首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular inhibitor of apoptosis (cIAP) proteins, cIAP1 and cIAP2, are important regulators of tumor necrosis factor (TNF) superfamily (SF) signaling and are amplified in a number of tumor types. They are targeted by IAP antagonist compounds that are undergoing clinical trials. IAP antagonist compounds trigger cIAP autoubiquitylation and degradation. The TNFSF member TWEAK induces lysosomal degradation of TRAF2 and cIAPs, leading to elevated NIK levels and activation of non-canonical NF-κB. To investigate the role of the ubiquitin ligase RING domain of cIAP1 in these pathways, we used cIAP-deleted cells reconstituted with cIAP1 point mutants designed to interfere with the ability of the RING to dimerize or to interact with E2 enzymes. We show that RING dimerization and E2 binding are required for IAP antagonists to induce cIAP1 degradation and protect cells from TNF-induced cell death. The RING functions of cIAP1 are required for full TNF-induced activation of NF-κB, however, delayed activation of NF-κB still occurs in cIAP1 and -2 double knock-out cells. The RING functions of cIAP1 are also required to prevent constitutive activation of non-canonical NF-κB by targeting NIK for proteasomal degradation. However, in cIAP double knock-out cells TWEAK was still able to increase NIK levels demonstrating that NIK can be regulated by cIAP-independent pathways. Finally we show that, unlike IAP antagonists, TWEAK was able to induce degradation of cIAP1 RING mutants. These results emphasize the critical importance of the RING of cIAP1 in many signaling scenarios, but also demonstrate that in some pathways RING functions are not required.  相似文献   

2.
The Inhibitor of Apoptosis proteins (IAPs) are key repressors of apoptosis. Several IAP proteins contain a RING domain that functions as an E3 ubiquitin ligase involved in the ubiquitin-proteasome pathway. Here we investigated the interplay of ubiquitin-proteasome pathway and RING-mediated IAP turnover. We found that the CARD-RING domain of cIAP1 (cIAP1-CR) is capable of down-regulating protein levels of RING-bearing IAPs such as cIAP1, cIAP2, XIAP, and Livin, while sparing NAIP and Survivin, which do not possess a RING domain. To determine whether polyubiquitination was required, we tested the ability of cIAP1-CR to degrade IAPs under conditions that impair ubiquitination modifications. Remarkably, although the ablation of E1 ubiquitin-activating enzyme prevented cIAP1-CR-mediated down-regulation of cIAP1 and cIAP2, there was no impact on degradation of XIAP and Livin. XIAP mutants that were not ubiquitinated in vivo were readily down-regulated by cIAP1-CR. Moreover, XIAP degradation in response to cisplatin and doxorubicin was largely prevented in cIAP1-silenced cells, despite cIAP2 up-regulation. The knockdown of cIAP1 and cIAP2 partially blunted Fas ligand-mediated down-regulation of XIAP and protected cells from cell death. Together, these results show that the E3 ligase RING domain of cIAP1 targets RING-bearing IAPs for proteasomal degradation by ubiquitin-dependent and -independent pathways.  相似文献   

3.
The inhibitor of apoptosis (IAP) proteins are important ubiquitin E3 ligases that regulate cell survival and oncogenesis. The cIAP1 and cIAP2 paralogs bear three N-terminal baculoviral IAP repeat (BIR) domains and a C-terminal E3 ligase RING domain. IAP antagonist compounds, also known as Smac mimetics, bind the BIR domains of IAPs and trigger rapid RING-dependent autoubiquitylation, but the mechanism is unknown. We show that RING dimerization is essential for the E3 ligase activity of cIAP1 and cIAP2 because monomeric RING mutants could not interact with the ubiquitin-charged E2 enzyme and were resistant to Smac mimetic-induced autoubiquitylation. Unexpectedly, the BIR domains inhibited cIAP1 RING dimerization, and cIAP1 existed predominantly as an inactive monomer. However, addition of either mono- or bivalent Smac mimetics relieved this inhibition, thereby allowing dimer formation and promoting E3 ligase activation. In contrast, the cIAP2 dimer was more stable, had higher intrinsic E3 ligase activity, and was not highly activated by Smac mimetics. These results explain how Smac mimetics promote rapid destruction of cIAP1 and suggest mechanisms for activating cIAP1 in other pathways.  相似文献   

4.
A family of anti-apoptotic regulators known as IAP (inhibitor of apoptosis) proteins interact with multiple cellular partners and inhibit apoptosis induced by a variety of stimuli. c-IAP (cellular IAP) 1 and 2 are recruited to TNFR1 (tumour necrosis factor receptor 1)-associated signalling complexes, where they mediate receptor-induced NF-kappaB (nuclear factor kappaB) activation. Additionally, through their E3 ubiquitin ligase activities, c-IAP1 and c-IAP2 promote proteasomal degradation of NIK (NF-kappaB-inducing kinase) and regulate the non-canonical NF-kappaB pathway. In the present paper, we describe a novel ubiquitin-binding domain of IAPs. The UBA (ubiquitin-associated) domain of IAPs is located between the BIR (baculovirus IAP repeat) domains and the CARD (caspase activation and recruitment domain) or the RING (really interesting new gene) domain of c-IAP1 and c-IAP2 or XIAP (X-linked IAP) respectively. The c-IAP1 UBA domain binds mono-ubiquitin and Lys(48)- and Lys(63)-linked polyubiquitin chains with low-micromolar affinities as determined by surface plasmon resonance or isothermal titration calorimetry. NMR analysis of the c-IAP1 UBA domain-ubiquitin interaction reveals that this UBA domain binds the classical hydrophobic patch surrounding Ile(44) of ubiquitin. Mutations of critical amino acid residues in the highly conserved MGF (Met-Gly-Phe) binding loop of the UBA domain completely abrogate ubiquitin binding. These mutations in the UBA domain do not overtly affect the ubiquitin ligase activity of c-IAP1 or the participation of c-IAP1 and c-IAP2 in the TNFR1 signalling complex. Treatment of cells with IAP antagonists leads to proteasomal degradation of c-IAP1 and c-IAP2. Deletion or mutation of the UBA domain decreases this degradation, probably by diminishing the interaction of the c-IAPs with the proteasome. These results suggest that ubiquitin binding may be an important mechanism for rapid turnover of auto-ubiquitinated c-IAP1 and c-IAP2.  相似文献   

5.
Members of the Inhibitor of Apoptosis Protein (IAP) family block activation of the intrinsic cell death machinery by binding to and neutralizing the activity of pro-apoptotic caspases. In Drosophila melanogaster, the pro-apoptotic proteins Reaper (Rpr), Grim and Hid (head involution defective) all induce cell death by antagonizing the anti-apoptotic activity of Drosophila IAP1 (DIAP1), thereby liberating caspases. Here, we show that in vivo, the RING finger of DIAP1 is essential for the regulation of apoptosis induced by Rpr, Hid and Dronc. Furthermore, we show that the RING finger of DIAP1 promotes the ubiquitination of both itself and of Dronc. Disruption of the DIAP1 RING finger does not inhibit its binding to Rpr, Hid or Dronc, but completely abrogates ubiquitination of Dronc. Our data suggest that IAPs suppress apoptosis by binding to and targeting caspases for ubiquitination.  相似文献   

6.
Ubiquitin ligases are critical components of the ubiquitination process that determine substrate specificity and, in collaboration with E2 ubiquitin-conjugating enzymes, regulate the nature of polyubiquitin chains assembled on their substrates. Cellular inhibitor of apoptosis (c-IAP1 and c-IAP2) proteins are recruited to TNFR1-associated signalling complexes where they regulate receptor-stimulated NF-κB activation through their RING domain ubiquitin ligase activity. Using a directed yeast two-hybrid screen, we found several novel and previously identified E2 partners of IAP RING domains. Among these, the UbcH5 family of E2 enzymes are critical regulators of the stability of c-IAP1 protein following destabilizing stimuli such as TWEAK or CD40 signalling or IAP antagonists. We demonstrate that c-IAP1 and UbcH5 family promote K11-linked polyubiquitination of receptor-interacting protein 1 (RIP1) in vitro and in vivo. We further show that TNFα-stimulated NF-κB activation involves endogenous K11-linked ubiquitination of RIP1 within the TNFR1 signalling complex that is c-IAP1 and UbcH5 dependent. Lastly, NF-κB essential modifier efficiently binds K11-linked ubiquitin chains, suggesting that this ubiquitin linkage may have a signalling role in the activation of proliferative cellular pathways.  相似文献   

7.
The inhibitor of apoptosis (IAP) proteins bind and inhibit caspases via their baculovirus IAP repeat domains. Some of these IAPs are capable of ubiquitinating themselves and their interacting proteins through the ubiquitin-protein isopeptide ligase activity of their RING domain. The Drosophila IAP antagonists Reaper, Hid, and Grim can accelerate the degradation of Drosophila IAP1 and some mammalian IAPs by promoting their ubiquitin-protein isopeptide ligase activity. Here we show that Smac/DIABLO, a mammalian functional homolog of Reaper/Hid/Grim, selectively causes the rapid degradation of c-IAP1 and c-IAP2 but not XIAP and Livin in HeLa cells, although it efficiently promotes the auto-ubiquitination of them all. Smac binding to c-IAP via its N-terminal IAP-binding motif is the prerequisite for this effect, which is further supported by the findings that Smac N-terminal peptide is sufficient to enhance c-IAP1 ubiquitination, and Smac no longer promotes the ubiquitination of mutant c-IAP1 lacking all three baculovirus IAP repeat domains. In addition, different IAPs require the same ubiquitin-conjugating enzymes UbcH5a and UbcH6 for their ubiquitination. Taken together, Smac may serve as a key molecule in vivo to selectively reduce the protein level of c-IAPs through the ubiquitin/proteasome pathway.  相似文献   

8.
Direct IAP binding protein with low pI/second mitochondrial activator of caspases, HtrA2/Omi and GstPT/eRF3 are mammalian proteins that bind via N-terminal inhibitor of apoptosis protein (IAP) binding motifs (IBMs) to the baculoviral IAP repeat (BIR) domains of IAPs. These interactions can prevent IAPs from inhibiting caspases, or displace active caspases, thereby promoting cell death. We have identified several additional potential IAP antagonists, including glutamate dehydrogenase (GdH), Nipsnap 3 and 4, CLPX, leucine-rich pentatricopeptide repeat motif-containing protein and 3-hydroxyisobutyrate dehydrogenase. All are mitochondrial proteins from which N-terminal import sequences are removed generating N-terminal IBMs. Whereas most of these proteins have alanine at the N-terminal position, as observed for previously described antagonists, GdH has an N-terminal serine residue that is essential for X-linked IAP (XIAP) interaction. These newly described IAP binding proteins interact with XIAP mainly via BIR2, with binding eliminated or significantly reduced by a single point mutation (D214S) within this domain. Through this interaction, many are able to antagonise XIAP inhibition of caspase 3 in vitro.  相似文献   

9.
Inhibitor of apoptosis proteins (IAPs) can block apoptosis through binding to active caspases and antagonizing their function. IAP function can be neutralized by Smac/Diablo, an IAP-binding protein that is released from mitochondria during apoptosis. In addition to their ability to interact with caspases, certain IAPs also display ubiquitin-protein isopeptide ligase activity because of the presence of a RING domain. However, it is not known whether the ubiquitin-protein isopeptide ligase activities of human IAPs contribute to their apoptosis inhibitory activity or whether this IAP property can be modulated through association with Smac/Diablo. Here we demonstrate that the ubiquitin ligase activities of XIAP, and to a lesser extent c-IAP-1 and c-IAP2, are potently repressed through binding to Smac/Diablo. We also show that mutation of the XIAP RING domain rendered this IAP a less effective inhibitor of apoptosis, suggesting that the ubiquitin ligase activity of XIAP contributes to its anti-apoptotic function. These data suggest that Smac/Diablo potentiates apoptosis by simultaneously antagonizing caspase-IAP interactions and repressing IAP ubiquitin ligase activities.  相似文献   

10.
Inhibitor of apoptosis proteins and apoptosis   总被引:1,自引:0,他引:1  
Apoptosis is a physiological cell death process that plays a critical role in development, homeostasis, and immune defense of multicellular animals. Inhibitor of apoptosis proteins (IAPs) constitute a family of proteins that possess between one and three baculovirus IAP repeats. Some of them also have a really interesting new gene finger domain, and can prevent cell death by binding and inhibiting active caspases, but are regulated by IAP antagonists. Some evidence also indicates that IAP can modulate the cell cycle and signal transduction. The three main factors, IAPs, IAP antagonists, and caspases, are involved in regulating the progress of apoptosis in many species. Many studies and assumptions have been focused on the anfractuous interactions between these three main factors to explore their real functional model in order to develop potential anticancer drugs. In this review, we describe the classification, molecular structures, and properties of IAPs and discuss the mechanisms of apoptosis. We also discuss the promising significance of clinical applications of IAPs in the diagnosis and treatment of malignancy.  相似文献   

11.
Feltham R  Khan N  Silke J 《IUBMB life》2012,64(5):411-418
The Inhibitor of apoptosis (IAP) proteins are key negative regulators of cell death, whose amplification has been correlated with tumor progression. Due to the presence of a RING domain, IAP proteins are classed as ubiquitin ligases and regulate cell survival by orchestrating a variety of ubiquitin modifications. Ubiquitin protein modification is fundamental in cell signaling and different ubiquitin modifications may label proteins for destruction, relocalization or provide a recruitment platform for ubiquitin binding proteins. Ubiquitin performs a myriad of different functions because it can be conjugated to a large range of target proteins through numerous different types of ubiquitin linkages. Despite the fact that ubiquitin is extremely versatile, the E3s such as the IAPs provide an important level of control due to their specificity for certain substrates. Several recent reviews have discussed the role of IAPs in regulating immune signaling so we have therefore focused our review on the interplay between IAPs and ubiquitin and discussed the importance of this relationship for the regulation of themselves, specific substrates and various cell death and survival signaling pathways.  相似文献   

12.
Linares LK  Scheffner M 《FEBS letters》2003,554(1-2):73-76
The proto-oncoprotein Hdm2 is a member of the RING finger-type family of ubiquitin-protein ligases E3. The RING finger domain is assumed to mediate the specific interaction of an E3 with its cognate ubiquitin-conjugating enzyme E2, which catalyzes the covalent attachment of ubiquitin to substrate proteins. In addition, the RING finger domain of Hdm2 is involved in Hdm2 homooligomer formation and has the capacity to bind to RNA in a sequence-specific manner. Here we report that interaction with nucleic acids interferes with both Hdm2/Hdm2 complex formation and auto-ubiquitination of Hdm2 in vitro. Furthermore, although binding of Hdm2 to the tumor suppressor p53 is not inhibited by nucleic acids, Hdm2-mediated ubiquitination of p53 is significantly decreased. Taken together, these results provide the first example of an E3 whose activity can be regulated by direct interaction with nucleic acids.  相似文献   

13.
Apoptotic cell death and survival is controlled by pro- and antiapoptotic proteins. Because these proteins act on each other, cell fate is dictated by the relative activity of pro- versus antiapoptotic proteins. Here we report that BRUCE, a conserved 528 kDa peripheral membrane protein of the trans-Golgi network, protects cells against apoptosis and functions as an inhibitor of apoptosis (IAP). By using wild-type and mutant forms we show that BRUCE inhibits caspase activity and apoptosis depending on its BIR domain. Upon apoptosis induction, BRUCE is antagonized by three mechanisms: first, through binding to Smac; second, by the protease HtrA2; and third, by caspase-mediated cleavage. In addition to its IAP activity BRUCE has the distinctive property of functioning as a chimeric E2/E3 ubiquitin ligase with Smac being a substrate. Our work suggests that, owing to its two activities and its localization, BRUCE may function as a specialized regulator of cell death pathways.  相似文献   

14.
Inhibitor of apoptosis (IAP) proteins are key regulators of intracellular signaling that interact with tumor necrosis factor (TNF) receptor superfamily members as well as proapoptotic molecules such as Smac/DIABLO and caspases. Whereas the X-linked IAP is an established caspase inhibitor, the protective mechanisms utilized by the cellular IAP (c-IAP) proteins are less clear because c-IAPs bind to but do not inhibit the enzymatic activities of caspases. In this study, c-IAPs are shown to be highly unstable molecules that undergo autoubiquitination. The autoubiquitination of c-IAP1 is blocked upon coexpression with TNF receptor-associated factor (TRAF) 2, and this is achieved by inhibition of the E3 ubiquitin ligase activity intrinsic to the RING of c-IAP1. Consistent with these observations, loss of TRAF2 results in a decrease in c-IAP1 levels. Stabilized c-IAP1 was found to sequester and prevent Smac/DIABLO from antagonizing X-linked IAP and protect against cell death. Therefore, this study describes an intriguing cytoprotective mechanism utilized by c-IAP1 and provides critical insight into how IAP proteins function to alter the apoptotic threshold.The inhibitors of apoptosis (IAPs)2 are an evolutionarily conserved gene family described originally as encoding cell death inhibitors. IAP proteins have subsequently been found to participate in a variety of additional intracellular signaling processes (1), and it has become evident that IAP proteins are versatile molecules playing numerous distinct roles within the cell. Although a more complete understanding of these additional functions for IAP proteins is emerging, the distinct mechanisms utilized by some IAP proteins to function in their originally defined roles as cell death inhibitors remain unclear.Members of the IAP family are characterized by the presence of 1–3 tandem repeats of an ∼70-residue baculovirus IAP repeat domain (2). The baculovirus IAP repeat domains of many IAP proteins have been shown to be the region within IAP proteins that associates with caspases and other proapoptotic molecules (3, 4). IAP proteins have remarkably different apoptotic inhibitory abilities. For example, X-linked IAP (XIAP) is a highly potent cell death inhibitor (5) and is thought to be the only mammalian IAP protein that directly inhibits the enzymatic activities of caspases (24, 6). Although cellular IAP1 and -2 (c-IAP1 and c-IAP2) are anti-apoptotic proteins that can bind to caspase-7 and -9, they do not inhibit the enzymatic activities of these caspases (2, 6).Many IAP proteins, including c-IAP1 and c-IAP2, contain a carboxyl-terminal RING domain that can function as an E3 ubiquitin ligase (7). The E3 ubiquitin ligase activity of the RING domain in c-IAP1 and c-IAP2 was previously shown to negatively regulate the apoptotic inhibitory properties of c-IAP proteins and to promote autoubiquitination and degradation of c-IAP1 (8, 9), thus hindering attempts to define the cellular properties of this protein.A specialized property of the c-IAP proteins is their involvement in tumor necrosis family (TNF) signaling (1012). Both c-IAP1 and c-IAP2 were discovered in a biochemical screen for factors associated with the type 2 TNF receptor. This association was found to be indirect and bridged by interactions with TNF receptor-associated factors (TRAFs), most notably TRAF1 and TRAF2 (11). Though the consequences of the association between TRAF2 and c-IAP1 on TNF-mediated signaling have been investigated (12), less is known about the functional significance of the association between TRAF2 and c-IAP1 on cell death inhibition. Because both c-IAP1 and TRAF2 possess E3 ubiquitin ligase activity in their respective RING domains, it seemed that the association between these molecules might impact the protective properties of c-IAP1 and alter the apoptotic threshold.In this study, the role of TRAF2 in c-IAP1 stability and how the association of TRAF2 with c-IAP1 affects the apoptotic inhibitory properties of c-IAP1 were examined. The presence of TRAF2 greatly enhanced the stability of c-IAP1, and these data suggest that the interaction between TRAF2 and c-IAP1 inhibits the E3 ubiquitin ligase activity intrinsic to the RING domain of c-IAP1. Using stabilized c-IAP1, the anti-apoptotic activity of c-IAP1 was characterized, and it was found that c-IAP1 suppresses apoptosis to a degree comparable with XIAP. Furthermore, we show that c-IAP1 functions to prevent the IAP antagonist, Smac/DIABLO (13, 14), from interfering with XIAP inhibition of caspases. Together, this study demonstrates that although c-IAP1 does not directly inhibit caspase activity, stabilized c-IAP1 can sequester Smac/DIABLO, prevent Smac/DIABLO from antagonizing XIAP, and inhibit cell death.  相似文献   

15.
The baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) possesses two genes, iap1 and iap2, which encode inhibitor of apoptosis (IAP) proteins. We previously showed that although both genes are dispensable for viral propagation, iap2 is required for efficient viral propagation in cultured cells. BmNPV IAP2 contains three putative functional domains: a baculovirus IAP repeat (BIR), a BIR-like (BIRL) domain, and a RING finger domain. To identify the domain affecting viral growth, we generated a series of BmNPV bacmids expressing iap2 derivatives lacking one or two domains, or possessing a single amino acid substitution to abolish IAP2 ubiquitin ligase activity. We examined their properties in both cultured cells and B. mori larvae. We found that either the BIR or BIRL domain of IAP2 plays an important role in BmNPV infection, and that the RING finger domain, which is required for ubiquitin ligase activity, does not greatly contribute to BmNPV propagation. This is the first study to identify functional domains of the baculovirus IAP2 protein.  相似文献   

16.
Members of the IAP (inhibitor of apoptosis) family function as anti-apoptotic proteins by binding directly to caspase-3, -7, and -9 to inhibit their activities. During apoptosis, the activities of IAPs are relieved by a second mitochondria-derived caspase activator, named Smac/DIABLO. Some IAPs have a C-terminal RING finger domain that has been identified as the essential motif for the activity of ubiquitin ligase (E3). Here we show that X-linked IAP (XIAP) mediates the polyubiquitination of caspase-9 and Smac. The large subunit of mature caspase-9 was polyubiquitinated by XIAP in vitro, while procaspase-9 was not. Furthermore, the polyubiquitinated form of caspase-9 accumulated in an XIAP-dependent manner in intact cells. The ubiquitination of caspase-9 was significantly inhibited in the presence of mature Smac, whereas XIAP was also found to promote the polyubiquitination of cytosolic Smac both in vitro and in intact cells. These ubiquitination reactions require the RING finger domain of XIAP. These findings suggest that XIAP functions as ubiquitin ligase toward mature caspase-9 and Smac to inhibit apoptosis.  相似文献   

17.
Shigella deploys a unique mechanism to manipulate macrophage pyroptosis by delivering the IpaH7.8 E3 ubiquitin ligase via its type III secretion system. IpaH7.8 ubiquitinates glomulin (GLMN) and elicits its degradation, thereby inducing inflammasome activation and pyroptotic cell death of macrophages. Here, we show that GLMN specifically binds cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1 and cIAP2), members of the inhibitor of apoptosis (IAP) family of RING‐E3 ligases, which results in reduced E3 ligase activity, and consequently inflammasome‐mediated death of macrophages. Importantly, reducing the levels of GLMN in macrophages via IpaH7.8, or siRNA‐mediated knockdown, enhances inflammasome activation in response to infection by Shigella, Salmonella, or Pseudomonas, stimulation with NLRP3 inflammasome activators (including SiO2, alum, or MSU), or stimulation of the AIM2 inflammasome by poly dA:dT. GLMN binds specifically to the RING domain of both cIAPs, which inhibits their self‐ubiquitination activity. These findings suggest that GLMN is a negative regulator of cIAP‐mediated inflammasome activation, and highlight a unique Shigella stratagem to kill macrophages, promoting severe inflammation.  相似文献   

18.
Lee SJ  Choi JY  Sung YM  Park H  Rhim H  Kang S 《FEBS letters》2001,503(1):61-64
To identify proteins that interact with Huntingtin-interacting protein-2 (Hip-2), a ubiquitin-conjugating enzyme, a yeast two-hybrid screen system was used to isolate five positive clones. Sequence analyses showed that, with one exception, all Hip-2-interacting proteins contained the RING finger motifs. The interaction of Hip-2 with RNF2, one of the clones, was further confirmed through in vitro and in vivo experiments. Mutations in the RING domain of RNF2 prevented the clone from binding to Hip-2, an indication that the RING domain is the binding determinant. RNF2 showed a ubiquitin ligase (E3) activity in the presence of Hip-2, suggesting that a subset of RING finger proteins may have roles as E3s.  相似文献   

19.
IAPs, RINGs and ubiquitylation   总被引:16,自引:0,他引:16  
The inhibitor of apoptosis (IAP) proteins all contain one or more baculoviral IAP repeat motifs, through which they interact with various other proteins. Many IAPs also have another zinc-binding motif, the RING domain, which can recruit E2 ubiquitin-conjugating enzymes and catalyse the transfer of ubiquitin onto target proteins. The number of targets of IAP-mediated ubiquitylation is increasing and recent results indicate that outcomes following ubiquitylation are tantalizingly complex. As well as regulating other proteins, the IAPs themselves are controlled by ubiquitin-mediated degradation.  相似文献   

20.
Recent results from several laboratories suggest that the interaction of E2 ubiquitin-conjugating enzymes with the RING finger domain has a central role in mediating the transfer of ubiquitin to proteins. Here we present a mutational analysis of the interaction between the E2 enzyme UbcM4/UbcH7 and three different RING finger proteins, termed UIPs, which, like Parkin, contain a RING1-IBR-RING2 motif. The results show that the E2 enzyme binds to the RING1 domain but not to the other cysteine/histidine-rich domains of the RING1-IBR-RING2 motif. Three regions within the UbcM4 molecule are involved in this interaction: the H1 alpha helix, loop L1, connecting the third and fourth strand of the beta sheet, and loop L2, located between the fourth beta strand and the second alpha helix. Loop L2 plays an important role in determining the specificity of interaction. The effects of L2 mutations on UbcM4/UIP interaction are different for each UIP, indicating that RING finger domains can vary considerably in their structural requirements for binding to E2 enzymes. The result that single amino-acid changes can regulate binding of E2 enzymes to different RING finger proteins suggests a novel approach to experimentally manipulate proteolytic pathways mediated by RING finger proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号