首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Debbie Stephen  Brian   《Freshwater Biology》1998,39(4):699-713
1. Mechanisms stabilizing the plant-dominated clear-water state were investigated in Little Mere, U.K. Replicated, factorial, mesocosm experiments, carried out in 1995 and 1996, were designed to investigate the relative importance of top-down (zooplankton grazing) and bottom-up (nitrogen-limitation) control in limiting algal growth, and the role of macrophytes in these processes. Treatments included increased salinity (1995) and sticklebacks (1996) to reduce zooplankton numbers, weekly nitrate additions and removal of macrophytes. 2. Contrary to the results of other studies, submerged plants did not reduce nitrate concentrations. Owing to the high stickleback density in the enclosures with fish, macrophytes did not provide a refuge for zooplankton during the experiment. In Little Mere, however, where fish densities are lower, macrophytes probably play a key role in maintaining clear water by providing refuge for pelagic zooplankton and habitat for attached Cladocera. 3. Phytoplankton in Little Mere was not nitrogen- (N) limited during the growing season. Although nitrogen availability sets a maximum potential phytoplankton biomass it was not realized owing to control by zooplankton grazing.  相似文献   

2.
SUMMARY. 1. Periphyton. measured as particulate phosphorus (PP) and expressed as periphyton PP, growing on vertically oriented substrata (polyvinyl impregnated nylon) under different nutrient loadings, light intensities (exposures), and grazer communities was examined in eight large enclosures (750 m3) where nutrients (N and P) and planktivorous fish (1+yellow perch) were added in a 2x2 factorial design.
2. During the first 3 weeks of the experiment (25 June to 15 July), there was a significantly higher accumulation of phosphorus into periphyton (periphyton PP) with fertilization, but fish addition had no effect. During the fourth to seventh weeks (16 July to 12 August), addition of fish was associated with lower abundance of amphipods and chironomids and higher concentration of periphyton PP. In the enclosures without fish, these invertebrates were over 25 times more abundant, and periphyton PP decreased substantially compared to the June-July period. Fertilization increased periphyton PP only at high exposures in the enclosures with fish.
3. Exposure had a significant effect on periphyton PP. In the enclosures with fish, high abundance of nanoplankton reduced water transparency, and periphyton PP was lower in the deeper waters which may have been due to limitation by low light. Lower periphyton PP was also observed at the surface on sunny sides of enclosures without fish, and therefore with high water transparency. This pattern may have been due to inhibitory effects of high light intensity.
4. Periphyton communities in the enclosures with fish had higher uptake rates for planktonic phosphorus, and lower rates of phosphorus release, suggesting that periphyton with high phosphorus demand may have high internal cycling of assimilated phosphorus.  相似文献   

3.
Carvalho  Laurence 《Hydrobiologia》1994,275(1):53-63
Top-down control of phytoplankton by zooplankton is possible through reductions in density of zooplanktivorous fish. Little Mere is a shallow lake where the effects of sewage effluent caused such a reduction. This allowed the large-bodied cladoceran, Daphnia magna Straus, to develop huge populations, preventing potentially large algal crops from developing.Subsequent diversion of the effluent is anticipated to lead to recovery of the fish community, reduced numbers of large-bodied grazers, and increased phytoplankton biomass. Whether the aquatic plant community, present in Little Mere, is resilient to such changes may depend upon whether cyanophytes are favoured, or not.  相似文献   

4.
1. Lake restoration from eutrophication often rests on a simple paradigm that restriction of phosphorus sources will result in recovery of former relatively clear‐water states. This view has apparently arisen from early successful restorations of deep lakes in catchments of poorly weathered rocks. Lakes in the lowlands, however, particularly shallow ones, have proved less tractable to restoration. This study of three lowland lakes provides insights that illuminate a more complex picture. 2. The lakes lie in a sequence along a single stream in a mixed urban and rural landscape. Severely deoxygenating effluent from an overloaded sewage treatment works was diverted from the catchment in 1991. Effects on two lakes, Little Mere (zmax <2 m) and Rostherne Mere (zmax 31 m) were followed until 2002. Mere Mere (zmax = 8 m), upstream of the former works, acted as a comparison for changes in water chemistry. Mere Mere showed no change in total phosphorus (TP), total inorganic nitrogen, or planktonic chlorophyll a concentrations. Increased winter rainfall was associated with higher winter soluble reactive phosphorus (SRP) and ammonium concentrations in its water. 3. Little Mere changed from a deoxygenated, highly enriched, fishless system, with large populations of Daphnia magna Straus, clear water and about 40% aquatic plant cover, to a slightly less clear system following diversion. Daphnia magna was replaced by D. hyalina Leydig as fish recolonised. Spring peaks of chlorophyll a declined but summer concentrations increased significantly. Annual mean chlorophyll a concentrations thus showed no change. Submerged plants became more abundant (up to 100% cover), with fluctuating community composition from year to year. Summer release of SRP from the sediment was substantial and has not decreased since 1993. The summer phytoplankton was apparently controlled by nitrogen availability perhaps with some influence of zooplankton grazing. SRP was always very abundant. The lake appeared to have reached a quasi‐stable state by 2002. 5. Rostherne Mere showed a steady decline in TP and SRP concentrations following effluent diversion apparently as a result of steady dilution by water with lower phosphorus concentration. Decline in phosphorus concentrations was much less rapid than expected because of internal remobilisation from the hypolimnion and sediments. There have been no changes in chlorophyll a concentration or of nitrogen availability and by 2002 the phytoplankton probably remained limited by a combination of mixing, grazing and nitrogen. 6. A seeming paradox is, thus, that immense changes in phosphorus budgets have shown no consequences for phytoplankton chlorophyll concentrations in either of the lakes, although the seasonal distribution has altered in Little Mere. Although these case studies deviate from others, for both shallow and deep lakes, they represent distinctive situations rather than undermining conventional models.  相似文献   

5.
Little Mere, a small shallow lake, has been monitored for four years, since its main source of nutrients (sewage effluent) was diverted. The lake has provided strong evidence for the persistence of a clear water state over a wide range of nutrient concentrations. It had clear water at extremely high nutrient concentrations prior to effluent diversion, associated with high densities of the large body-sized grazer, Daphnia magna, associated with low fish densities and fish predation. Following sewage effluent diversion in 1991, the nutrient concentrations significantly declined, the oxygen concentrations rose, and fish predation increased. The dominance of large body-sized grazers shifted to one of relatively smaller body-sized animals but the clear water state has been maintained. This is probably due to provision of refuges for grazers by large nymphaeid stands (also found prior to diversion). There has been a continued decrease in nutrient concentrations and expansion of the total macrophyte coverage, largely by submerged plants, following effluent diversion. The grazer community of Little Mere has also responded to this latter change with a decline in daphnids and increase in densities of weed-associated grazers. The presence of large densities of such open water grazers was the apparent main buffer mechanisms of the clear water state until 1994. The lake has, so far, maintained its clear water in the absence of such grazers. Thus, new buffer mechanisms appear to operate to stabilize the ecosystem. Little Mere appears to have shifted from previous top-down controlled clear water state to a bottom-up controlled clear water state.  相似文献   

6.
鲤是我国浅水湖泊常见鱼类,鲤可以通过扰动底泥、牧食浮游动物、排泄营养盐等途径影响湖泊水质。为了研究鲤对浅水湖泊水质的影响,论文于2009年6月23日至8月18日在暨南大学明湖进行原位围隔实验。实验分为三个处理组(三组围隔):(1)在围隔中放养鲤(放鱼组);(2)在围隔底部放置塑料隔网,在隔网上部空间放养鲤(放鱼放网组);(3)围隔中不放隔网也不放鲤(空白对照组)。实验结果表明:鲤可以显著增加水体悬浮物、总氮、总磷和叶绿素a含量,显著降低了水体透明度。而鲤是否扰动底泥对水体悬浮物、总氮、总磷和叶绿素a含量等指标的影响不显著。 因此,该研究中鲤对浅水湖泊的影响可能主要是通过排泄等途径实现的,鲤扰动底泥对水质的影响不大。  相似文献   

7.
1. Mesocosm experiments were carried out to examine the relative importance of top down (fish predation) and bottom up (nutrient addition) controls on phytoplankton abundance in a small shallow lake, Little Mere, U.K., in 1998 and 1999. These experiments were part of a series at six sites across Europe. 2. In the 1998 experiment, top‐down processes (through grazing of large Cladocera) were important in determining phytoplankton biomass. The lack of plant refugia for zooplankton was probably important in causing an increasing chlorophyll a concentration even at intermediate fish density. Little Mere normally has abundant macrophytes but they failed to develop substantially during both years. Bottom‐up control was not important in 1998, most probably because of high background nutrient concentrations, as a result of nutrient release from the sediments. 3. In 1999 neither top‐down nor bottom‐up processes were significant in determining phytoplankton biomass. Large cladoceran grazers were absent even in the fish‐free enclosures, probably because dominance of cyanobacteria and high phytoplankton biomass made feeding conditions unsuitable. As in 1998, bottom‐up control of phytoplankton was not important, owing to background nutrient concentrations that were even higher in 1999 than in 1998, perhaps because of the warmer, sunnier weather. 4. The differing outcomes of the two experiments in the same lake with similar experimental designs highlight the importance of starting conditions. These conditions in turn depended on overall weather conditions prior to the experiments.  相似文献   

8.
Little Mere (Cheshire) is a small (2.7 ha) and shallow (average depth 0.7 m) fertile lake in Cheshire, UK. Nymphaeids cover almost 40 % of its entire surface during the growing season (April to October) and practically all the rest is covered by a mixed community of submerged plants. The lake was intensively sampled for plant-associated Cladocera and zooplankters from April 1998-April 2000. Samples were collected at five sites across the lake, three of them located within lily beds, the other two over submerged plant beds of mixed composition. Specific sampling techniques were developed for floating lily leaves, petioles, submerged plants and water. Significant horizontal differences were identified for most cladoceran species, both open-water and plant-associated, for chydorid periphyton scrapers and for filter-feeders. Daphnia hyalina (L.) and Ceriodaphnia sp were significantly more abundant in lily beds than in more open water in both growing seasons, suggesting lily beds are an effective refuge against fish predation. Size-structure and egg-ratio data support this contention. Egg-ratio models were examined for Daphnia hyalina and Simocephalus vetulus (O.F. Müller), a plant-associated cladoceran. The fertility of S. vetulus in lily beds was generally high throughout growing seasons. The construction of egg-ratio models for this species was hampered by their generally very patchy distributions.  相似文献   

9.
Williams  Adrian E.  Moss  Brian 《Hydrobiologia》2003,491(1-3):331-346
Thirty-six enclosures, surface area 4 m2, were placed in Little Mere, a shallow fertile lake in Cheshire, U.K. The effects of different fish species (common carp, common bream, tench and roach) of zooplanktivorous size, and their biomass (0, 200 and 700 kg ha–1) on water chemistry, zooplankton and phytoplankton communities were investigated. Fish biomass had a strong effect on mean zooplankton size and abundance. When fish biomass rose, larger zooplankters were replaced by more numerous smaller zooplankters. Consequently phytoplankton abundance rose in the presence of higher densities of zooplanktivorous fish, as zooplankton grazing was reduced. Fish species were also significant in determining zooplankton community size structure. In enclosures with bream there were significantly greater densities of small zooplankters than in enclosures stocked with either carp, tench and, in part, roach. When carp or roach were present, the phytoplankton had a greater abundance of Cyanophyta than when bream or tench were present. Whilst top-down effects of fish predation controlled the size partitioning of the zooplankton community, this, in turn apparently controlled the bottom-up regeneration of nutrients for the phytoplankton community. At the zooplankton–phytoplankton interface, both top-down and bottom-up processes were entwined in a reciprocal feedback mechanism with the extent and direction of that relationship altered by changes in fish species. This has consequences for the way that top-down and bottom-up processes are generalised.  相似文献   

10.
In the Baltic Sea, increased populations of the three-spined stickleback are invading the coastal zone in summer, following declines in large predatory fish such as cod, pike, and perch. Here, we explore the consequences of such a meso-predator release on a near-natural scale, by manipulating stickleback densities in four large 600 m2 enclosures: two ‘removal’ and two ‘addition’ enclosures. Higher densities of stickleback resulted in a three times higher recruitment of ephemeral green macroalgae. At the same time we found higher abundances of the dominating invertebrate grazers with lower stickleback densities: higher numbers of both amphipods and smaller gastropods were found in one stickleback ‘removal’ enclosure and higher numbers of large gastropods occurred in the other ‘removal’ enclosure. Grazer abundances also depended on the macrophyte species that dominated the enclosures. Nutrient enrichment had no statistically significant effect on algal recruitment, although the mean number of algal recruits was almost doubled under enriched conditions. Our results indicate that a meso-predator release of stickleback may dramatically shift coastal food web constitution towards increased abundances of ephemeral macroalgae through a trophic cascade.  相似文献   

11.
1. Little Mere, U.K., received large quantities of sewage effluent until 1991, when the effluent was diverted. Experiments, carried out in mesocosms in 1992 and 1993, were designed to predict the effects of: (i) reduced external nutrient loading; (ii) reduced internal loading from the sediment; and (iii) recolonization by fish of the better aerated water. Treatments included isolation of the water from the underlying sediment or exposure to the sediment (which lacked plants in 1992, but was covered by Potamogeton berchtoldii in 1993) crossed with different population densities of Rutilus rutilus in 1992 and of Perca fluviatilis in 1993.
2. Exposure to sediment (as opposed to isolation from it) resulted in no net change in the biovolumes of most major algal groups, but this masked major complementary effects on individual species. The experiments showed a decreasing influence of the sediment, between 1992 and 1993, in determining water chemistry, and an increasing pH between years but no increase in cyanophyte dominance. This had been anticipated because a lake upstream provides abundant inocula, and conditions in Little Mere after diversion of effluent were expected to favour cyanophytes.
3. Roach and perch additions to the mesocosms resulted in reductions in Daphnia populations but increases in numbers of small Cladocera and copepods. Plant-associated Cladocera were unaffected by fish. The presence of submerged plants to some extent reduced fish predation effects on Daphnia hyalina .
4. The experimental results in general accurately predicted subsequent events in the open lake.  相似文献   

12.
1. Little Mere, U.K., received large quantities of sewage effluent until 1991, when the effluent was diverted. Experiments, carried out in mesocosms in 1992 and 1993, were designed to predict the effects of: (i) reduced external nutrient loading; (ii) reduced internal loading from the sediment; and (iii) recolonization by fish of the better aerated water. Treatments included isolation of the water from the underlying sediment or exposure to the sediment (which lacked plants in 1992, but was covered by Potamogeton berchtoldii in 1993) crossed with different population densities of Rutilus rutilus in 1992 and of Perca fluviatilis in 1993.
2. Exposure to sediment (as opposed to isolation from it) resulted in no net change in the biovolumes of most major algal groups, but this masked major complementary effects on individual species. The experiments showed a decreasing influence of the sediment, between 1992 and 1993, in determining water chemistry, and an increasing pH between years but no increase in cyanophyte dominance. This had been anticipated because a lake upstream provides abundant inocula, and conditions in Little Mere after diversion of effluent were expected to favour cyanophytes.
3. Roach and perch additions to the mesocosms resulted in reductions in Daphnia populations but increases in numbers of small Cladocera and copepods. Plant-associated Cladocera were unaffected by fish. The presence of submerged plants to some extent reduced fish predation effects on Daphnia hyalina .
4. The experimental results in general accurately predicted subsequent events in the open lake.  相似文献   

13.
Effects of benthivorous fish on biogeochemical processes in lake sediments   总被引:1,自引:0,他引:1  
1. Studies of aquatic environments have shown that community organisation may strongly affect ecosystem functioning. One common phenomenon is a change in nutrient level following a shift in the fish community composition. Although several hypotheses have been suggested, there is no consensus on which mechanisms are involved. Our study evaluated indirect effects of benthivorous fish on the biogeochemical processes at the sediment–water interface separately from direct effects caused by nutrient excretion or sediment resuspension. 2. We assigned field enclosures to three treatments representing typical pond communities; without fish, addition of approximately 10 small tench or addition of one large bream. After one summer, we monitored the water chemistry, benthic invertebrates and periphyton in the enclosures and sampled sediment cores for laboratory analysis of biochemical process rates (oxygen, phosphorus and nitrogen exchange between sediment and water, and denitrification rate). 3. Fish had strong negative effects on benthic invertebrates, but weaker effects on periphyton, organic content and porosity of the sediment. Moreover, there were significant positive fish effects on both phosphorus and nitrogen concentrations in the water. However, there were no general treatment effects on sediment processes that could explain the treatment effects on water chemistry in the enclosures. 4. Hence, overall treatment effects attenuated along the chain of interactions. We conclude that the observed effect of benthic fish on water chemistry was probably because of direct effects on nutrient excretion or resuspension of sediment. The similarity between bream and tench treatments suggests large niche complementarity despite their different habitat preferences.  相似文献   

14.
The effects of planktivorous and benthivorous fish on benthic fauna, zooplankton, phytoplankton and water chemistry were studied experimentally in two eutrophic Swedish lakes using cylindrical enclosures. In enclosures in both lakes, dense fish populations resulted in low numbers of benthic fauna and planktonic cladocerans, high concentration of chlorophyll, blooms of blue-green, algae, high pH and low transparency. In the soft-water Lake Trummen, total phosporus increased in the enclosure with fish, but in the hard-water Lake Bysjön total phosphorus decreased simultaneously with precipitation of calcium carbonate. Enclosures without fish had a higher abundance of benthic fauna and large planktonic cladocerans, lower phytoplankton biomass, lower pH and higher transparency.The changes in enclosures with fish can be described as eutrophication, and those in enclosures without fish as oligotrophication. The possibility of regulation of fish populations as a lake restoration method is discussed.This paper was presented at the XXth SIL Congress in Copenhagen in 1977.  相似文献   

15.
1. An in situ enclosure experiment was conducted in a deep reservoir of southern China to examine (i) the effects of a low biomass (4 g wet weight m?3) of silver carp (Hypophthalmichthys molitrix) and nutrients on the plankton community and (ii) the response of Daphnia to eutrophication. 2. In the absence of fish, Daphnia galeata dominated the zooplankton community, whereas calanoids were dominant in the fish treatments, followed by D. galeata. Silver carp stocking significantly reduced total zooplankton biomass, and that of D. galeata and Leptodorarichardi, but markedly increased the biomass of smaller cladocerans, copepod nauplii and rotifers. In contrast, nutrient enrichment had no significant effect on the plankton community except for cyclopoids. 3. Chlorophyta, Cryptophyta and Bacillariophyta were dominant phytoplankton groups during the experiment. Chlorophyta with high growth rates (mainly Chlorella vulgaris in the fish enclosures and Ankyra sp. in the fishless enclosures) eventually dominated the phytoplankton community. Total phytoplankton biomass and the biomass of edible phytoplankton [greatest axial linear dimension (GALD) < 30 μm], Chlorophyta, Cryptophyta, Bacillariophyta and Cyanobacteria showed positive responses to fish stocking, while inedible phytoplankton (GALD ≥ 30 μm) was significantly reduced in the fish enclosures. However, there was no significant effect on the plankton community from the interaction of fish and nutrients. 4. Overall, the impact of fish on the plankton community was much greater than that of nutrients. High total phosphorus concentrations in the control treatment and relatively low temperatures may reduce the importance of nutrient enrichment. These results suggest it is not appropriate to use a low biomass of silver carp to control phytoplankton biomass in warmer, eutrophic fresh waters containing large herbivorous cladocerans.  相似文献   

16.
1. Exotic invasive species modify natural food webs in a way frequently hard to predict. In several aquatic environments in Brazil the introduction of Oreochromis niloticus (tilapia) was followed by changes in water quality. Yet, because of its rapid and easy growth, this fish has been used in many aquaculture programmes around the country. 2. To measure the effects of tilapia on the phytoplankton community and on water conditions of a large tropical reservoir in south‐eastern Brazil (Furnas Reservoir), we performed two in situ experiments using three controls (no fish) and three tilapia enclosures (high fish density). Abiotic and biotic parameters were measured at 4 day intervals for 28 days. 3. Fish presence increased nitrogen (N) and phosphorus (P) availability (ammonium 260 and 70% mean increase – first and second experiment; and total phosphorus 540 and 270% mean increase) via excretion. Nutrient recycling by fish can thus be significant in the nutrient dynamics of the reservoir. The higher chlorophyll a concentration in the experimental fish tanks (86 and 34 μg L?1, first and second experiment, respectively) was the result of a positive bottom‐up effect on the phytoplankton community (approximately 2 μg L?1 in the reservoir and control tank). 4. Because tilapia feed selectively on large algae (mainly cyanobacteria and diatoms), several small‐sized or mucilaginous colonial chlorophyceans proliferated at the end of the experiments. Thus, the trophic cascade revealed strong influences on algal composition as well as on biomass. 5. Tilapia can contribute to the eutrophication of a waterbody by both top‐down and bottom‐up forces. In particular, by supplying considerable amount of nutrients it promotes the increase of fast growing algae. Tilapia must be used cautiously in aquaculture to avoid unexpected environmental degradation.  相似文献   

17.
Vendace, Coregonus albula (L.), larvae reared in net enclosures anchored in the littoral zone of Lake Ylä-Enonvesi, eastern Finland, were observed for a period of 44 days in order to determine the effects of density on mortality, growth and feeding of the larvae. The ratio of newly-hatched fish to their food was regulated by controlling the number of fish stocked into the enclosures. Prey animals were expected to move freely in and out of the enclosures. The effect of nylon mesh (500 μm) on the penetration of zooplankters into the enclosures was negligible. The influence of possible starvation was determined by analysing the growth of the larvae, their Fulton condition factor, the instantaneous amount of food ingested, and the food composition in their guts. All these indicators were inversely correlated with larval density. Vendace larvae were found to be resistant to mortality from direct starvation. At all densities the survival rate was over 60%. At the time of complete yolk absorption, there was no increase in mortality.  相似文献   

18.
Brian MOSS     《Freshwater Biology》1998,39(4):689-697
1. The effects of addition of juvenile perch (Perca fluviatilis) on the microcrustacean and rotifer communities associated with nymphaeid beds were studied, at three different plant densities [high (normal), medium (reduced by a half) and low (reduced to a third of normal)], in eighteen 2 m × 1 m enclosures in a shallow lake. 2. At the low and medium densities of lilies, Daphnia densities were high in the absence of perch but very low in the presence of perch. They increased, even in the presence of perch, to high densities (comparable with those in the absence of perch) at the highest plant density. Body sizes of Daphnia hyalina were consistent with high predation by perch at low and medium plant densities but reduced predation at high plant densities. Patterns of chlorophyll a concentration, in the presence of perch, inversely reflected those of D. hyalina density. 3. At naturally high densities but not at reduced densities, the plants appeared to act as refuges against predation for the Daphnia. Reductions in oxygen concentrations in the plant beds were not responsible for the refuge effect, nor could there be avoidance of the beds by the fish. The mechanism of the refuge effect must therefore lie in frustration of the process of capture of the Daphnia by the fish. 4. Numbers of other small Crustacea and rotifers were mostly unaffected by fish predation. Numbers of Asplanchna sp., Chydorus sphaericus and copepodites were higher in the presence of fish and, although there was no main effect of fish on numbers of Diaphanosoma brachyurum, there was a plant–fish interaction, with this species being less abundant in the presence of fish at low plant densities but more abundant in the presence of fish at medium and high plant densities. Main effects of plants were few, with only Asplanchna sp. and Keratella sp. decreasing in numbers with increasing plant density. Most taxa changed in numbers with time but interaction effects between time and plants, and fish and plants, were few.  相似文献   

19.
Acute exposure to iron can be lethal to fish, but long-term sublethal impacts of iron require further study. Here we investigated whether the spatial and temporal distribution (1967?C2004) of two closely related species of stickleback matched the spatial distribution of iron concentrations in the groundwater. We used the ??Northern Peel region??, a historically iron-rich peat landscape in The Netherlands as a case study. This allowed us to test the hypothesis that niche segregation in two closely related species of stickleback occurred along a physiological axis. Patterns in stickleback occurrence were strongly associated with spatial patterns in iron concentrations before 1979: iron-rich grid cells were avoided by three-spined stickleback (Gasterosteus aculeatus, Linnaeus 1758) and preferred by nine-spined stickleback (Pungitius pungitius, [Linnaeus, 1758]). After 1979, the separation between both sticklebacks became weaker, corresponding to a decreased influence of local groundwater on stream water quality. The way both species changed their distribution in the field provides a strong indication that they differ in their susceptibility to iron-rich conditions. These observed differences correspond with differences in their respiration physiology, tolerance of poor oxygen conditions and overall life-history strategy documented in the literature. Our results exemplify how species can partition niche along a non-structural niche axis, such as sublethal iron-rich conditions. Other fish species may similarly segregate along concentration gradients in iron, while sublethal concentrations of other metals such as copper may similarly impact fish via respiratory impairment and reduced aerobic scope.  相似文献   

20.
The effect of phosphorus and potassium deficiencies on transpiration in tea (Camellia sinensis L. Clone DT 1) was studied. The plants were grown in sand culture, and measurements were made after the plants showed phosphorus or potassium deficiency symptoms. The overall growth of plants was reduced by potassium deficiency but not by phosphorus deficiency. Both deficiencies reduced stomatal aperture and increased leaf water potential. Stomatal density decreased in phosphorus deficient leaves and it increased in potassium deficient leaves. The transpiration of whole plants was reduced by both deficiencies. The relative sensitivity of transpiration to water stress was increased by potassium deficiency but not by phosphorus deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号