首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
3.
4.
We report experimental evidence that BRCA1, a breast and ovarian cancer susceptibility gene, is up-regulated in response to prolactin (PRL) stimulation. Expression of the BRCA1 gene was monitored in 2 human breast cancer cell lines (MCF-7 and T-47D) and in the normal mammary epithelial cell line MCF10a. Using competitive RT-PCR, we have shown that PRL induced an increase in BRCA1 mRNA level in MCF-7 and T-47D cell lines at a dose resulting in the maximal enhancement of cell proliferation. The up-regulation was 12-fold in MCF-7 cells and 2-fold in T-47D cells. No increase in BRCA1 mRNA level was observed in the MCF10a cell line. The level of BRCA1 protein was quantified using an affinity chromatography strategy. At the protein level, PRL treatment induced a 4-fold increase of BRCA1 protein expression in MCF-7 and a 6-fold increase in T-47D cells, whereas BRCA1 protein expression was not affected by PRL in MCF10a.  相似文献   

5.

Introduction

Women with HER2+ or triple negative/basal-like (TN/BL) breast cancers succumb to their cancer rapidly due, in part to acquired Herceptin resistance and lack of TN/BL-targeted therapies. BRCA1-IRIS is a recently discovered, 1399 residue, BRCA1 locus alternative product, which while sharing 1365 residues with the full-length product of this tumor suppressor gene, BRCA1/p220, it has oncoprotein-like properties. Here, we examine whether BRCA1-IRIS is a valuable treatment target for HER2+ and/or TN/BL tumors.

Methodology/Principal Findings

Immunohistochemical staining of large cohort of human breast tumor samples using new monoclonal anti-BRCA1-IRIS antibody, followed by correlation of BRCA1-IRIS expression with that of AKT1, AKT2, p-AKT, survivin and BRCA1/p220, tumor status and age at diagnosis. Generation of subcutaneous tumors in SCID mice using human mammary epithelial (HME) cells overexpressing TERT/LT/BRCA1-IRIS, followed by comparing AKT, survivin, and BRCA1/p220 expression, tumor status and aggressiveness in these tumors to that in tumors developed using TERT/LT/RasV12-overexpressing HME cells. Induction of primary and invasive rat mammary tumors using the carcinogen N-methyl-N-nitrosourea (NMU), followed by analysis of rat BRCA1-IRIS and ERα mRNA levels in these tumors.High BRCA1-IRIS expression was detected in the majority of human breast tumors analyzed, which was positively correlated with that of AKT1-, AKT2-, p-AKT-, survivin, but negatively with BRCA1/p220 expression. BRCA1-IRIS-positivity induced high-grade, early onset and metastatic HER2+ or TN/BL tumors. TERT/LT/BRCA1-IRIS overexpressing HME cells formed invasive subcutaneous tumors that express high AKT1, AKT2, p-AKT and vimentin, but no CK19, p63 or BRCA1/p220. NMU-induced primary and invasive rat breast cancers expressed high levels of rat BRCA1-IRIS mRNA but low levels of rat ERα mRNA.

Conclusion/Significance

BRCA1-IRIS overexpression triggers aggressive breast tumor formation, especially in patients with HER2+ or TN/BL subtypes. We propose that BRCA1-IRIS inhibition may be pursued as a novel therapeutic option to treat these aggressive breast tumor subtypes.  相似文献   

6.
7.
A major contributing factor to the development of breast cancer is decreased functional expression of breast cancer susceptibility gene 1, BRCA1. Another key contributor to tumorigenesis is hypoxia. Here we show that hypoxia increased the nuclear localization of BRCA1 in MCF-7 and MDA-MB-468 human breast cancer cell lines without changing its steady-state expression level. Nuclear accumulation of BRCA1 was not evident in MCF-12A or HMEC (human mammary epithelial cell) nonmalignant mammary epithelial cells under the same conditions. Hypoxia also increased the cell surface expression of TRAIL on MDA-MB-468 cells. Neutralization of TRAIL precluded the hypoxia-induced accumulation of BRCA1 in the nucleus, whereas exogenously administered TRAIL mimicked the effect. Treatment of MDA-MB-468 cells with TRAIL resulted in a dose- and time-dependent increase in apoptosis. Furthermore, TRAIL-induced apoptosis in HCC1937 cells, which harbor a BRCA1 mutation, increased synergistically when wild-type BRCA1 was reconstituted in the cells, and downregulation of BRCA1 expression in MDA-MB-468 cells reduced the apoptotic response to TRAIL. These data provide a novel link between hypoxia, TRAIL and BRCA1, and suggest that this relationship may be especially relevant to the potential use of TRAIL as a chemotherapeutic agent.  相似文献   

8.
9.
Germ line mutations in the breast cancer susceptibility gene BRCA1 account for the increased risk of early onset of familial breast cancer, whereas overexpression of the ErbB family of receptor tyrosine kinases has been linked to the development of nonfamilial or sporadic breast cancer. To analyze whether there is a link between these two regulatory molecules, we studied the effects of ErbB-2 activation by heregulin (HRG) on BRCA1 function. It was previously demonstrated that HRG induced the phosphorylation of BRCA1, which was mediated by the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Since altered interaction between cells and the surrounding extracellular matrix (ECM) is a common feature in a variety of tumors and since ECM modulates intracellular signaling, we hypothesized that ECM may affect the expression and HRG-dependent phosphorylation of BRCA1. Following stimulation by HRG, a strong increase in [(3)H]thymidine incorporation was observed in human T47D breast cancer cells seeded on plastic (PL). When T47D cells were seeded on laminin (LAM) or Matrigel, HRG induced a significantly higher proliferation than it did in cells seeded on PL. T47D cells seeded on poly-L-lysine had an abrogated mitogenic response, indicating the involvement of integrins in this process. HRG treatment induced a transient phosphorylation of BRCA1 that was enhanced in T47D cells grown on LAM. LAM-enhanced BRCA1 phosphorylation was mediated through alpha(6) integrin upon HRG stimulation. Accordingly, T47D cells grown on LAM had the greatest increase in ErbB-2 activation, PI3K activity, and phosphorylation of Akt. A similar pattern of BRCA1 mRNA expression was observed when T47D cells were seeded on PL, LAM, or COL4. There was a significant decrease in the steady state of the BRCA1 mRNA level on both the LAM and COL4 matrices compared to that for cells seeded on PL. In addition, HRG stimulation caused a significant decrease in BRCA1 mRNA expression that was dependent on protein synthesis. Pretreatment with both the calpain inhibitor ALLN (N-acetyl-Leu-Leu-norleucinal) and the proteosome inhibitor lactacystin inhibited the HRG-induced down-regulation of BRCA1 mRNA expression. Likewise, there was a strong decrease in the protein level of BRCA1 in T47D cells 4 h after treatment with HRG compared to its level in control nontreated T47D cells. Pretreatment with the proteosome inhibitors ALLN, lactacystin, and PSI [N-benzyloxycarbonyl-Ile-Glu-(O-t-butyl)-Ala-leucinal] inhibited also the HRG-induced down-regulation of BRCA1 protein in breast cancer cells. Interestingly, BRCA1 mRNA expression in HCC-1937 breast cancer cells, which express C-terminally truncated BRCA1, was not affected by either LAM or CL4. No phosphorylation of BRCA1 from HCC-1937 cells was observed in response to HRG. While Cdk4 phosphorylated wild-type BRCA1 in response to HRG in T47D cells, Cdk4 failed to phosphorylate the truncated form of BRCA1 in HCC-1937 cells. Furthermore, overexpression of wild-type BRCA1 in HCC-1937 cells resulted in the phosphorylation of BRCA1 and decreased BRCA1 expression upon HRG stimulation while overexpression of truncated BRCA1 in T47D cells resulted in a lack of BRCA1 phosphorylation and restoration of BRCA1 expression. These findings suggest that ECM enhances HRG-dependent BRCA1 phosphorylation and that ECM and HRG down-regulate BRCA1 expression in breast cancer cells. Furthermore, ECM suppresses BRCA1 expression through the C terminus of BRCA1.  相似文献   

10.
人类乳癌易感基因1(BRCA1)是乳癌,卵巢癌和前列腺癌的危险因素之一,而且表现出许多的生物功能,采用Western Blotting和半定量RT-PCR的方法,我们检测了内源性BRCA1蛋白质和mRNA在从十一种人类肿瘤组织中建立的四十三种肿瘤细胞系的表达水平。在不同的肿瘤细胞中BRCA1的表达水平是各不一样的。而且并没有发现BRCA1的表达和细胞的内源性p53基因状况有明显的相关性。通过采用细胞转染乳头状瘤病毒-E6致癌基因或采用畸变的p53基因(143Ala→Val)而导致的p53基因功能失活并不对内源性BRCA1本底表达水平产生任何的影响,胆两种与p53功能有关p21(-/-)和Gadd45基因剔除则轻微地增加BRCA1蛋白质的表达。因此,虽然我们目前还不清楚BRCA1在人类肿瘤细胞中不同表达的功能意义,但本文的结果为进一步研究BRCA1在不同种瘤细胞系的生物功能提供了有价值的背景资料。  相似文献   

11.
12.
13.
Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary breast cancer. Similarly, downregulation of BRCA1 protein expression is observed in the majority of basal-like breast cancers. Here, we set out to study the effects of BRCA1 mutations on oxidative stress in the tumor microenvironment. To mimic the breast tumor microenvironment, we utilized an in vitro co-culture model of human BRCA1-mutated HCC1937 breast cancer cells and hTERT-immortalized human fibroblasts. Notably, HCC1937 cells induce the generation of hydrogen peroxide in the fibroblast compartment during co-culture, which can be inhibited by genetic complementation with the wild-type BRCA1 gene. Importantly, treatment with powerful antioxidants, such as NAC and Tempol, induces apoptosis in HCC1937 cells, suggesting that microenvironmental oxidative stress supports cancer cell survival. In addition, Tempol treatment increases the apoptotic rates of MDA-MB-231 cells, which have wild-type BRCA1, but share a basal-like breast cancer phenotype with HCC1937 cells. MCT4 is the main exporter of L-lactate out of cells and is a marker for oxidative stress and glycolytic metabolism. Co-culture with HCC1937 cells dramatically induces MCT4 protein expression in fibroblasts, and this can be prevented by either BRCA1 overexpression or by pharmacological treatment with NAC. We next evaluated caveolin-1 (Cav-1) expression in stromal fibroblasts. Loss of Cav-1 is a marker of the cancer-associated fibroblast (CAF) phenotype, which is linked to high stromal glycolysis, and is associated with a poor prognosis in numerous types of human cancers, including breast cancers. Remarkably, HCC1937 cells induce a loss of Cav-1 in adjacent stromal cells during co-culture. Conversely, Cav-1 expression in fibroblasts can be rescued by administration of NAC or by overexpression of BRCA1 in HCC1937 cells. Notably, BRCA1-deficient human breast cancer samples (9 out of 10) also showed a glycolytic stromal phenotype, with intense mitochondrial staining specifically in BRCA1-deficient breast cancer cells. In summary, loss of BRCA1 function leads to hydrogen peroxide generation in both epithelial breast cancer cells and neighboring stromal fibroblasts, and promotes the onset of a reactive glycolytic stroma, with increased MCT4 and decreased Cav-1 expression. Importantly, these metabolic changes can be reversed by antioxidants, which potently induce cancer cell death. Thus, antioxidant therapy appears to be synthetically lethal with a BRCA1-deficiency in breast cancer cells and should be considered for future cancer prevention trials. In this regard, immunostaining with Cav-1 and MCT4 could be used as cost-effective biomarkers to monitor the response to antioxidant therapy.  相似文献   

14.
Karve TM  Preet A  Sneed R  Salamanca C  Li X  Xu J  Kumar D  Rosen EM  Saha T 《PloS one》2012,7(6):e37697
Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells.  相似文献   

15.
16.
Germline mutations of BRCA1 predispose women to breast and ovarian cancers. However, the downstream mediators of BRCA1 function in tumor suppression remain elusive. We found that human BRCA1-associated breast cancers have lower levels of SIRT1 than their normal controls. We further demonstrated that mammary tumors from Brca1 mutant mice have low levels of Sirt1 and high levels of Survivin, which is reversed by induced expression of Brca1. BRCA1 binds to the SIRT1 promoter and increases SIRT1 expression, which in turn inhibits Survivin by changing the epigenetic modification of histone H3. Absence of SIRT1 blocks the regulation of Survivin by BRCA1. Furthermore, we demonstrated that activation of Sirt1 and inhibition of Survivin expression by resveratrol elicit a more profound inhibitory effect on Brca1 mutant cancer cells than on Brca1-wild-type cancer cells both in vitro and in vivo. These findings suggest that resveratrol treatment serves as an excellent strategy for targeted therapy for BRCA1-associated breast cancer.  相似文献   

17.
Structural determinants of BRCA1 translational regulation   总被引:4,自引:0,他引:4  
  相似文献   

18.
BRCA1 is frequently down-regulated in breast cancer, the underlying mechanism is unclear. Here we identified DCAF8L1, an X-linked gene product, as a DDB1-Cullin associated Factor (DCAF) for CUL4 E3 ligases to target BRCA1 and BARD1 for proteasomal degradation. Forced expression of DCAF8L1 caused reduction of BRCA1 and BARD1, and impaired DNA damage repair function, conferring increased sensitivity to irradiation and DNA damaging agents, as well as Olaparib, a PARPi anticancer drug; while depletion of DCAF8L1 restored BRCA1 and suppressed the growth of its xenograft tumors. Furthermore, the expression of DCAF8L1 was induced in human H9 ES cells during transition from primed to naïve state when Xi chromosome was reactivated. Aberrant expression of DCAF8L1 was observed in human breast fibroadenoma and breast cancer. These findings suggest that CRL4DCAF8L1 is an important E3 ligase that may participate in the development of breast cancer, probably through regulating the stability of BRCA1 and BARD1 tumor suppressor, linking BRCA1 and X chromosome inactivation to breast carcinogenesis.  相似文献   

19.
BRCA1 and BRCA2 mutations are responsible for most familial breast carcinomas. Recent reports carried out in non-cancerous mouse BRCA1- or BRCA2-deficient embryonic stem (ES) cells, and hamster BRCA2-deficient cells have demonstrated that the targeted inhibition of poly(ADP-ribose) polymerase (PARP-1) kills BRCA mutant cells with high specificity. Although these studies bring hope for BRCA mutation carriers, the effectiveness of PARP-1 inhibitors for breast cancer remains elusive. Here we present the first in vivo demonstration of PARP-1 activity in BRCA1-deficient mammary tumors and describe the effects of PARP-1 inhibitors (AG14361, NU1025, and 3-aminobenzamide) on BRCA1-deficient ES cells, mouse and human breast cancer cells. AG14361 was highly selective for BRCA1-/- ES cells; however, NU1025 and 3-aminobenzamide were relatively non-selective. In allografts of na?ve ES BRCA1-/- cells there was either partial or complete remission of tumors. However, in allografts of mouse, BRCA1-/- mammary tumors, there was no tumor regression or remission although a partial inhibition of tumor growth was observed in both the BRCA1-/- and BRCA1+/+ allografts. In human tumor cells, PARP-1 inhibitors showed no difference in vitro in limiting the growth of mammary tumors irrespective of their BRCA1 status. These results suggest that PARP-1 inhibitors may non-specifically inhibit the growth of mammary tumors.  相似文献   

20.
BRCA1 tumor suppressor regulates crucial cellular processes involved in DNA damage repair and cell cycle control. We showed that expression of BCR-ABL1 correlates with decreased level of BRCA1 protein, which promoted aberrant mitoses and aneuploidy as well as altered DNA damage response. Using polysome profiling and luciferase-BRCA1 3’UTR reporter system here we demonstrate that downregulation of BRCA1 protein in CML is caused by inhibition of BRCA1 mRNA translation, but not by increased protein degradation or reduction of mRNA level and half-life. We investigated 2 mRNA-binding proteins – HuR and TIAR showing specificity to AU-Rich Element (ARE) sites in 3’UTR of mRNA. BCR-ABL1 promoted cytosolic localization of TIAR and HuR, their binding to BRCA1 mRNA and formation of the TIAR-HuR complex. HuR protein positively regulated BRCA1 mRNA stability and translation, conversely TIAR negatively regulated BRCA1 translation and was found localized predominantly in the cytosolic stress granules in CML cells. TIAR-dependent downregulation of BRCA1 protein level was a result of ER stress, which is activated in BCR-ABL1 expressing cells, as we previously shown. Silencing of TIAR in CML cells strongly elevated BRCA1 level. Altogether, we determined that TIAR-mediated repression of BRCA1 mRNA translation is responsible for downregulation of BRCA1 protein level in BCR-ABL1 –positive leukemia cells. This mechanism may contribute to genomic instability and provide justification for targeting PARP1 and/or RAD52 to induce synthetic lethality in “BRCAness” CML and BCR-ABL1 –positive ALL cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号