首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses of 117 single- or multi-units in the auditory cortex (AC) of bats (Myotis lucifugus) to tone bursts of different stimulus durations (1– 400 ms) were studied over a wide range of stimulus intensities to determine how stimulus duration is represented in the AC. 36% of AC neurons responded more strongly to short stimulus durations showing short-pass duration response functions, 31% responded equally to all pulse durations (i.e., all-pass), 18% responded preferentially to stimuli having longer durations (i.e., long-pass), and 15% responded to a narrow range of stimulus durations (i.e., band-pass). Neurons showing long-pass and short-pass duration response functions were narrowly distributed within two horizontal slabs of the cortex, over the rostrocaudal extent of the AC. The effects of stimulus level on duration selectivity were evaluated for 17 AC neurons. For 65% of these units, an increase in stimulus intensity resulted in a progressive decrease in the best duration. In light of the unusual intensity-dependent duration responses of AC neurons, we hypothesized that the response selectivities of AC neurons is different from that in the brainstem. This hypothesis was validated by results of study of the duration response characteristics of single neurons in the inferior colliculus. Accepted: 8 November 1996  相似文献   

2.
The presence of an illuminated slit in the visual field of a locust compound eye produced changes in the tonic discharge rate of the DCMD and three other visual interneurones, recorded in a connective. The DCMD discharge peaked initially in the range of low slit subtenses, but over a period of minutes of exposure its character changed so that there was a rise at high subtenses also. When the luminance of a slit of fixed subtense was increased in steps, there was an initial rise then a sharp fall in discharge, indicating an abrupt onset of inhibition. Lateral spread of inhibition could account for the peak in response to slits, at a subtense falling well within the acceptance angle of a single ommatidium. The results show the ability of some visual interneurones to maintain a changed level of discharge in the presence of a stationary object in the visual field of the eye.  相似文献   

3.
Unit response in the superior colliculus and underlying structures has been examined in the choralose-anaesthetized cat following passive movement of an occluded eye. One group of units was sensitive to small saccadic movements, responded regardless of the initial postion of the eye, and in most instances responded to movements in opposit directions. A second numerically smaller group also responded when they eye was moved at saccadic velocity but only when the eye passed a fixed point. Such units with fixed positional thresholds were found following movements in both nasal and temporal directions as well as to both upward and downward movement. Both types of unit response were found after transection of the optic nerve and were also recorded when individual extraocular muscles were subjected to controlled stretch. It is assumed that most unit activity seen after passive movement of the occluded eye is due to activity in extraocular muscle receptors. In the deep layers of the superior colliculus responses to small eye movements were found to be due to the activation of very low threshold receptors sensitive to vibration in the facial area.  相似文献   

4.
ObjectivesIn the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS).ResultsUnder driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p < 0.05) in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05) only in the right frontal eye field.ConclusionsLeft curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.  相似文献   

5.
Summary The scorpionParuroctonus mesaensis locates prey by orienting to substrate vibrations produced by movements of the prey in sand. At the end of each walking leg of this scorpion there are two sense organs, the basitarsal compound slit sensillum and tarsal sensory hairs (Figs. 1, 3) that are excited by substrate vibrations conducted through sand. The slit sensilla appear to be most sensitive to surface (Rayleigh) waves while the tarsal sensory hairs respond best to compressional waves (Fig. 7). Both mechanoreceptors were activated by nearby disturbances of the substrate (Fig. 6) but only the slit sensilla responded to insects moving more than 15 cm away. Both receptors are highly sensitive to small amplitude (less than 10 Å) mechanical stimuli applied to the tarsus (Fig. 5).Behavioral studies of scorpions with ablated sense organs (Fig. 2) indicate that the basitarsal compound slit sensilla are necessary for determining vibration source direction.Abbreviation BCSS basitarsal compound slit sensillum (a) Supported by PHS Environmental Science and Regents Intern Fellowships (PB), and by intramural research funds from the University of California (RDF)  相似文献   

6.
This paper investigates how the pattern influences the discrimination of different locations of two or more areas of black, white or colour. The coloured patterns were made from two calibrated coloured papers that give contrast only to green receptors, or alternatively only to blue receptors. The patterns are fixed during training. It is found that the discrimination of translocation of two areas of colour involves green receptors and also blue receptors, and the resolution depends strongly on the pattern. Patterns that offer horizontal strips and up-down differences in locations are well resolved, even with no green contrast. Resolution of left-right reversal is greatly improved when the patterns promote fixation in the horizontal plane, as if green contrast is essential to stabilize the eye in yaw. The addition of radial bars with green contrast, a central black spot or a black surround, is particularly effective. The additions promote fixation, and would aid the detection of natural symmetrical objects. Accepted: 30 May 1999  相似文献   

7.
Leon MI  Shadlen MN 《Neuron》1999,24(2):415-425
The dorsolateral prefrontal cortex plays a critical role in guiding actions that ensue seconds after an instruction. We recorded from neurons in area 46 and the frontal eye field (FEF) while monkeys performed a memory-guided eye movement task. A visual cue signaled whether a small or large liquid reward would accompany a correct response. Many neurons in area 46 responded more when the monkey expected a larger reward. Reward-related enhancement was evident throughout the memory period and was most pronounced when the remembered target appeared in the neuron's response field. Enhancement was not present in the FEF. The mixture of neural signals representing spatial working memory and reward expectation appears to be a distinct feature of area 46.  相似文献   

8.
It is suggested that the dragonfly median ocellus is specifically adapted to detect horizontally extended features rather than merely changes in overall intensity. Evidence is presented from the optics, tapetal reflections and retinal ultrastructure. The underfocused ocelli of adult insects are generally incapable of resolving images. However, in the dragonfly median ocellus the geometry of the lens indicates that some image detail is present at the retina in the vertical dimension. Details in the horizontal dimension are blurred by the strongly astigmatic lens. In the excised eye the image of a point source forms a horizontal streak at the level of the retina. Tapetal reflections from the intact eye show that the field of view is not circular as in most other insects but elliptical with the major axis horizontal, and that resolution in the vertical direction is better than in the horizontal. Measurements of tapetal reflections in locust ocelli confirm their visual fields are wide and circular and their optics strongly underfocused. The ultrastructure suggests adaptation for resolution, sensitivity and a high metabolic rate, with long, widely separated rhabdoms, retinulae cupped by reflecting pigment, abundant tracheoles and mitochondria, and convoluted, amplified retinula cell plasma membranes.  相似文献   

9.
在蜜蜂被刺激眼的同侧视叶内记录方向选择前进和后退水平运动灵敏的细胞反应。水平前进运动灵敏细胞对同侧前进运动的反应为很强的兴奋和去极化,以及去极化伴随有锋电位发放,同侧的后退运动引起抑制和超极化。在仅刺激对侧眼时,发放的频率不依赖于运动。水平后奶退运动灵敏的细胞对同侧水平后退运动反应出很强的兴奋和去极化,其去极化上伴随有锋电位发放,锋电位达不到零电位而且在其终点没有回射,同侧的前进运动几乎没有反应。  相似文献   

10.
Synopsis The purpose of this study was to determine if body and fin form affected the maneuverability of teleostean fishes as measured by their ability to negotiate simple obstacles. Obstacles were vertical and horizontal rectangular slits of different widths, for which width was defined as the minimum dimension of a slit irrespective of slit orientation. Performance was measured as the smallest slit width traversed. Three species with different body and fin patterns were induced to swim through slits. Species tested were; goldfish Carassius auratus with a fusiform body, anterio-ventral pectoral fins and posterio-ventral pelvic fins; silver dollars Metynnis hypsauchen with the same fin configurations but a gibbose body; angelfish Pterophyllum scalare with a gibbose body and anterio-lateral pectoral fins. Minimum slit widths negotiated were normalized with the length of various body dimensions: total length, maximum width, span at the pectoral fins, and volume1/3 (numerically equal to mass1/3). Goldfish had the poorest performance, requiring the largest slit widths relative to these body dimensions. No consistent patterns in performance were found for silver dollars vs. angelfish. There were no differences among species in the ratio of minimum vertical slit width negotiated to that for horizontal slits, indicating fish were equally able to control posture while swimming on their sides. There were also no consistent patterns in the times taken to transit slits. Although the deep-bodied fish were able to maneuver through smaller slits, the most striking result is the similarity of minimum slit widths traversed in spite of the large variation in body form. Body form and fin plan may be more important for maneuvering and posture control during sub-maximum routine activities.  相似文献   

11.
The functional properties of the three horizontal cells (north horizontal cell, HSN; equatorial horizontal cell, HSE; south horizontal cell, HSS) in the lobula plate of the blowflyCalliphora erythrocephala were investigated electrophysiologically. 1. The receptive fields of the HSN, HSE, and HSS cover the dorsal, equatorial and ventral part of the ipsilateral visual field, respectively. In all three cells, the sensitivity to visual stimulation is highest in the frontal visual field and decreases laterally. The receptive fields and spatial sensitivity distributions of the horizontal cells are directly determined by the position and extension of their dendritic fields in the lobula plate and the dendritic density distributions within these fields. 2. The horizontal cells respond mainly to progressive (front to back) motion and are inhibited by motion in the reverse direction, the preferred and null direction being antiparallel. The amplitudes of motion induced excitatory and inhibitory responses decline like a cosine function with increasing deviation of the direction of motion from the preferred direction. Stimulation with motion in directions perpendicular to the preferred direction is ineffective. 3. The preferred directions of the horizontal cells show characteristic gradual orientation changes in different parts of the receptive fields: they are horizontally oriented only in the equatorial region and increasingly tilted vertically towards the dorsofrontal and ventrofrontal margins of the visual field. These orientation changes can be correlated with equivalent changes in the local orientation of the lattice of ommatidial axes in the pertinent compound eye. 4. The response amplitudes of the horizontal cells under stimulation with a moving periodic grating depend strongly on the contrast frequency of the stimulus. Maximal responses were found at contrast frequencies of 2–5 Hz. 5. The spatial integration properties of the horizontal cells (studied in the HSE) are highly nonlinear. Under stimulation with extended moving patterns, their response amplitudes are nearly independent of the size of the stimuli. It is demonstrated that this response behaviour does not result from postsynaptic saturation in the dendrites of the cells. The results indicate that the horizontal system is essentially involved in the neural control of optomotor torque responses performed by the fly in order to minimize unvoluntary deviations from a straight flight course.  相似文献   

12.
Multiple sequence alignments are powerful tools for understanding the structures, functions, and evolutionary histories of linear biological macromolecules (DNA, RNA, and proteins), and for finding homologs in sequence databases. We address several ontological issues related to RNA sequence alignments that are informed by structure. Multiple sequence alignments are usually shown as two-dimensional (2D) matrices, with rows representing individual sequences, and columns identifying nucleotides from different sequences that correspond structurally, functionally, and/or evolutionarily. However, the requirement that sequences and structures correspond nucleotide-by-nucleotide is unrealistic and hinders representation of important biological relationships. High-throughput sequencing efforts are also rapidly making 2D alignments unmanageable because of vertical and horizontal expansion as more sequences are added. Solving the shortcomings of traditional RNA sequence alignments requires explicit annotation of the meaning of each relationship within the alignment. We introduce the notion of “correspondence,” which is an equivalence relation between RNA elements in sets of sequences as the basis of an RNA alignment ontology. The purpose of this ontology is twofold: first, to enable the development of new representations of RNA data and of software tools that resolve the expansion problems with current RNA sequence alignments, and second, to facilitate the integration of sequence data with secondary and three-dimensional structural information, as well as other experimental information, to create simultaneously more accurate and more exploitable RNA alignments.  相似文献   

13.
Responses to light recorded by means of intracellular microelectrodes in isolated heads kept in oxygenated Ringer solution consist of a slow depolarization. Light adaptation increases the rates of depolarization and repolarization and decreases the amplitude of the response. Qualitatively these changes are similar to those observed in Limulus by Fuortes and Hodgkin. They are rapidly reversible during dark adaptation. In retinula cells of the drone eye a large single spike is recorded superimposed on the rising phase of the slow potential. The spike is a regenerative phenomenon; it can be triggered with electric current and is markedly reduced, sometimes abolished by tetrodotoxin. In rare cases cells were found which responded to light with a train of spikes. This behavior was only found under "unusual" experimental conditions; i.e., towards the end of a long experiment, during impalement, or at the beginning of responses to steps of strongly light-adapted preparations.  相似文献   

14.
Laboratory studies of the behavior of first stage zoea larvae of the sand crab Emerita analoga Stimpson have shown that while newly-hatched larvae are strongly photopositive, this response lasts only about four hours, as the larvae rapidly become photonegative. After becoming photonegative, a large proportion of the larvae remain so throughout the first four days of life if they are fed Artemia nauplii; if starved, the larvae become significantly more photopositive than when fed. Both the photopositive response of newly-hatched larvae and the reversal to photopositive behavior in response to starvation are only apparent under horizontal test conditions. Increases in hydrostatic pressure stimulate swimming activity among the larvae; responsiveness to pressure being greatest at hatching and decreasing thereafter. The pressure response is strongly oriented to light; pressure-stimulated larvae will swim towards a light source regardless of whether this involves upward, downward, or horizontal motion. Experiments suggest that the pressure response provides the primary mechanism for depth regulation among young larvae; gravity and light may augment the pressure ‘sense’ by serving as primary orientational cues. The nutritional status of an individual larva may alter its depth-regulatory capabilities, but this effect is not yet clear.  相似文献   

15.
Although the extraocular muscles contain stretch receptors it is generally believed that their afferents exert no influence on the control of eye movement. However, we have shown previously that these afferent signals reach various brainstem centres concerned with eye movement, notably the vestibular nuclei, and that the decerebrate pigeon is a favourable preparation in which to study their effects. If the extraocular muscle afferents do influence oculomotor control from moment-to-moment they should exert a demonstrable effect on the oculomotor nuclei. We now present evidence that extraocular muscle afferent signals do, indeed, alter the responses of units in an oculomotor nucleus (the abducens, VI nerve nucleus, which supplies the lateral rectus muscle) to horizontal, vestibular stimulation induced by sinusoidal oscillation of the bird. Such stimuli evoke a vestibulo-ocular reflex in the intact bird. The extraocular stretch receptors were activated by passive eye movement within the pigeon's saccadic range; such movements modified the vestibular responses of all 19 units studied which were all, histologically, in the abducens nucleus. The magnitude of the effects, purely inhibitory in 15 units, depended both on the amplitude and the velocity of the eye movement and most units showed selectivity for particular combinations of plane (e.g. horizontal versus vertical) and direction (e.g. rostral versus caudal) of eye movement. The results show that an afferent signal from the extraocular muscles influences vestibularly driven activity in the abducens nucleus to which it carries information related to amplitude, velocity, plane and direction of eye movement in the saccadic range. They thus strongly support the view that extraocular afferent signals are involved in the control of eye movement.  相似文献   

16.
Stabilizing responses to sideslip disturbances are a critical part of the flight control system in flies. While strongly mediated by mechanoreception, much of the final response results from the wide-field motion detection system associated with vision. In order to be effective, these responses must match the disturbance they are aimed to correct. To do this, flies must estimate the velocity of the disturbance, although it is not known how they accomplish this task when presented with natural images or dot fields. The recent finding, that motion parallax in dot fields can modulate stabilizing responses only if perceived below the fly, raises the question of whether other image statistics are also processed differently between eye regions. One such parameter is the density of elements moving in translational optic flow. Depending on the habitat, there might be strong differences in the density of elements providing information about self-motion above and below the fly, which in turn could act as selective pressures tuning the visual system to process this parameter on a regional basis. By presenting laterally moving dot fields of different densities we found that, in Drosophila melanogaster, the amplitude of the stabilizing response is significantly affected by the number of elements in the field of view. Flies countersteer strongly within a relatively low and narrow range of element densities. But this effect is exclusive to the ventral region of the eye, and dorsal stimuli elicit an unaltered and stereotypical response regardless of the density of elements in the flow. This highlights local specialization of the eye and suggests the lower region may play a more critical role in translational flight stabilization.  相似文献   

17.
While most of the recent improvements in multiple sequence alignment accuracy are due to better use of vertical information, which include the incorporation of consistency-based pairwise alignments and the use of profile alignments, we observe that it is possible to further improve accuracy by taking into account alignment of neighboring residues when aligning two residues, thus making better use of horizontal information. By modifying existing multiple alignment algorithms to make use of horizontal information, we show that this strategy is able to consistently improve over existing algorithms on a few sets of benchmark alignments that are commonly used to measure alignment accuracy, and the average improvements in accuracy can be as much as 1–3% on protein sequence alignment and 5–10% on DNA/RNA sequence alignment. Unlike previous algorithms, consistent average improvements can be obtained across all identity levels.  相似文献   

18.
Summary The previously derived optical demands for the neural superposition eye are experimentally tested in the compound eye ofMusca domestica L. The optical requirements are fulfilled except in the marginal regions.Taking into account the gradient in spatial packing density of ommatidial axes in a horizontal direction the expected torque response of the fly is calculated and compared with results obtained by Reichardt (1973). The similarity of the curves suggests that existing gradients in the part of the neural network serving this orientation behaviour may be negligible with respect to the studied geometrical gradient.  相似文献   

19.
Responses of caudate neurons to two kinds of visual stimuli, namely diffuse light and a more local stimulus (a slit of light), oriented in different directions on a screen, were studied in alert cats during natural fixation of the gaze. The number of neurons which responded to local stimulation was several times greater than the number responding to diffuse light. Besides on-responses to local stimulation, a more distinct phase of inhibition of activity during presentation of the stimulus and off-responses also appeared. The latent periods of responses to both kinds of stimulation were commensurate at 40–90 msec for most neurons. Differences in neuronal responses also were found on a change in orientation of the slit. The results are discussed from the standpoint of participation of the caudate nucleus in visual information analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号