首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The female silkworm, Bombyx mori, rapidly accumulates two storage proteins, that are synthesized by the fat body, in the haemolymph during the feeding stage of the last-larval instar, and then sequesters them from the haemolymph into fat body during the larval-pupal transformation.The rapid synthesis and uptake of storage proteins by the fat body are shown to be induced by allatectomy in the early-penultimate larval instar. A juvenile hormone analogue, methoprene, is highly effective in inhibiting the allatectomy-induced synthesis, and, in a higher dosage, further blocks the uptake. Allatectomy in the late-penultimate larval instar shortly before moulting does not enhance the storage protein synthesis, but causes the uptake to occur two days earlier in the last-larval instar. Injection of 20-hydroxyecdysone is not stimulatory for synthesis of the proteins, but is effective to induce their uptake. Starvation during the early last-larval instar completely blocks the synthesis.From these results, it is suggested that storage protein synthesis is induced in the absence of juvenile hormone by some supplementary stimulus, possibly the supply of nutrient after feeding, and uptake is induced by ecdysteroids after a decline in the juvenile hormone level.  相似文献   

2.
1. Two major proteins (P1 and P2) are synthesized by the fifth instar larval fat body of Manduca sexta and then released into the hemolymph. 2. These proteins are later sequestered by the pre-pupal fat body. 20-Hydroxyecdysone does not appear to affect the synthesis of either protein. 3. When day 2 fifth instar larvae are neck-ligated there is an excessive synthesis (supersynthesis) of P2 (arylphorin). 4. Juvenile hormone I (JH I) applications to ligated animals had no effect, but brain homogenate injections resulted in the inhibition of P2 synthesis. 5. Neck ligations of larvae between days 5 and 6 revealed a head critical period between day 5 + 12 hr and day 5 + 18 hr, after which the head is unnecessary for the sequestration of either protein by the fat body. 6. JH I and JH III applications to ligated larvae before the head critical period do not restore the ability of the fat body to sequester the storage proteins. 7. P1 and P2 appear to be synthesized differentially and P2 is sequestered by the fat body to a much lesser extent than P1. 8. P2 is the hemolymph storage protein of both larval and pupal stages, whereas P1 appears to be the storage protein of the pupal fat body. 9. The data indicate that the synthesis of arylphorin and the resorption of both proteins are controlled by a putative head factor(s).  相似文献   

3.
Evidence is presented here to show that 20-hydroxyecdysone is essential for the activation of the larval fat body for differential uptake of larval haemolymph proteins (LHPs). By using radiolabelled LHPs it is shown that the fat body cells of Corcyra cephalonica selectively incorporate LHPs during late-larval and prepupal development. Fluorographic analysis of the labelled fat body proteins from prepupal stage separated on sodium dodecyl-sulphate polyacrylamide gels suggests that the LHPs are sequestered without any degradation. Although, during the last larval instar the uptake of all the three LHPs (LHP 1, LHP 2 and LHP 3) by the fat body cells is very low, 20-hydroxyecdysone treatment of early, mid or late-last instars causes a significant increase in uptake of all the three LHPs. However, the response to hormone treatment was more pronounced in late-last instar when compared to early and mid-last instar.  相似文献   

4.
5.
Biliverdin-binding vitellogenin (Vg) was purified from adult female hemolymph of the common cutworm, Spodoptera litura, by using gel filtration and ion exchange chromatographies. The molecular mass of the protein was 490 kDa and it was composed of two 188-kDa subunits. Three internal amino acid sequences obtained by digestion of the protein with lysylendopeptidase showed high similarity to those of Bombyx mori Vg, supporting the purified blue protein to be vitellogenin. latroscan analyses demonstrated the presence of biliverdin in Vg that occupied 2.4% of total lipid components. Among the lipids of Vg (9.5 micrograms total lipids per 100 micrograms protein), diacylglycerol was the most predominant, followed by phospholipid, hydrocarbons, and then triacylglycerol, while in biliverdin-binding proteins (BPs) purified from larval hemolymph (3.1 micrograms total lipids per 100 micrograms protein), phospholipid was the most abundant lipid followed by diacylglycerol; hydrocarbons and triacylglycerol were minor components. Vg was first detected in the hemolymph of female pupae one day before eclosion, but injection of 5 micrograms of methoprene into a 3-day-old pupa induced Vg in the hemolymph 4 days earlier than in the control. Methoprene also induced a faster decline in BP-A and BP-B titers in the hemolymph with a corresponding increase of the Vg titer. These results suggest that juvenile hormone (JH) induces not only vitellogenesis but also the uptake of these proteins by stimulating the metamorphosis of fat body during the pupal stage.  相似文献   

6.
Protein metabolism in salivary glands, gut, haemolymph, and fat body during the last larval instar of the blowfly, Calliphora erythrocephala, has been investigated. In salivary glands, protein release, protein synthesis, amylase, and pepsin-like protease activity were maximal in 6 day larvae, this being at a time when the larvae had finished feeding. All these functions declined in glands from the rounded-off white puparial stage (R.O.) while acid phosphatase activity rose throughout the third instar to a maximum at the R.O. stage, Glands from 6 and 7 day larvae released protein which on disk gel electrophoresis separated into four minor bands and two major bands one of the latter possessing protease activity.In the gut, pepsin-like protease activity was maximal in 4 day larvae after which it fell rapidly thus following the feeding pattern of the larva in contrast to that in the salivary glands which did not.In vitro experiments showed that protease was released from 6 day glands through the basal membrane of the cells and not via the duct. A pepsin-like protease was also found in the haemolymph and fat body, the activity in the fat body rising rapidly during the latter part of the third instar, a rise which is attributed to the fat body sequestering protease from the haemolymph. Acid phosphatase activity in the fat body was maximal in 5 day larvae indicating that this enzyme was synthesized early in the third instar. It was shown that fat body sequestered 14C-labelled protein synthesized by and released from the salivary glands, most of the 14C activity being associated with a 600 g precipitable, acid-phosphatase rich fraction.It is proposed that in late third instar larvae the salivary glands function as glands of internal secretion, releasing protease into the haemolymph, which is then sequestered by the fat body (and perhaps other tissues) and is subsequently used in the lysis of the tissues at the time of metamorphosis.  相似文献   

7.
Insect molting involves many molecular processes, such as protein degradation and protein synthesis in the epidermis. Various proteins have been implicated in these processes. The differentially expressed proteins during larval molting of Helicoverpa armigera were investigated using two-dimensional electrophoresis (2-D-PAGE) and matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALTI-TOF-MS). Four larval tissues sampled during molting and feeding were examined. Seventy-seven differentially expressed proteins were identified in these tissues, including 20 proteins from the fifth-molting epidermis (fifth instar molting to sixth instar), 36 proteins from the fifth-molting hemolymph, and 21 from the fifth-molting fat bodies. No obviously different spots were identified from the fifth-molting midgut under these experimental conditions. After application of MALTI-TOF-MS and similarity analysis comparing results to a Drosophila protein database, 30 proteins were identified: 10 proteins from the fifth-molting epidermis, 11 proteins from the hemolymph, and 9 proteins from fat bodies. These proteins were separated into 5 groups according to their probable functions, such as enzymes, regulators, protein hydrolases, receptors, and proteins with unknown functions. These differentially expressed proteins were proposed to be involved in the Helicoverpa molting cascade.  相似文献   

8.
9.
Studies of synthesis and accumulation of the two storage proteins arylphorin and female-specific protein (FSP) during the final two larval instars of the tobacco hornworm showed both stage and temporal specificity. Arylphorin was present in both stages, but its synthesis ceased during the molt, during starvation, and at the wandering stage, and then resumed about 24 hr after the onset of feeding. During the larval molt about 25% of injected iodinated arylphorin was incorporated into the newly forming fifth instar cuticle. The cessation of arylphorin synthesis was mimicked by exposure of the fat body to 1 microgram/ml 20-hydroxyecdysone (20HE) in complete Grace's medium or to dilutions of Grace's medium greater than 50%. Lower concentrations of 20HE were ineffective, indicating that the cessation of synthesis in vivo was likely due to a combination of lack of excess nutrients and the hormonal milieu. The female-specific protein was not synthesized until the final larval instar, appearing first in females on Day 2 and later in males at the time of wandering, with synthesis continuing throughout the prepupal period. In vitro studies showed that this protein was synthesized as a 620-kDa protein, and then during secretion a 730-kDa immunoreactive form also appeared. Synthesis of FSP was inhibited by exposure of Day 2 fat body to 1 microgram/ml 20HE for 24 hr. Ligation followed by 20HE infusion showed that the disappearance of FSP from the hemolymph during the prepupal period was controlled by the rising ecdysteroid titer.  相似文献   

10.
Two insect storage proteins, OfSP1 (75 kDa) and OfSP2 (72 kDa), were purified using three different chromatographies from the hemolymph of Omphisa fuscidentalis larvae during diapause, and their genes were cloned. OfSP1 and OfSP2 concentrations in the hemolymph were high during diapause. During pupation, OfSP1 levels decreased in the male hemolymph and disappeared from the female hemolymph. OfSP1 and OfSP2 mRNA levels in the fat bodies were low during the third instar, but increased greatly during the fourth and fifth larval instars. During diapause, mRNA expression continued at a lower level than during the feeding period. The injection of 20-hydroxyecdysone (20E) into diapausing larvae caused an increase in OfSP1 and OfSP2 mRNA levels 2-3 days post-injection, followed by a decrease in expression until pupation, which occurred 2-4 days thereafter. When larvae were treated with juvenile-hormone analog (JHA), OfSP1 and OfSP2 mRNA levels gradually decreased until the onset of pupation. In Omphisa, OfSP1 and OfSP2 proteins are produced and released by the larval fat bodies in the fourth and fifth-instar larvae, and the proteins accumulate in the hemolymph until the insects enter diapause. OfSP1 may be reabsorbed by the fat bodies at the end of diapause for subsequent re-use during pupation.  相似文献   

11.
The carbohydrate metabolism in Manduca sexta underwent significant changes during late larval development. Approximately 10% of fat body glycogen phosphorylase was active during the feeding period of the 5th instar, pharate-pupal development and after the pupal moult; it is concluded that glycogen synthesis prevailed. During the last larval and the pupal moult, as well as the wandering stage the percentage of active phosphorylase was significantly increased indicating that fat body glycogen stores were broken down to supply substrates to meet the demands of carbohydrate metabolism. In the course of the last larval moult and the wandering stage the fat body glycogen content decreased significantly from about 300 to about 200 μg mg−1 dry mass substantiating that carbohydrates were released from the fat body. Prior to phosphorylase activation, the concentrations of total haemolymph sugars decreased significantly from about 12 to about 6 mg trehalose equivalents ml−1 (last larval moult) and from about 18 to about 12 mg ml−1 (wandering stage), and increased again slightly when phosphorylase was activated. The haemolymph glucose concentration decreased significantly from about 1.1 to 0.3 mg ml−1 (last larval moult) and in the course of the 5th-instar feeding period from about 1.1 to 0.2 mg ml−1, and remained at this level until the beginning of adult development. The amount of chitosan present in the cuticle increased steadily during the feeding period of the 5th instar from about 10 to 110 mg. It appears that fat body glycogen might be broken down during the last larval moult and the wandering period to provide substrates for chitin synthesis. A dramatic decrease in the amount of chitosan was observed prior to the pupal moult.  相似文献   

12.
The proteins of the fat body of non-diapausing, pre-diapausing, and newly-diapaused larvae of the southwestern corn borer, Diatraea grandiosella, were examined. Since a low titre of juvenile hormone (JH) is present in the haemolymph throughout the final instar of non-diapausing larvae, the hormone does not appear to stimulate the pre-metamorphic synthesis of proteins. In contrast, the high titre of JH in the haemolymph during the final instar of pre-diapausing larvae appears to stimulate the synthesis of selected proteins. For example, pre-diapausing larvae store in their fat body a low molecular weight protein which has been named the ‘diapause-associated protein’. When non-diapausing larvae were treated topically with C17-JH or a JH mimic, from 50 to 70% entered a diapause-like state as fully grown larvae. These hormone-treated larvae accumulated the diapause-associated protein and a high molecular weight protein in their fat bodies. Both of these proteins were shown to be released from the fat body of newly-diapaused larvae in vitro, and may function in the haemolymph during diapause. The high molecular weight protein, isolated from the haemolymph, was shown to contain neutral and polar lipids, including biochromes. Its storage in the fat body and release into the haemolymph may be essential for the transport of lipids during diapause. The fat body proteins of newly-diapaused larvae of the southern cornstalk borer, Diatraea crambidiodes, were also examined electrophoretically. They were found to contain a similar protein pattern to that of D. grandiosella, including the presence of a diapause-associated protein.  相似文献   

13.
Levels of uric acid in the whole body of the tobacco hornworm, Manduca sexta increased steadily for the 9 days of the fifth instar. However, concentrations in the haemolymph were lowest during the transition from the feeding stage to the wandering stage (days 3, 4), the time when there was a switch from uric acid excretion by the Malpighian tubule-hindgut system to storage in the fat body. Haemolymph volumes, determined for larvae between 2 and 6 days into the fifth instar by isotope dilution with [14C]-inulin, were used to calculate rates of incorporation of uric acid into Malpighian tubules and fat body of larvae injected with [14C]-uric acid. These labelling studies indicated that the Malpighian tubules ceased to remove uric acid from the haemolymph some time between the last 6 hr of day 3 of the fifth instar and the first 18 hr of day 4. At the same period, fat body removed significant quantities of uric acid from the haemolymph. The times of initial decreases and increases in levels of uric acid in haemolymph and fat body, respectively, indicated that storage in the fat body started before cessation of elimination via the Malpighian tubule-hindgut system.  相似文献   

14.
The accumulation and utilization of storage proteins are prominent events linked to the metamorphosis of holometabolous insects. The female-specific storage protein 1 (SP1) is the major storage protein found in the hemolymph and fat body of female larvae of the groundnut pest, Amsacta albistriga. Here we show SP1 expression and localization in differentiated fat body tissues using biochemical and immunohistochemistry scrutiny. Comparison of A. albistriga SP1 with that of other species with respect to amino acid composition and N-terminal sequences show that SP1 is a methonine-rich protein and its identity was confirmed by means of immunoblot analysis. Northern blot studies revealed that the SP1 gene demonstrates stage- and tissue-specific expression in the peripheral fat body cells during the mid-larval period of fifth instar of A. albistriga. During the larval pupal transformation, SP1 are sequestered mainly by the perivisceral fat body tissues, until they serve the purpose of supplying amino acids for the production of egg yolk proteins. Further, electron microscopic studies using immunogold tracer techniques confirmed the localization of crystalline SP1 reserves, stored in the perivisceral fat body tissues. Hence, the peripheral fat body is responsible for biosynthesis of storage proteins, whereas the perivisceral fat body is a specialized storage organ.  相似文献   

15.
16.
Summary The accumulation of major haemolymph proteins (a group of proteins immunologically related to Calliphorin) their biosynthesis in vivo and in organ culture as well as their secretion, has been studied during the late larval stages and white pupae of the Mediterranean fruit flyCeratitis capitata. The accumulation of major haemolymph proteins in the haemolymph, shows a twenty fold increase from the 4-day old larvae to the white pupae stage, while in the fat body there is only a seven fold increase. It is evident from the in vivo and organ culture studies, that the major haemolymph proteins are synthesized during the late larval stage and their synthesis declines abruptly during the stage of white pupae. It seems also that each polypeptide has its own characteristic developmental kinetics of synthesis. The major haemolymph proteins are synthesized in the fat body and are very quickly secreted into the haemolymph.  相似文献   

17.
The levels of an 81K storage protein in the waxmoth, Galleria mellonella, were monitored during the course of development using rocket immunoelectrophoresis. During the fifth and sixth larval stadia, 81K protein levels increased during feeding and growth but sharply declined at each larval molt. During the fifth and sixth stadia hemolymph levels of the 81K protein increased to about 1 and 2.5 mg/ml, respectively, with no discernible differences between levels in males and females. Neither the fat body nor the remainder of the carcass contained the 81K protein, indicating that the accumulation of this protein during the intermolt period was exclusively in the hemolymph and redistribution of the 81K protein into other tissues does not occur at the final two larval molts. During the seventh (final) larval stadium the absolute quantities of the 81K protein increased from 23 μg per insect to over 1,600 μg in females and to 300 μg in males. The hemolymph concentration of the 81K protein reached 28 mg/ml in females and 6 mg/ml in males with only low levels found in the remaining tissues. Shortly after pupal apolysis, marked by eyespot retraction, the fat body in both sexes rapidly and quantitatively sequestered the 81K protein from the hemolymph. The 81K protein in the hemolymph of both males and females rapidly dropped to nearly zero concentration by pupation. The 81K storage protein remained localized in the fat body cells after uptake occurred, even though the fat body cells disaggregate and reaggregate during metamorphosis. During pharate adult development the 81K storage protein disappeared from the fat body without entering the hemolymph. At adult eclosion 81K was virtually absent from the tissues of both males and females.  相似文献   

18.
The level of apolipophorin-III reached a maximum in the haemolymph of Galleria mellonella at the end of the feeding phase of the seventh larval instar and declined to a plateau value in the pupal and the adult stages. Apolipophorin-III was detected immunologically in fat body tissue, haemocyte lysates, and plasma. In its native state, apolipophorin-III may be associated with another protein with an apparent molecular mass of 77 kDa, possibly apolipophorin-II. Injections of octopamine did not cause lipid loading of high density lipophorin.  相似文献   

19.
《Insect Biochemistry》1986,16(2):327-331
When [14C]glucose was injected into the last instar larvae of the silkworm, Bombyx mori, the label was incorporated into various tissues at varying degrees depending on the developmental stages. Fat body exhibited high incorporation rates throughout the feeding periods. Silk glands became active in incorporation but midgut decreased toward larval maturation. The pulse labeling experiment clearly demonstrated that the metabolic shift from lipogenesis to glycogenesis occurred in fat body at the middle of the last instar; a predominant incorporation was found in lipids when [14C]glucose was injected at the early stage, while at the late stage glycogen synthesis became most active. Incorporation into fat body proteins was not a major factor throughout the instar. Extirpation of silk glands enhanced incorporation into glycogen and proteins at the late stage but did not affect lipid synthesis. Long-term chase showed that fat body lipids and proteins synthesized at the early stage were totally carried over into the pupal fat body, while much glycogen produced at the late stage was used during the larval-pupal transformation with the remainder carried over into the pupa.From these results the metabolic shift from lipogenesis to glycogenesis in fat body is discussed in relation to the storage function of the fat body for pupal metamorphosis.  相似文献   

20.
From the first day of the last (fourth) larval instar no trace of juvenile hormone (JH) can be detected in the haemolymph by Galleria bioassay. Three specific diapause proteins, which are also found in diapausing adults, appear in the haemolymph. These proteins disappear towards the end of the pupal stage. Study of the ultrastructure of the fat body revealed the formation from lysosomes of proteinaceous bodies which are also characteristic for adult diapause. The behaviour of last instar larvae and pupae resembles that of prediapausing and diapausing adults respectively. Injection of synthetic JH delays the appearance of the diapause proteins in the haemolymph and of proteinaceous bodies in the fat body for 2 to 3 days. The absence of JH seems to trigger off these diapause phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号