首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
Alternative diets for maintaining and rearing cephalopods in captivity   总被引:6,自引:0,他引:6  
The requirement of live marine prey for cephalopod mariculture has restricted its practicality for inland research laboratories, commercial enterprises and home aquarists. We evaluated acceptability and resultant growth on: (a) frozen marine shrimps, (b) live and frozen marine polychaete worms, (c) live and frozen marine crabs, (d) frozen marine fishes, (e) live adult brine shrimp, (f) live freshwater fish and (g) live freshwater crayfish. The diets were presented for periods of 2 to 11 weeks to octopuses, cuttlefishes or squids and in most trials the results were compared to animals fed control diets of live marine shrimps, crabs or fish. Overall, frozen marine shrimp proved to be the best alternative diet tested. Adult Octopus maya on frozen marine shrimp diets grew as well as those on control diets at 2.8% body weight per day (%/d) compared to 2.0%/d on live freshwater crayfish, 1.4%/d on live marine polychaete worms and 0.8%/d on live freshwater fish (Tilapia sp.). Juvenile Octopus maya and Octopus bimaculoides also grew comparably to controls when fed frozen marine shrimps; growth rates ranged from near 3.0%/d at 3 months of age to nearly 2.5%/d at 6 months of age. Thus, these alternatives are acceptable as the octopuses end their exponential growth phase at an age of 3 - 5 months. Attempts to rear O. maya hatchlings and juveniles (up to 1 month of age) on dead foods resulted in high mortality and slow or negative growth. No live or dead alternative diet has been found yet that will promote good growth and survival in hatchling octopuses. Hatchling F3 generation Sepia officinalis (the European cuttlefish) were reared for 6 weeks exclusively on adult brine shrimp (Artemia salina).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
For a period of weeks subsequent to bilateral ovariectomy, female rats given unlimited access to food increased their food intakes and the rates at which they gained body weight; this resulted in elevated levels of body weight. Restricting ovariectomized (ovx) rats to their preoperative level of food intake (restricted diet), prevented this excessive gain in body weight. Estradiol benzoate (EB) treatments of 0.5 μg per day for 15 consecutive days partially reversed pre-occurring weight gain in obese ovx rats; this was accompanied by a reduction in food intake. In contrast, identical EB treatment for nonobese ovx rats (restricted diet) did not result in any loss of body weight or change in food intake. Oil-treated nonobese ovx rats gained a small amount of weight relative to their EB-treated counterparts, despite the similarity in their food intakes. Thus, part of the increased weight gain observed after ovariectomy may be independent of changes in food consumption, and related to removal of estrogenic influences from metabolic and behavioral processes involved in energy balance. The weight limiting actions of estradiol were far more pronounced in animals already obese or facing impending obesity than in animals in which excessive weight gain was prevented. The data also suggest that estradiol is more effective in preventing than in reversing the weight gain associated with ovariectomy, and that estrogenic influences on the body weight set point are manifested with very short latencies. These findings support earlier conclusions that estradiol does not regulate food intake directly, but secondarily controls consumption as a means of weight regulation.  相似文献   

3.
Food intake, growth and food conversion of young, O-group herring were studied at two temperatures and feeding regimes over a period of 19 weeks. The food intake of fish fed to satiation twice daily showed considerable variation. Food intake per fish at 14.5° C was about three times that at 6.5° C, and was generally much higher than in most other species of fish studied. The mean increase in wet weight over the 19-week period was 0.581 g/week at 14.5° C and 0.236 g/week at 6.5° C in fish fed to satiation and 0.094 g/week at 6.2° C and a ration of 1.3% of the body weight. Growth depensation was found to occur even in fish fed to satiation. The changes in specific growth rate, that is the percentage increase in weight/day, showed similar trends at different temperatures and food regimes. The mean conversion efficiency of fish on a ration of 1.3% at 6.2° C was higher than that of fish fed until satiation, at 14.5 and 6.5° C. The conversion efficiency of fish fed to satiation at 14.5° C showed a distinct decrease with increasing weight while at 6.5° C such a clear trend was not observed. In general, the conversion efficiency of young herring were found to be much lower than that of most other species studied. The weight exponent of the quantitative relationship between food intake and body weight at 14.5° C was 0.744. The total metabolic expenditure at 14.5° C, calculated using Winberg's (1956) 'utilization coefficient, gave a weight exponent of 0.773.  相似文献   

4.
1. The interrelationship between food intake, body weight and oxygen consumption was analysed at 25 degrees C in growing rats. 3. The experiment was divided into two phases lasting four weeks each. During the first phase the animals were subjected to energy restriction and during the second phase they were allowed ad lib energy intake. Four groups of rats were studied: Control with ad lib food intake and three restricted groups R4, R5, and R6 which received during the first phase 4, 5, and 6 g per day of stock diet in a single meal. 3. The results showed a decrease in body weight and oxygen consumption during the restriction period and a recovering of the latter during the refeeding period, without body weight recovering. 4. It is concluded that an energy conservation mechanism is present during food restriction and for some time after refeeding.  相似文献   

5.
In prenatally underfed guinea pigs the following data were obtained: 1. On the 1st day of life the mean body weight of 18 underfed animals was significantly reduced as compared to that of 18 control animals. This difference was not compensated by postnatal feeding ad libitum but persisted up to the 36th week of life (day of sacrificing). 2. The mean food intake per day estimated over 10 days during the 5th month of life was also significantly diminished in the prenatally underfed animals. 3. A significant positive correlation was found between the body weight at birth and the adult body weight, adult body length and adult body weight/body length, when the parameters of the experimental plus control animals were evaluated together. These findings suggest that in guinea pigs, which are born in a relatively mature stage, the prenatal nutrition can influence body weight, body length and body weight/body length ratio as well as food intake in adulthood.  相似文献   

6.
FIOROTTO, MARTA L, TERESA A DAVIS, PATRICIA SCHOKNECHT, HARRY J MERSMANN AND WILSON G POND. Both maternal over- and undernutrition during gestation increase the adiposity of young adult progeny in rats. ObesRes. 1995;3:131–141. We examined the influence of maternal diet during gestation on the growth and body composition of the progeny. On day 1 of gestation, rat dams were assigned to one of four feeding regimens: free access to standard rodent chow throughout gestation (AL); 20 g feed/day (prebreeding intake) throughout gestation (PB); 10 g feed/day from day 1 to day 14, then ad libitum from day 15 to parturition (RAL); 10 g feed/day from day 1 to 14, then 20 g/day to parturition (RPB). Progeny were fed ad libitum on standard chow diet from 3 to 12 weeks of age; food intake and weight gain were measured over this time. Body composition was measured at 12 weeks. The PB regimen restricted maternal food intake during the third trimester only; the RAL regimen restricted intake by 50% for two trimesters and produced hyperphagia in the third; the RPB regimen restricted intake by 50% for two trimesters, then intake (per unit body weight) was similar to that of AL dams during the third trimester. Litter size and progeny birth, weaning, and 12-week body weights were similar among the four groups. At 12 weeks of age, PB progeny had the highest body fat (per kg fat-free mass), despite similar feed intake during the 9-week postweaning period. The increased fat was proportionally distributed among intra-abdominal and subcutaneous depots. Progeny of RAL, AL, and RPB dams had similar amounts of body fat, but in RAL progeny more fat was present in intra-abdominal depots. The weights of fat-free mass, gastrointestinal tract and hindlimb skeletal muscles were unaffected by maternal diet Restriction of maternal feed intake during the third week of gestation had subtle effects on the body composition of young adult progeny that could not be explained on the basis of differences in postweaning voluntary feed intake.  相似文献   

7.
Metabolic consequences of chronic elevation of cortisol in the diet of yearling channel catfish, Ictalurus punctatus , were studied. Cortisol was incorporated into the diet in concentrations of 1, 10, 50 and 100 μg/g of food. This diet was offered at 3% of the body weight per day for 10 weeks. Fish were individually weighed and measured at 2-week intervals and feeding rates were adjusted. Body weight, liposomatic index and condition factor were significantly lower and food conversion was significantly higher in fish fed 50 or 100 μng cortisol/g of food when compared with controls. The hepatosomatic index of fish fed cortisol at the rate of 100 μg/g of food decreased significantly. Specific activity of hepatic tyrosine aminotransferase was significantly higher at the two highest cortisol doses. Long-term cortisol administration can reduce growth and condition factor by activating gluconeogenic mechanisms in which lipids and amino acids, rather than carbohydrates, are used for energy production. The metabolic effects of exogenous cortisol in this study offer an explanation for the decreased growth of fish under conditions that activate the secretion of endogenous cortisol.  相似文献   

8.
Chronic administration of anorexigenic substances to experimental animals by injections or continuous infusion typically produces no effect or a transient reduction in daily food intake and body weight. Our aim was to identify an intermittent dosing strategy for intraperitoneal infusion of salmon calcitonin (sCT), a homolog of amylin that produces a sustained 25-35% reduction in daily food intake and adiposity in diet-induced obese rats. Rats (649 +/- 10 g body wt, 27 +/- 1% body fat), with intraperitoneal catheters tethered to infusion swivels, had free access to a 45% fat diet. Food intake, body weight, and adiposity during the 7-wk test period were relatively stable in the vehicle-treated rats (n = 16). None of 10 sCT dosing regimens administered in succession to a second group of rats (n = 18) produced a sustained 25-35% reduction in daily food intake for >5 days, although body weight and adiposity were reduced by 9% (587 +/- 12 vs. 651 +/- 14 g) and 22% (20.6 +/- 1.2 vs. 26.5 +/- 1.1%), respectively, across the 7-wk period. The declining inhibitory effect of sCT on daily food intake with the 6-h interinfusion interval appeared to be due in part to an increase in food intake between infusions. The declining inhibitory effect of sCT on daily food intake with the 2- to 3-h interinfusion interval suggested possible receptor downregulation and tolerance to frequent sCT administration; however, food intake increased dramatically when sCT was discontinued for 1 day after apparent loss of treatment efficacy. Together, these results demonstrate the activation of a potent homeostatic response to increase food intake when sCT reduces food intake and energy reserves in diet-induced obese rats.  相似文献   

9.
The ability of amylin to reduce acute food intake in rodents is well established. Longer-term administration in rats (up to 24 days) shows a concomitant reduction in body weight, suggesting energy intake plays a significant role in mediating amylin-induced weight loss. The current set of experiments further explores the long-term effects of amylin (4-11 wk) on food preference, energy expenditure, and body weight and composition. Furthermore, we describe the acute effect of amylin on locomotor activity and kaolin consumption to test for possible nonhomeostatic mechanisms that could affect food intake. Four-week subcutaneous amylin infusion of high-fat fed rats (3-300 microg.kg(-1).day(-1)) dose dependently reduced food intake and body weight gain (ED(50) for body weight gain = 16.5 microg.kg(-1).day(-1)). The effect of amylin on body weight gain was durable for up to 11 wks and was associated with a specific loss of fat mass and increased metabolic rate. The body weight of rats withdrawn from amylin (100 microg.kg(-1).day(-1)) after 4 wks of infusion returned to control levels 2 wks after treatment cessation, but did not rebound above control levels. When self-selecting calories from a low- or high-fat diet during 11 wks of infusion, amylin-treated rats (300 microg.kg(-1).day(-1)) consistently chose a larger percentage of calories from the low-fat diet vs. controls. Amylin acutely had no effect on locomotor activity or kaolin consumption at doses that decreased food intake. These results demonstrate pharmacological actions of amylin in long-term body weight regulation in part through appetitive-related mechanisms and possibly via changes in food preference and energy expenditure.  相似文献   

10.
Background: Data from short‐term experiments suggest that drinking water may promote weight loss by lowering total energy intake and/or altering metabolism. The long‐term effects of drinking water on change in body weight and composition are unknown, however. Objective: This study tested for associations between absolute and relative increases in drinking water and weight loss over 12 months. Methods and Procedures: Secondary analyses were conducted on data from the Stanford A TO Z weight loss intervention on 173 premenopausal overweight women (aged 25–50 years) who reported <1 l/day drinking water at baseline. Diet, physical activity, body weight, percent body fat (dual‐energy X‐ray absorptiometry), and waist circumference were assessed at baseline, 2, 6, and 12 months. At each time point, mean daily intakes of drinking water, noncaloric, unsweetened caloric (e.g., 100% fruit juice, milk) and sweetened caloric beverages, and food energy and nutrients were estimated using three unannounced 24‐h diet recalls. Beverage intake was expressed in absolute (g) and relative terms (% of beverages). Mixed models were used to test for effects of absolute and relative increases in drinking water on changes in weight and body composition, controlling for baseline status, diet group, and changes in other beverage intake, the amount and composition of foods consumed and physical activity. Results: Absolute and relative increases in drinking water were associated with significant loss of body weight and fat over time, independent of covariates. Discussion: The results suggest that drinking water may promote weight loss in overweight dieting women.  相似文献   

11.
Intestinal nutrient infusions result in variable decreases in food intake and body weight based on the nutrient type and the specific intestinal infusion site. Only intrajejunal infusions of fatty acids decrease food intake beyond the calories infused. To test whether this extra‐compensatory decrease in food intake is specific to fatty acids, small volume intrajejunal infusions of glucose (Glu) and casein hydrolysate (Cas), as well as linoleic acid (LA) were administered to male Sprague–Dawley rats. Equal kilocalorie (kcal) loads of these nutrients (11.4) or vehicle were infused into the jejunum over 7 h/day for five consecutive days. Food intake was continuously monitored and body weight was measured daily. After the infusion on the final day, rats were killed and plasma collected. Intrajejunal infusions of LA and Glu, but not Cas, suppressed food intake beyond the caloric load of the infusate with no compensatory increase in food intake after the infusion period. Rats receiving LA and Glu infusions also lost significant body weight across the infusion days. Plasma glucagon‐like peptide‐1 (GLP‐1) was increased in both the LA and Glu rats compared with control animals, with no significant change in the Cas‐infused animals. Peptide YY (PYY) levels increased in response to LA and Cas infusions. These results suggest that intrajejunal infusions of LA and Glu may decrease food intake and body weight via alterations in GLP‐1 signaling. Thus, particular nutrients are more effective at producing decreases in food intake, body weight, and inducing changes in peptide levels and could lead to a novel therapy for obesity.  相似文献   

12.
Norris and USDA-103 strains of channel catfish Ictalurus punctatus were compared for growth rate and food conversion ratio under satiation feeding and restricted feeding (1% body weight day−1) regimes. At the start of the experiment Norris fish weighed 2·8 g, USDA-103 fish weighed 14·0 g. Therefore, a regression of the loge of specific growth rate against the loge of mean body size with an empirically derived fixed slope of -0·37 was used to compare growth rates. Under both feeding regimes the USDA-103 strain had faster specific growth rates and more efficient food conversion. In subsequent studies, voluntary food intake of size matched fish (60 g average) from these two strains was compared using a radiographic method. Fish were acclimatized to tank conditions for 3 weeks prior to voluntary food intake measurement. Half of the groups were deprived of food for 2 days prior to food intake measurement, while the remaining groups were fed 1% body weight day−1. The USDA-103 strain fish ate significantly more food and grew faster than the Norris strain fish. Previously fasted Norris fish subsequently ate more than their fed counterparts, whereas the fed USDA-103 fish consumed more food than the fasted USDA-103 group. When the USDA-103 strain fish were deprived of food for 4 , 2 or 0 days, all groups subsequently consumed between 4·5 and 5·0% of body weight in one meal. The USDA-103 fish, unlike the Norris fish were not stimulated to consume more after short-duration fasting. Taken together, these results suggest that there are genetic differences in growth, food conversion ratio and regulation of food intake between Norris and USDA-103 strains.  相似文献   

13.
Chronic administration of anorexigenic substances to experimental animals by injections or continuous infusion typically produces either no effect or a transient reduction in food intake and body weight. Our aim here was to identify an intermittent dosing strategy for intraperitoneal infusion of peptide YY(3-36) [PYY(3-36)] that produces a sustained reduction in daily food intake and adiposity in diet-induced obese rats. Rats (665+/-10 g body wt, 166+/-7 g body fat) with intraperitoneal catheters tethered to infusion swivels had free access to a high-fat diet. Vehicle-treated rats (n=23) had relatively stable food intake, body weight, and adiposity during the 9-wk test period. None of 15 PYY(3-36) dosing regimens administered in succession to a second group of rats (n=22) produced a sustained 15-25% reduction in daily food intake for >5 days, although body weight and adiposity were reduced across the 9-wk period by 12% (594+/-15 vs. 672+/-15 g) and 43% (96+/-7 vs. 169+/-9 g), respectively. The declining inhibitory effect of PYY(3-36) on daily food intake when the interinfusion interval was >or=3 h appeared to be due in part to an increase in food intake between infusions. The declining inhibitory effect of PYY(3-36) on daily food intake when the interinfusion interval was <3 h suggested possible receptor downregulation and tolerance to frequent PYY(3-36) administration; however, food intake significantly increased when PYY(3-36) treatments were discontinued for 1 day following apparent loss in treatment efficacies. Together, these results demonstrate the development of a potent homeostatic response to increase food intake when PYY(3-36) reduces food intake and energy reserves in diet-induced obese rats.  相似文献   

14.
Growth, daily ration, and gastric evacuation rates of milkfish ( Chanos chanos ) that fed on natural food and supplement diet were evaluated. Milkfish fingerlings (5.5g) were stocked at 1.5 fish/m2 in ten 12 m2 concrete tanks layered with 15-cm thick earthen bottoms. All tanks were regularly fertilized (16–20–0 and chicken manure) to maintain natural food production; 4 of the tanks additionally received a supplemental diet containing 34.3% protein and 4290 kcal/kg gross energy. Estimates or daily ration (based on dry weight of stomach contents) were calculated using the E lliot and P erson (1978) and E ggers 1977) models. Gastric evacuation rate was lower in fish that fed on natural food (1.57) compared to fish fed a supplemental diet (1.79). Consequently, the lower rate resulted in lower food intake and slower fish growth. When fish were provided a high quality supplemental diet, daily rations for fingerlings (35 g) to marketable size (116 g) ranged approximately from 0.60 to 19.68 kcal/fish/day. The deviation in daily ration (kcal/fish/day) from the above estimates may indicate the insufficient quantity of dietary energy taken by fish from natural food alone, which could be provided by supplemental diet.  相似文献   

15.
To identify optimal study-design conditions to investigate lipid metabolism, male, C57BL/6J mice (age, 59 +/- 3 days) were allotted to eight groups, with six animals per group that were stratified by three factors: diet type (high fat [HF]: 60% of energy from fat versus that of a standard rodent diet, 14% fat, fed for 7 weeks), feeding regimen (ad libitum [ad lib] versus meal fed), and metabolic state (data collected in fasted or fed states). Serum free fatty acids (FFA) and triacylglycerols (TAG) concentrations, and energy expenditure (EE) were assessed. Mice gained 0.30 +/- 0.11 g of body weight/day when allowed ad lib access to HF diet, similar weight when meal-fed the HF or ad lib-fed the standard diet (0.10 +/- 0.03 g/day), and no weight when meal-fed the standard diet (0.01 +/- 0.02 g/day). Fed-state TAG concentration was 88 to 100% higher (P < 0.02) than that of the fasted state, except when animals were ad lib-fed the HF diet. When the standard diet was meal fed, FFA concentration was 30% higher in the fasted compared with the fed state (P = 0.003). Mice had 33% higher postprandial EE when either diet was meal fed (P = 0.01). Mice adapted to meal feeding developed transitions in metabolism consistent with known physiologic changes that occur from fasting to feeding. When fed the standard diet, a 6-h per day meal-feeding regimen was restrictive for normal growth. These data support use of a meal-feeding regimen when HF diets are used and research is focused on metabolic differences between fasted and fed states. This protocol allows study of the metabolic effects of an HF diet without the confounding effects of over-consumption of food and excess body weight gain.  相似文献   

16.
Objective: To investigate the effect of S 23521, a new glucagon‐like peptide‐1‐(7‐36) amide analogue, on food intake and body weight gain in obese rats, as well as on gene expression of several proteins involved in energy homeostasis. Research Methods and Procedures: Lean and diet‐induced obese rats were treated with either S 23521 or vehicle. S 23521 was given either intraperitoneally (10 or 100 μg/kg) or subcutaneously (100 μg/kg) for 14 and 20 days, respectively. Because the low‐dose treatment did not affect food intake and body weight, the subcutaneous treatment at high dose was selected to test the effect on selected end‐points. Results: Treated obese rats significantly decreased their cumulative energy intake in relation to vehicle‐treated counterparts (3401 ± 65 vs. 3898 ± 72 kcal/kg per 20 days; p < 0.05). Moreover, their body weight gain was reduced by 110%, adiposity was reduced by 20%, and plasma triglyceride levels were reduced by 38%. The treatment also improved glucose tolerance and insulin sensitivity of obese rats. Regarding gene expression, no changes in uncoupling protein‐1, uncoupling protein‐3, leptin, resistin, and peroxisome proliferator‐activated receptor (PPAR)‐γ were observed. Discussion: S 23521 is an effective glucagon‐like peptide‐1‐(7‐36) amide analogue, which induced a decrease in energy intake, body weight, and adiposity in a rat model of diet‐induced obesity. In addition, the treatment also improved glucose tolerance and insulin sensitivity of obese rats. These results strongly support S 23521 as a putative molecule for the treatment of obesity.  相似文献   

17.
Mice that exercise after meals gain less body weight and visceral fat compared to those that exercised before meals under a one meal/exercise time per day schedule. Humans generally eat two or three meals per day, and rarely have only one meal. To extend our previous observations, we examined here whether a “two meals, two exercise sessions per day” schedule was optimal in terms of maintaining a healthy body weight. In this experiment, “morning” refers to the beginning of the active phase (the “morning” for nocturnal animals). We found that 2-h feeding before 2-h exercise in the morning and evening (F-Ex/F-Ex) resulted in greater attenuation of high fat diet (HFD)-induced weight gain compared to other combinations of feeding and exercise under two daily meals and two daily exercise periods. There were no significant differences in total food intake and total wheel counts, but feeding before exercise in the morning groups (F-Ex/F-Ex and F-Ex/Ex-F) increased the morning wheel counts. These results suggest that habitual exercise after feeding in the morning and evening is more effective for preventing HFD-induced weight gain. We also determined whether there were any correlations between food intake, wheel rotation, visceral fat volume and skeletal muscle volumes. We found positive associations between gastrocnemius muscle volumes and morning wheel counts, as well as negative associations between morning food intake volumes/body weight and morning wheel counts. These results suggest that morning exercise-induced increase of muscle volume may refer to anti-obesity. Evening exercise is negatively associated with fat volume increases, suggesting that this practice may counteract fat deposition. Our multifactorial analysis revealed that morning food intake helps to increase exercise, and that evening exercise reduced fat volumes. Thus, exercise in the morning or evening is important for preventing the onset of obesity.  相似文献   

18.
The effects of gonadal steroids on food intake and body weight were studied in Mongolian gerbils. Orchiectomy of adult male gerbils caused significant increases in body weight but had no detectable effect on food intake. Treatment with testosterone propionate or 5α-dihydrotestosterone propionate (100 μg/day) had no effect on food intake or body weight of orchiectomized males, but withdrawal of exogenous androgen treatment had the same effect as orchiectomy, increased body weight with no increase in food intake. Treatment with estradiol benzoate (EB; 2 μg/day) increased food intake and body weight of ovariectomized gerbils, but progesterone (1 mg/day) had no effect on these measures when given by itself. However, when progesterone was given concurrently with EB it synergized with the estrogen and further increased eating and body weight. These results are contrasted with previous work in other mammalian species.  相似文献   

19.
K Vaswani  G A Tejwani  S Mousa 《Life sciences》1983,32(17):1983-1996
The purpose of this study was to explore the effect of acute mild stress (12–48 hour food and water deprivation) and acute severe stress (12 hour food and water deprivation followed by 10 min swim in water at 4°) on the intake of different isocaloric dietary regimes. Each group of experimental animals was given only one particular diet. Rats subjected to mild stress showed very little preference of dietary regimes. When the food intake was measured during 3 hour period, following 48 hours of fasting, animals showed 2 to 3 fold increase in the food and water intake but no particular dietary preference. However, when rats were subjected to severe stress, there was an increase in the food intake of 154% (control diet); 174% (high-carbohydrate diet); 310% (high protein diet) and 423% (high fat diet) compared to animals subjected to mild stress. In terms of the absolute quantity of food, the animals subjected to severe stress ate more high-fat diet than any other diet; the consumption of high fat diet was 142% more than high-protein diet, 180% more than control diet and 258% more than high carbohydrate diet. Animals subjected to severe stress and given high-carbohydrate and high fat diet also showed 80% increase in the water intake. Prior administration of naloxone (1 mg/kg body weight, i.p.) reduced the stress induced increase in the intake of food and water. Naloxone inhibited the intake of high-fat diet more than any other diet. The ability of naloxone to block the increase in the intake of high-fat diet, and the reported increase in the concentration of β-endorphin in the different regions of brain of the animals subjected to the cold swim, suggest that endogenous opioid system in body is activated during stress. An activation of the endogenous opioid system leads to a preferential increase in the intake of palatable foods.  相似文献   

20.
Individual immature rainbow trout consumed 1–2% body weight per day, but significantly more ( P < 0·001) when fed by hand than by demand feeder. When treated with CCK antagonists (L 364, 718; 100 μg kg−1 on day 12 or SR 27, 897; 50 μg kg−1 on day 16), the fish ate significantly more than their mean daily intake on the other days of the experiment. This increase in feed intake was affected by the feeding technique: hand-fed fish increased by 70–80% their feed intake while in demand-fed fish the increase was significantly less (50–60%). However, the increase in feed intake observed on days 12 and 16 was identical for both drugs used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号