首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA repair factor APLF is a histone chaperone   总被引:1,自引:0,他引:1  
Poly(ADP-ribosyl)ation plays a major role in DNA repair, where it regulates chromatin relaxation as one of the critical events in the repair process. However, the molecular mechanism by which poly(ADP-ribose) modulates chromatin remains poorly understood. Here we identify the poly(ADP-ribose)-regulated protein APLF as a DNA-damage-specific histone chaperone. APLF preferentially binds to the histone H3/H4 tetramer via its C-terminal acidic motif, which is homologous to the motif conserved in the histone chaperones of the NAP1L family (NAP1L motif). We further demonstrate that APLF exhibits histone chaperone activities in a manner that is dependent on its acidic domain and that the NAP1L motif is critical for the repair capacity of APLF in vivo. Finally, we identify structural analogs of APLF in lower eukaryotes with the ability to bind histones and localize to the sites of DNA-damage-induced poly(ADP-ribosyl)ation. Collectively, these findings define the involvement of histone chaperones in poly(ADP-ribose)-regulated DNA repair reactions.  相似文献   

2.
The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin was analyzed by gel electrophoresis, electron microscopy, and velocity sedimentation. In parallel, the interaction of automodified poly(ADP-ribose) polymerase with native and H1-depleted chromatin was analyzed. In H1-depleted chromatin histone H2B becomes the major poly(ADP-ribose) histone acceptor protein, whereas in native chromatin histone H1 was the major histone acceptor. Poly(ADP-ribosyl)ation of H1-depleted chromatin prevented the recondensation of polynucleosomes reconstituted with exogenous histone H1. This is probably due to the presence of modified poly(ADP-ribose) polymerase and hyper(ADP-ribosyl)ated histone H2B. Indeed, about 40% of the modified enzyme remained associated with H1-depleted chromatin, while less than 1% of the modified enzyme was bound to native chromatin. The influence of poly(ADP-ribosyl)ation on the chromatin conformation was also studied at the level of nucleosome in using monoclonal and polyclonal antibodies specific for individual histones and synthetic peptides of histones. In native chromatin incubated in the presence of Mg2+ there was a drop in the accessibility of histone epitopes to monoclonal and polyclonal antibodies whereas upon poly(ADP-ribosyl)ation their accessibility was found to remain even in the presence of Mg2+. In poly(ADP-ribosyl)ated H1-depleted chromatin an increased accessibility of some histone tails to antibodies was observed.  相似文献   

3.
Chromatin undergoes a rapid ATP-dependent, ATM and H2AX-independent decondensation when DNA damage is introduced by laser microirradiation. Although the detailed mechanism of this decondensation remains to be determined, the kinetics of decondensation are similar to the kinetics of poly(ADP-ribosyl)ation. We used laser microirradiation to introduce DNA strand breaks into living cells expressing a photoactivatable GFP-tagged histone H2B. We find that poly(ADP-ribosyl)ation mediated primarily by poly(ADP-ribose) polymerase 1 (PARP1) is responsible for the rapid decondensation of chromatin at sites of DNA damage. This decondensation of chromatin correlates temporally with the displacement of histones, which is sensitive to PARP inhibition and is transient in nature. Contrary to the predictions of the histone shuttle hypothesis, we did not find that histone H1 accumulated on poly(ADP-ribose) (PAR) in vivo. Rather, histone H1, and to a lessor extent, histones H2A and H2B were rapidly depleted from the sites of PAR accumulation. However, histone H1 returns to chromatin and the chromatin recondenses. Thus, the PARP-dependent relaxation of chromatin closely correlates with histone displacement.  相似文献   

4.
Reale A  Malanga M  Zardo G  Strom R  Scovassi AI  Farina B  Caiafa P 《Biochemistry》2000,39(34):10413-10418
It is well-known that H1-H1 interactions are very important for the induction of 30 nm chromatin fiber and that, among all posttranslational modifications, poly(ADP-ribosyl)ation is one of those capable of modifying chromatin structure, mainly through H1 histone. As this protein can undergo both covalent and noncovalent modifications by poly(ADP-ribosyl)ation, our aim was to investigate whether and how ADP-ribose polymers, by themselves, are able to affect the formation of H1-H1 oligomers, which are normally present in a condensed chromatin structure. The results obtained in our in vitro experimental system indicate that ADP-ribose polymers are involved in chromatin decondensation. This conclusion was reached as the result of two different observations: (a) H1 histone molecules can be hosted in clusters on ADP-ribose polymers, as shown by their ability to be chemically cross-linked, and (b) H1 histone has a higher affinity for ADP-ribose polymers than for DNA; ADP-ribose polymers compete, in fact, with DNA for H1 histone binding.  相似文献   

5.
ADP-ribosylation of nuclear proteins in rat ventral prostate during ageing   总被引:2,自引:0,他引:2  
Poly(ADPR)polymerase activity and poly(ADP-ribosyl)ation of nuclear proteins have been investigated in ventral prostate nuclei of different aged rats (14, 28, 60, 180, 360 day old animals), by reverse-phase HPLC and acetic acid-urea polyacrylamide gel electrophoresis. The major ADP-ribose acceptor proteins were identified as histone H1 and H2b. It is concluded that concomitant with major changes to chromatin organization, poly(ADP-ribosyl)ation reaction is progressively inhibited during aging of rat ventral prostate. These results support the hypothesis that prostatic dysfunction in senescent animals is related to a failure of DNA repair mechanisms and deregulated template activity.  相似文献   

6.
Isolated rat pancreatic polynucleosomes were poly(ADP-ribosylated) with purified calf thymus poly(ADP-ribose) polymerase. A time course study was performed using an NAD concentration of 200 microM and changes in nucleosomal structure were investigated by means of electron microscopy visualization and sedimentation velocity determinations. In parallel, analyses of histone H1 poly(ADP-ribosylation) and determinations of DNA polymerase alpha activity on ADP-ribosylated polynucleosomes were done at different time intervals. A direct kinetic correlation between ADP-ribose incorporation, polynucleosome relaxation amd histone H1 hyper-ADP-ribosylation was established. In addition, DNA polymerase alpha activity was highly stimulated on ADP-ribosylated polynucleosomes as compared to control ones, suggesting increased accessibility of DNA to enzymatic action. Because of the strong evidence implicating histone H1 in the maintenance of higher-ordered chromatin structures, the present study may provide a basis for the interpretation of the involvement of the histone H1 ADP-ribosylation reaction in DNA rearrangements during DNA repair, replication or gene expression.  相似文献   

7.
Poly(ADP-ribose) polymerase is a chromosomal enzyme that is completely dependent on added DNA for activity. The ability of DNA molecules to activate the polymerase appears to be enhanced by the presence of DNA damage. In the present study, we used SV 40 DNA and SV 40 minichromosomes to determine whether different types of DNA damage and different chromosomal components affect stimulation of polymerase activity. Treatment of SV 40 minichromosomes with agents or conditions that induced single-strand breaks increased their ability to stimulate poly(ADP-ribose) synthesis. This stimulation was enhanced by addition of histone H1 at a ratio of 1 microgram of histone H1 to 1 microgram of DNA. Higher ratios of histone H1 to DNA suppressed the ability of SV 40 minichromosomes containing single-strand breaks to stimulate enzyme activity. Treatment of SV 40 minichromosomes or SV 40 DNA with HaeIII restriction endonuclease to produce double-strand breaks markedly stimulated poly(ADP-ribose) polymerase activity. The stimulation of poly(ADP-ribose) polymerase by double-strand breaks occurred in the absence of histone H1 and was further enhanced by adding histone H1 up to ratios of 2 to 1 relative to DNA. At higher ratios of histone H1 to DNA, the presence of the histone continued to enhance the poly(ADP-ribose) synthesis stimulated by double-strand breaks.  相似文献   

8.
It has been demonstrated recently by Poirier et al. (Poirier, G. G., de Murcia, G., Jongstra-Bilen, J., Niedergang, C., and Mandel, P. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 3423-3427) that poly(ADP-ribosyl)ation of pancreatic nucleosomes causes relaxation of the chromatin superstructure through H1 modification. The in vitro effect of poly(ADP-ribose) synthesis and degradation on calf thymus chromatin was investigated by the time course incorporation of ADP-ribose, electron microscopy, analytical ultracentrifugation, and autoradiography of the protein acceptors. Purified calf thymus poly(ADP-ribose) polymerase and partially purified bull testis poly(ADP-ribose) glycohydrolase were used. Degradation of ADP-ribose units on hyper(ADP-ribosyl)ated H1 by poly(ADP-ribose) glycohydrolase restores the native condensed chromatin superstructure. This reversible conformational change induced by poly(ADP-ribosyl)ation on nucleosomal arrangement could be one of the mechanisms by which the accessibility of DNA polymerases and/or excision-repair enzymes is favored, the native structure being fully restorable.  相似文献   

9.
10.
Hydrolysis of protein-bound 32P-labelled poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase shows that there is differential accessibility of poly(ADP-ribosyl)ated proteins in chromatin to poly(ADP-ribose) glycohydrolase. The rapid hydrolysis of hyper(ADP-ribosyl)ated forms of histone H1 indicates the absence of an H1 dimer complex of histone molecules. When the pattern of hydrolysis of poly(ADP-ribosyl)ated histones was analyzed it was found that poly(ADP-ribose) attached to histone H2B is more resistant than the polymer attached to histone H1 or H2A or protein A24. Polymer hydrolysis of the acceptors, which had been labelled at high substrate concentrations (greater than or equal to 10 microM), indicate that the only high molecular weight acceptor protein is poly(ADP-ribose) polymerase and that little processing of the enzyme occurs. Finally, electron microscopic evidence shows that hyper(ADP-ribosyl)ated poly(ADP-ribose) polymerase, which is dissociated from its DNA-enzyme complex, binds again to DNA after poly(ADP-ribose) glycohydrolase action.  相似文献   

11.
The post-translational poly ADP-ribosylation of proteins by the nuclear enzyme poly(ADP-ribose) polymerase (EC 2.4.2.30) involves a complex pattern of ADP-ribose polymers. We have determined how this enzyme produces the various polymer size patterns responsible for altered protein function. The results show that histone H1 and core histones are potent regulators of both the numbers and sizes of ADP-ribose polymers. Each histone induced the polymerase to synthesize a specific polymer size pattern. Various other basic and/or DNA binding proteins as well as other known stimulators of poly(ADP-ribose) polymerase (spermine, MgCl2, nicked DNA) were ineffective as polymer size modulators. Testing specific proteolytic fragments of histone H1, the polymer number and polymer size modulating activity could be mapped to specific polypeptide domains. The results suggest that histones specifically regulate the polymer termination reaction of poly(ADP-ribose) polymerase.  相似文献   

12.
Histone shuttling by poly ADP-ribosylation   总被引:5,自引:0,他引:5  
The enzymes poly(ADP-ribose)polymerase and poly(ADP-ribose) glycohydrolase may cooperate to drive a histone shuttle mechanism in chromatin. The mechanism is triggered by binding of the N-terminal zinc-finger domain of the polymerase to DNA strand breaks, which activates the catalytic activities residing in the C-terminal domain. The polymerase converts into a protein carrying multiple ADP-ribose polymers which displace histones from DNA by specifically targeting the histone tails responsible for DNA condensation. As a result, the domains surrounding DNA strand breaks become accessible to other proteins. Poly(ADP0ribose) glycohydrolase attacks ADP-ribose polymers in a specific order and thereby releases histones for reassociation with DNA. Increasing evidence from different model systems suggests that histone shuttling participates in DNA repairin vivo as a catalyst for nucleosomal unfolding.  相似文献   

13.
Covalent linkage of ADP-ribose polymers to proteins is generally considered essential for the posttranslational modification of protein function by poly(ADP-ribosyl)ation. Here we demonstrate an alternative way by which ADP-ribose polymers may modify protein function. Using a highly stringent binding assay in combination with DNA sequencing gels, we found that ADP-ribose polymers bind noncovalently to a specific group of chromatin proteins, i.e., histones H1, H2A, H2B, H3, and H4 and protamine. This binding resisted strong acids, chaotropes, detergents, and high salt concentrations but was readily reversible by DNA. When the interactions of variously sized linear and branched polymer molecules with individual histone species were tested, the hierarchies of binding were branched polymers greater than long, linear polymers greater than short, linear polymers and H1 greater than H2A greater than H2B = H3 greater than H4. For histone H1, the target of polymer binding was the carboxy-terminal domain, which is also the domain most effective in inducing higher order structure of chromatin. Thus, noncovalent interactions may be involved in the modification of histone functions in chromatin.  相似文献   

14.
The role of poly(ADP-ribosyl)ation in the adaptive response   总被引:2,自引:0,他引:2  
An involvement of the poly(ADP-ribosyl)ation system in the expression of the adaptive response has been demonstrated with inhibitors of the nuclear enzyme poly(ADP-ribose) polymerase. This enzyme is a key component of a reaction cycle in chromatin, involving dynamic synthesis and degradation of variably sized ADP-ribose polymers in response to DNA strand breaks. The present report reviews recent work focussing on the response of the poly(ADP-ribosyl)ation system in low dose adaptation. The results suggest that adaptation of human cells to minute concentrations of an alkylating agent involves a different activation mechanism for poly(ADP-ribose) polymerase than DNA break-mediated stimulation after high dose treatment. Moreover, adaptation induces the formation of branched polymers with a very high binding affinity for histone tails and selected other proteins. High dose challenge treatment of adapted cells further enhances formation of branched polymers. We propose that apart from sensing DNA nicks, poly(ADP-ribose) polymerase may be part of pathway protecting cells from downstream events of DNA damage.  相似文献   

15.
This paper describes the effect of an in-vitro poly(ADP-ribose) turnover system on the poly(ADP-ribosyl)ation of chromatin. Both poly(ADP-ribose)polymerase and poly(ADP-ribose)glycohydrolase were highly purified and used in 4 different turnover systems: non-turnover, slow, medium and fast turnover. These turnover systems were designed to reflect possible turnover conditions in intact cells. The major protein acceptors for poly(ADP-ribose) are histones and the polymerase itself, a process referred to as automodification. The level of poly(ADP-ribose) modification of polymerase, histone H1 and core histones has been measured. The size of the polymer for each of the 3 groups of acceptor proteins has been determined by gel electrophoresis. After many turnover cycles at medium and fast turnover, the histones (H1 and core) become the main poly(ADP-ribose) acceptor proteins. The rate at which steady-state polymer levels are reached and the total accumulation of polymer in a given turnover system are both inversely proportional to the amount of glycohydrolase present. Furthermore, increasing amounts of glycohydrolase in the turnover systems reduces average polymer size. The polymer synthesized in the medium and fast turnover systems is degraded by glycohydrolase in a biphasic fashion and in these systems the half-life of polymer agreed with results found in intact cells. Our results show that the relative levels of polymerase and glycohydrolase activities can regulate the proportional poly(ADP-ribose) distribution on chromatin-associated acceptor proteins during steady-state turnover conditions. The patterns of modification of polymerase and histones under turnover conditions agree with in vivo observations.  相似文献   

16.
Poly(ADP-ribosylated) histones in chromatin replication   总被引:2,自引:0,他引:2  
Poly(ADP-ribosylation) of histones and several other nuclear proteins seem to participate in nuclear processes involving DNA strand breaks like repair, replication, or recombination. This is suggested from the fact that the enzyme poly(ADP-ribose) polymerase responsible for this modification is activated by DNA strand breaks produced in these nuclear processes. In this article I provide three lines of evidence supporting the idea that histone poly(ADP-ribosylation) is involved in chromatin replication. First, cellular lysates from rapidly dividing mouse or human cells in culture synthesize a significant number of oligo- in addition to mono(ADP-ribosylated) histones. Blocking the cells by treatment of cultures with 5 mM butyrate for 24 h or by serum or nutrient depletion results in the synthesis of only mono- but not of oligo(ADP-ribosylated) histones under the same conditions. Thus, the presence of oligo(ADP-ribosylated) histones is related to cell proliferation. Second, cellular lysates or nuclei isolated under mild conditions in the presence of spermine and spermidine and devoid of DNA strand breaks mainly synthesize mono(ADP-ribosylated) histones; introduction of a small number of cuts by DNase I or micrococcal nuclease results in a dramatic increase in the length of poly(ADP-ribose) attached to histones presumably by activation of poly(ADP-ribose) polymerase. Free ends of DNA that could stimulate poly(ADP-ribosylation) of histones are present at the replication fork. Third, putatively acetylated species of histone H4 are more frequently ADP-ribosylated than nonacetylated H4; the number of ADP-ribose groups on histone H4 was found to be equal or exceed by one the number of acetyl groups on this molecule. Since one recognized role of tetraacetylated H4 is its participation in the assembly of new nucleosomes, oligo(ADP-ribosylation) of H4 (and by extension of other histones) may function in new nucleosome formation. Based on these results I propose that poly(ADP-ribosylated) histones are employed for the assembly of histone complexes and their deposition on DNA during replication. Modified histones arise at the replication fork by activation of poly(ADP-ribose) polymerase by unligated Okazaki fragments.  相似文献   

17.
The effect of poly(ADP-ribose) synthesis on chromatin structure was investigated by velocity sedimentation and electron microscopy. We demonstrate that locally relaxed regions can be generated within polynucleosome chains by the activity of their intrinsic poly(ADP-ribose)polymerase. This relaxation phenomenon is also shown to be NAD dependent and to be correlated with the formation of hyper(ADP-ribosyl)ated forms of histone H1. Evidence is also presented which suggests that hyper(ADP-ribosyl)ated histone H1 is neither released from the relaxed chromatin, nor does it seem to participate in polynucleosomal aggregation.  相似文献   

18.
Poly (ADP-ribose) polymerase, a nuclear protein-modifying enzyme, binds to the internucleosomal linker region of chromatin, although it modifies certain core nucleosomal histones in addition to histone H1. The activity per unit of DNA chromatin changes with the nucleosome repeat number. It reaches a maximum on chromatin of 8-10 nucleosomes in length. As the complexity of chromatin with respect to nucleosome repeat number and compactness increases, a decline and stabilization of specific activity is noted. The difference in specific activity is maintained through resedimentation and dialysis of particles. It does not appear due to differences in polymer chain length or differential degradation of poly (ADP-ribose). The data suggest a relationship between ADP-ribosylation and chromatin organization and vice versa.  相似文献   

19.
Poly(ADP-ribosyl)ation is a posttranslational modification that alters the functions of the acceptor proteins and is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes. Following DNA damage, activated poly(ADP-ribose) polymerase-1 (PARP-1) catalyzes the elongation and branching of poly(ADP-ribose) (pADPr) covalently attached to nuclear target proteins. Although the biological role of poly(ADP-ribosyl)ation has not yet been defined, it has been implicated in many important cellular processes such as DNA repair and replication, modulation of chromatin structure, and apoptosis. The transient nature and modulation of poly(ADP-ribosyl)ation depend on the activity of a unique cytoplasmic enzyme called poly(ADP-ribose) glycohydrolase which hydrolyzes pADPr bound to acceptor proteins in free ADP-ribose residues. While the PARP homologues have been recently reviewed, there are relatively scarce data about PARG in the literature. Here we summarize the latest advances in the PARG field, addressing the question of its putative nucleo-cytoplasmic shuttling that could enable the tight regulation of pADPr metabolism. This would contribute to the elucidation of the biological significance of poly(ADP-ribosyl)ation.  相似文献   

20.
We have found that two nuclear enzymes, i.e. poly(ADP-ribose) polymerase (EC 2.4.2.30) and poly(ADP-ribose) glycohydrolase, may cooperate to function as a histone shuttle mechanism on DNA. The mechanism involves four distinct reaction intermediates that were analyzed in a reconstituted in vitro system. In the first step, the enzyme poly(ADP-ribose) polymerase is activated in the presence of histone-DNA complexes and converts itself into a protein carrying multiple ADP-ribose polymers. These polymers attract histones that dissociate from the DNA as a histone-polymer-polymerase complex. The DNA assumes the electrophoretic mobility of free DNA and becomes susceptible to nuclease digestion (second step). In the third step, poly(ADP-ribose) glycohydrolase degrades ADP-ribose polymers and thereby eliminates the binding sites for histones. In the fourth step, histones reassociate with DNA, and the histone-DNA complexes exhibit the electrophoretic mobilities and nuclease susceptibilities of the original complexes prior to dissociation. Our results are compatible with the view that the poly(ADP-ribosylation) system acts as a catalyst of nucleosomal unfolding of chromatin in DNA excision repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号