%时,羽化率不足20%; 高湿不影响它们的存活。在同样温度下,湿度≥9%时,滞育蛹在一个月内都极少死亡;在此期间,滞育终止率随湿度降低而升高。各湿度处理组发育蛹和滞育蛹从1日龄起的累计失水率都与其日龄呈线性相关。三个低湿处理组发育蛹中死亡个体在死亡前的平均累计失水率都在32%以上。滞育蛹经0%湿度处理一个月,平均仅失水22.4%;在湿度≥90%时的同期失水率不超过3.6%。在30℃下,发育蛹在4 h内测定的表皮渗透力最大,分别是9.0(♀)和10.7() μg/(cm2·h·mm Hg); 滞育蛹的相应值出现在2 h内, 分别为 4.7(♀)和5.4() μg/(cm2·h·mm Hg)。  相似文献   

14.
The heat resistance to hot air of spores of Bacillus cereus (ATCC 14579) attached to carriers of stainless steel or silicone rubber was investigated in a range from 1% to 100% relative humidity (RH). Apart from an initial stage, linear survivor curves were obtained for all relative humidities. Neither the attachment itself nor the material of the carrier had an influence on the resistance. A distinct maximum of heat resistance was found at 40% RH. At 122°C the rate constants at 40% RH were five orders of magnitude smaller than at 100% RH and two orders of magnitude smaller than at 1% RH. At relative humidities of more than 40% the rate constants were strongly temperature dependent, whereas at lower relative humidities they were less temperature dependent. No significant influence of the relative humidity on the Arrhenius activation energy was found within each humidity range. The mean values were 295 kJ mol-1 for relative humidities of 60% to 100% RH and 165 kJ mol-1 for 1% to 20% RH. The occurrence of a maximum is ascribed to the existence of two inactivation mechanisms, the first is retarded and the second is accelerated by a reduction of relative humidity. It is assumed that the first mechanism is a protein denaturation. The second mechanism may be an oxidative process.  相似文献   

15.
Individual blastospores of Candida albicans were deposited on the surface of 50-mm membranes (Millipore Corp.) and placed within sealed glass chambers at various relative humidities (RH). After 48 hr, virtually all cells maintained at 100 and 10% RH had survived, but 84% of the cells maintained at 60% RH failed to develop into colonies when transferred to Sabouraud medium. No morphological abnormalities could be observed in cells surviving low RH values, but their initial rate of multiplication after transfer to Sabouraud medium was greatly reduced, compared to that demonstrated by cells maintained at 100% RH. At 60% RH, the exposure time required to kill 50% of the blastospores was 2 to 3.5 days. The inimical effect of 60% RH was confirmed in a total of 21 isolates of C. albicans. No deleterious effect was noted when 12 other species of yeasts were subjected to 10, 60, and 100% RH. The single isolate of Candida brumptii and 1 out of the 20 isolates of Cryptococcus neoformans tested also failed to grow after blastospores had been exposed to 60% RH for 4 days.  相似文献   

16.
The biochemical and physiological basis of intermediate seed storage behaviour was examined by investigating the effects of equilibrium drying under relative humidities (RHs) of 9–81% and of storage at 20 or 5°C on coffee seed viability and antioxidant, lipid and sugar status. Slow drying induced a significant decrease in the concentrations of the pools of two major antioxidants, glutathione and ascorbate, and an increase in the free fatty acid (FFA) content of seeds, independent of the RH employed. Seeds stored at 81% RH and 20°C lost their viability very rapidly and showed an extensive loss and oxidation of antioxidants, an accumulation of FFA and a selective loss of phospholipids, in particular phosphatidylethanolamine (PE). Interestingly, the changes in PE content were not due to fatty acid de-esterification and the increase in FFA levels resulted from neutral lipid hydrolysis. Decreasing the storage temperature to 5°C considerably slowed both the loss of seed viability and the level of oxidative stress as well as the rates of lipid hydrolysis. No decline in seed viability was observed under storage conditions of 45% RH/20°C. After 1 year under 45% RH/5°C, the loss of seed viability was found to be due to imbibitional damage and could be circumvented by pre-humidifying or pre-heating seeds before sowing.  相似文献   

17.
Pollen of the palm Trachycarpus fortunei was kept at 25°C and relative humidities (RH) of 20, 55 and 98%. Changes in viability, water content and carbohydrates were measured over 2–17 days. Water content remained almost constant at 20 and 50% RH and increased dramatically at 98%. Pollen viability and germination rate remained almost constant over 14 days at 20% RH and decreased to about 2% after 7–9 days at 55% and to even less at 98% RH. Although the three experimental conditions were constant, qualitative and quantitative variations in pollen carbohydrates were recorded, even after pollen had lost its viability. The quantities of mono-, di- and polysaccharides varied with the period of pollen storage at the various RH. The greatest changes in glucose, fructose and sucrose content were recorded at 55 and 98% RH. At these relative humidities, maximum glucose and fructose content and minimum sucrose content occurred at maximum water content. Starch was not present in mature pollen but appeared and peaked after 7–9 days of pollen storage at 55 and 98%. Appearance of starch coincided with an increase in pectin content. PAS-positive cytoplasmic polysaccharides showed an increasing trend at 20% RH. A relation was found between pollen viability, water content and monosaccharide content. Pollen viability and germination capacity remained high at 20% RH for 14 days. At this relative humidity, pollen water, glucose and fructose contents remained almost constant, while sucrose reached its maximum value. The fluctuations of more complex carbohydrates (starch, pectins and PAS-positive cytoplasmic polysaccharides) were less easy to interpret. Changes observed under experimental conditions could simulate processes occurring in nature during pollen presentation and dispersal.  相似文献   

18.
Poly(ethylene glycol) 6000 affected the aggregation of mixed liposomes induced by spermine. It lowered the concentration of spermine causing 50% maximal aggregation, accelerated the rate and increased the extent of aggregation. The effect was inversely proportional to the density of the acidic phospholipid in the vesicles. These effects were not due either to poly(ethylene glycol) 6000-induced permanent structural modification of the liposome or increased binding of spermine to the vesicles. These findings are discussed in relation to a decreased hydration force caused by the ability of poly(ethylene glycol) 6000 to alter the water of hydration of the phospholipid polar groups in the liposome.  相似文献   

19.
Mortality of the coffee berry borer was studied under controlled laboratory conditions in Tapachula, Mexico. For adult female borers subjected to a range of relative humidities (RH) without food at 25°C, the longest mean survival time (20 days) was obtained at 93.5% RH. Adult borer survival was also studied at a range of temperatures for a fixed relative humidity (93.5% RH); at 20°C mean survival time was 28 days. Fecundity and mortality of borer stages in berries was studied for a range of humidities at 25°C. Maximum fecundity was obtained at 90 and 93.5% RH. Immature stages were ejected from the berry at 84% RH and above, which is interpreted as a form of brood hygiene.  相似文献   

20.
Chlorophyll fluorescence imaging was used to measure stomatalclosure in response to desiccation of Tradescantia virginianaleaves grown under high (90%) and moderate (55%) relative humidities(RHs), or transferred between these humidities. Stomata in leavesgrown at high RH were less responsive to desiccation than thoseof leaves grown at moderate RH. Stomata of plants transferredfrom moderate RH conditions to high RH showed the same diminishedclosure in response to desiccation as did stomata that developedat high RH. This response was found both when the leaves werefully expanded and when still actively expanding during themoderate RH pre-treatment. Four days of exposure to high RHwas the minimal exposure time to induce the diminished closureresponse. When leaves were grown in high RH prior to a 10 dmoderate RH treatment, the reduced stomatal closure responseto desiccation was only reversed in leaves (regions) which wereactively expanding during moderate RH treatment. This indicatesthat with respect to stomatal responses to desiccation, highRH leaf regions have a limited capacity to adapt to moderateRH conditions. The decrease in responsiveness to desiccationof the stomata, induced by long-term exposure to high RH, wasnot due to osmotic adjustment in the leaves. Within 1 d aftertransferring moderate RH-grown plants to a high RH, the abscisicacid (ABA) concentration of their leaves decreased to the lowlevel of ABA found in high RH-grown leaves. The closure responsein leaves exposed to high RH for 5 d, however, could not befully restored by the application of ABA. Transferring plantsfrom high to moderate RH resulted in increased ABA levels within2 d without a recovery of the stomatal closing response. Itis discussed that the diminished stomatal closure in plantsexposed to high RH could be due to changes in the signallingpathway for ABA-related closure of stomata or to an increasedsequestration of ABA by mesophyll tissue or the symplast inthe epidermis, induced by a longer period (several days) ofa low ABA level. Key words: Abscisic acid, desiccation, PSII efficiency, relative water content, stomatal closure, vapour pressure deficit, water potential Received 8 October 2007; Revised 5 November 2007 Accepted 9 November 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号