首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ribosome recycling factor, referred to as RRF, is essential for bacterial growth because of its activity of decomposition of the post-termination complex of the ribosome after release of polypeptides. In this study, we isolated a conditionally lethal amber mutation, named frr-3, in the Escherichia coli RRF gene at amino acid position 161, showing that the truncation of the C-terminal 25 amino acids of RRF is lethal to E. coli. An RRF gene cloned from Thermus thermophilus, whose protein is 44% identical and 68% similar to E. coli RRF, failed to complement the frr-3(Am) allele. However, truncation of the C-terminal five amino acids conferred intergeneric complementation activity on T. thermophilus RRF, demonstrating the modulator activity of the C-terminal tail. Rapid purification of T. thermophilus RRF was achieved by T7-RNA polymerase-driven overexpression for crystallography.  相似文献   

2.
The ribosomal protein L11 in bacteria is posttranslationally trimethylated at multiple amino acid positions by the L11 methyltransferase PrmA, the product of the prmA gene. The role of L11 methylation in ribosome function or assembly has yet to be determined, although the deletion of Escherichia coli prmA has no apparent phenotype. We have constructed a mutant of the extreme thermophile Thermus thermophilus in which the prmA gene has been disrupted with the htk gene encoding a heat-stable kanamycin adenyltransferase. This mutant shows no growth defects, indicating that T. thermophilus PrmA, like its E. coli homolog, is dispensable. Ribosomes prepared from this mutant contain unmethylated L11, as determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and are effective substrates for in vitro methylation by cloned and purified T. thermophilus PrmA. MALDI-TOF MS also revealed that T. thermophilus L11 contains a total of 12 methyl groups, in contrast to the 9 methyl groups found in E. coli L11. Finally, we found that, as with the E. coli methyltransferase, the ribosomal protein L11 dissociated from ribosomes is a more efficient substrate for in vitro methylation by PrmA than intact 70S ribosomes, suggesting that methylation in vivo occurs on free L11 prior to its incorporation into ribosomes.  相似文献   

3.
A stable complex of the chaperonins, cpn60 and cpn10 (Escherichia coli GroEL and GroES homologues), from the extremely thermophilic bacterium Thermus thermophilus has been isolated and crystallized. The crystals have dimensions up to 30 x 200 x 200 microns. Ultra-thin sections of the crystals estimated by electron microscopy showed a rectangular lattice with unit cell parameters of a = 17 nm, b = 27 nm, gamma = 90 degrees.  相似文献   

4.
The biosynthesis of polyhydroxyalkanoates (PHAs) was studied, for the first time, in the thermophilic bacterium Thermus thermophilus. Using sodium gluconate (1.5% w/v) or sodium octanoate (10 mM) as sole carbon sources, PHAs were accumulated to approximately 35 or 40% of the cellular dry weight, respectively. Gas chromatographic analysis of PHA isolated from gluconate-grown cells showed that the polyester (Mw: 480,000 g.mol–1) was mainly composed of 3-hydroxydecanoate (3HD) with a molar fraction of 64%. In addition, 3-hydroxyoctanoate (3HO), 3-hydroxyvalerate (3HV) and 3-hydroxybutyrate (3HB) occurred as constituents. In contrast, the polyester (Mw: 391,000 g mol–1) from octanoate-grown cells was composed of 24.5 mol% 3HB, 5.4 mol% 3HO, 12.3 mol% 3-hydroxynonanoate (3HN), 14.6 mol% 3HD, 35.4 mol% 3-hydroxyundecanoate (3HUD) and 7.8 mol% 3-hydroxydodecanoate (3HDD). Activities of PHA synthase, a -ketothiolase and an NADPH-dependent reductase were detected in the soluble cytosolic fraction obtained from gluconate-grown cells of T. thermophilus. The soluble PHA synthase was purified 4271-fold with 8.5% recovery from gluconate-grown cells, presenting a Km of 0.25 mM for 3HB-CoA. The optimal temperature of PHA synthase activity was about 70°C and acts optimally at pH near 7.3. PHA synthase activity was inhibited 50% with 25 M CoA and lost all of its activity when it was treated with alkaline phosphatase. PHA synthase, in contrary to other reported PHA synthases did not exhibit a lag phase on its kinetics, when low concentration of the enzyme was used. Incubation of PHA synthase with 1 mM N-ethyl-maleimide inhibits the enzyme 56%, indicating that cysteine might be involved in the catalytic site of the enzyme. Acetyl phosphate (10 mM) activated both the native and the dephosphorylated enzyme. A major protein (55 kDa) was detected by SDS-PAGE. When a partially purified preparation was analyzed on native PAGE the major band exhibiting PHA synthase activity was eluted from the gel and analyzed further on SDS-PAGE, presenting the first purification of a PHA synthase from a thermophilic microorganism.  相似文献   

5.
Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyalkanoates (HAs) synthesised by numerous bacteria as intracellular carbon and energy storage compounds which accumulate as granules in the cytoplasm of the cells. The biosynthesis of PHAs, in the thermophilic bacterium T. thermophilus grown in a mineral medium supplemented with sodium gluconate as sole carbon source has been recently reported. Here, we report the purification at apparent homogeneity of a beta-ketoacyl-CoA thiolase from T. thermophilus, the first enzyme of the most common biosynthetic pathway for PHAs. B-Ketoacyl-CoA thiolase appeared as a single band of 45.5-kDa molecular mass on SDS/PAGE. The enzyme was purified 390-fold with 7% recovery. The native enzyme is a multimeric protein of a molecular mass of approximately of 182 kDa consisting of four identical subunits of 45.5 kDa, as identified by an in situ renaturation experiment on SDS-PAGE. The enzyme exhibited an optimal pH of approximately 8.0 and highest activity at 65 degrees C for both direction of the reaction. The thiolysis reaction showed a substrate inhibition at high concentrations; when one of the substrates (acetoacetyl CoA or CoA) is varied, while the concentrations of the second substrates (CoA or acetoacetyl CoA respectively) remain constant. The initial velocity kinetics showed a pattern of a family of parallel lines, which is in accordance with a ping-pong mechanism. beta-Ketothiolase had a relative low Km of 0.25 mM for acetyl-CoA and 11 microM and 25 microM for CoA and acetoacetyl-CoA, respectively. The enzyme was inhibited by treatment with 1 mM N-ethylmaleimide either in the presence or in the absence of 0.5 mM of acetyl-CoA suggesting that possibly a cysteine is located at/or near the active site of beta-ketothiolase.  相似文献   

6.
Thermus thermophilus HB8 flagellin protein (FliC) is encoded by the TTHC004 (fliC) gene, which is located in the pTT8 plasmid of the bacterium. Flagellin monomer and flagella fibres were isolated from a culture of T. thermophilus grown in rich medium, or in mineral salt medium with sodium gluconate as the carbon source. Western blot immunodetection with anti-FliC revealed a stable complex (FliC)(1)(FliS)(2) of flagellin (FliC, 27.7 kDa) with a homodimer of FliS (FliS, 18.2 kDa) that are encoded by TTHC004 and TTHC003 genes, respectively. The complex is dissociable at low pHs and/or by heat treatment. Glycan staining of purified flagella and treatment with N-glycosidase F suggested that flagellin of T. thermophilus is a glycosylated protein. Size exclusion chromatography revealed that flagellar filaments (FliC) have a molecular mass higher than 200 kDa. The formation of flagella is enhanced after prolonged cultivation time where phosphate and other nutrient were depleted, giving in the bacterium considerable swimming motility in low viscosity media.  相似文献   

7.
The genes for trehalose synthesis in Thermus thermophilus RQ-1, namely otsA [trehalose-phosphate synthase (TPS)], otsB [trehalose-phosphate phosphatase (TPP)], and treS [trehalose synthase (maltose converting) (TreS)] genes are structurally linked. The TPS/TPP pathway plays a role in osmoadaptation, since mutants unable to synthesize trehalose via this pathway were less osmotolerant, in trehalose-deprived medium, than the wild-type strain. The otsA and otsB genes have now been individually cloned and overexpressed in Escherichia coli and the corresponding recombinant enzymes purified. The apparent molecular masses of TPS and TPP were 52 and 26 kDa, respectively. The recombinant TPS utilized UDP-glucose, TDP-glucose, ADP-glucose, or GDP-glucose, in this order as glucosyl donors, and glucose-6-phosphate as the glucosyl acceptor to produce trehalose-6-phosphate (T6P). The recombinant TPP catalyzed the dephosphorylation of T6P to trehalose. This enzyme also dephosphorylated G6P, and this activity was enhanced by NDP-glucose. TPS had an optimal activity at about 98°C and pH near 6.0; TPP had a maximal activity near 70°C and at pH 7.0. The enzymes were extremely thermostable: at 100°C, TPS had a half-life of 31 min, and TPP had a half-life of 40 min. The enzymes did not require the presence of divalent cations for activity; however, the presence of Co2+ and Mg2+ stimulates both TPS and TPP. This is the first report of the characterization of TPS and TPP from a thermophilic organism.  相似文献   

8.
The ancient bacterial lineage Thermus spp has a primitive form of outer membrane attached to the cell wall through SlpA, a protein that shows intermediate properties between S-layer proteins and outer membrane (OM) porins. In E. coli and related Proteobacteria, porins are secreted through the BAM (β-barrel assembly machinery) pathway, whose main component is BamA. A homologue to this protein is encoded in all the Thermus spp so far sequenced, so we wondered if this pathway could be responsible for SlpA secretion in this ancient bacterial model. To analyse this hypothesis, we attempted to get mutants on this BamAth of T. thermophilus HB27. Knockout and deletion mutants lacking the last 10 amino acids were not viable, whereas its depletion by means of a BamA antisense RNA lead defective attachment to the cell wall of its OM-like envelope. Such defects were related to defective folding of the SlpA protein that was more sensitive to proteases than in a wild-type strain. A similar phenotype was found in mutants lacking the terminal Phe of SlpA. Further protein–protein interaction assays confirmed the existence of specific binding between SlpA and BamAth. Taking together, these data suggest that SlpA is secreted through a BAM-like pathway in this ancestral bacterial lineage, supporting an ancient origin of this pathway before the evolution of the Proteobacteria.  相似文献   

9.
Three 5S rRNA-binding ribosomal proteins (L5, L18, TL5) of extremely thermophilic bacterium Thermus thermophilus have earlier been isolated. Structural analysis of their complexes with rRNA requires identification of their binding sites in the 5S rRNA. Previously, a TL5-binding site has been identified, a TL5-RNA complex crystallized, and its structure determined to 2.3 A. The sites for L5 and L18 were characterized, and two corresponding 5S rRNA fragments constructed. Of these, a 34-nt fragment specifically interacted with L5, and a 55-nt fragment interacted with L5, L18, and with both proteins. The 34-nt fragment-L5 complex was crystallized; the crystals are suitable for high-resolution X-ray analysis.  相似文献   

10.
L-asparaginase EC 3.5.1.1 was purified to homogeneity from Thermus thermophilus. The apparent molecular mass of L-asparaginase by SDS-PAGE was found to be 33 kDa, whereas by its mobility on Sephacryl S-300 superfine column was around 200 kDa, indicating that the enzyme at the native stage acts as hexamer. The purified enzyme showed a single band on acrylamide gel electrophoresis with pI = 6.0. The optimum pH was 9.2 and the Km for L-asparagine was 2.8 mM. It is a thermostable enzyme and it follows linear kinetics even at 77°C. Chemical modification experiments implied the existence of histidyl, arginyl and a carboxylic residues located at or near active site while serine and mainly cysteine seems to be necessary for active form.  相似文献   

11.
The protein Sup35 has prion properties. Its aggregation is at the origin of the [PSI(+)] trait in Saccharomyces cerevisiae. In vitro, the N-terminal domain of Sup35p alone or with the middle domain assembles into fibrils that exhibit the characteristics of amyloids. The vast majority of in vitro studies on the assembly of Sup35p have been performed using Sup35pNM, as fibrils made of Sup35pNM assembled in vitro propagate [PSI(+)] when reintroduced into yeast cells. Little is known about the assembly of full-length Sup35p and the role of the functional C-terminal domain of the protein. Here we report a systematic comparison of the biochemical and assembly properties of full-length Sup35p and Sup35pNM. We show that the native structure of the C-terminal domain is retained within the fibrils. We determined the size of Sup35p nuclei and the critical concentration for assembly that both differ from that of Sup35pNM. We demonstrate that Sup35pNM co-assembles with the full-length protein and that fibrils made of Sup35p or Sup35pNM seed the assembly of soluble Sup35pNM and Sup35p with different efficiencies. Finally, we show that fibrils made of full-length Sup35p induce with higher efficiency [PSI(+)] appearance as compared with those made of Sup35pNM. Our findings reveal differences and similarities in the assembly of Sup35p and its NM fragment and validate the use of Sup35pNM in studying some aspects of Sup35p aggregation but also underline the importance of using full-length Sup35p in studying prion propagation both in vivo and in vitro.  相似文献   

12.
Pathogenic Vibrio cholerae secrete V. cholerae cytolysin (VCC), an 80 kDa pro-toxin that assembles into an oligomeric pore on target cell membranes following proteolytic cleavage and interaction with cell surface receptors. To gain insight into the activation and targeting activities of VCC, we solved the crystal structure of the pro-toxin at 2.3A by X-ray diffraction. The core cytolytic domain of VCC shares a fold similar to the staphylococcal pore-forming toxins, but in VCC an amino-terminal pro-domain and two carboxy-terminal lectin domains decorate the cytolytic domain. The pro-domain masks a protomer surface that likely participates in inter-protomer interactions in the cytolytic oligomer, thereby explaining why proteolytic cleavage and movement of the pro-domain is necessary for toxin activation. A single beta-octyl glucoside molecule outlines a possible receptor binding site on one lectin domain, and removal of this domain leads to a tenfold decrease in lytic activity toward rabbit erythrocytes. VCC activated by proteolytic cleavage assembles into an oligomeric species upon addition of soybean asolectin/cholesterol liposomes and this oligomer was purified in detergent micelles. Analytical ultracentrifugation and crystallographic analysis indicate that the resulting VCC oligomer is a heptamer. Taken together, these studies define the architecture of a pore forming toxin and associated lectin domains, confirm the stoichiometry of the assembled oligomer as heptameric, and suggest a common mechanism of assembly for staphylococcal and Vibrio cytolytic toxins.  相似文献   

13.
The crystal structures of the zeta-crystalline-like soluble quinone oxidoreductase from Thermus thermophilus HB8 (QOR(Tt)) and of its complex with NADPH have been determined at 2.3- and 2.8-A resolutions, respectively. QOR(Tt) is composed of two domains, and its overall fold is similar to the folds of Escherichia coli quinone oxidoreductase (QOR(Ec)) and horse liver alcohol dehydrogenase. QOR(Tt) forms a homodimer in the crystal by interaction of the betaF-strands in domain II, forming a large beta-sheet that crosses the dimer interface. High thermostability of QOR(Tt) was evidenced by circular dichroic measurement. NADPH is located between the two domains in the QOR(Tt)-NADPH complex. The disordered segment involved in the coenzyme binding of apo-QOR(Tt) becomes ordered upon NADPH binding. The segment covers an NADPH-binding cleft and may serve as a lid. The 2'-phosphate group of the adenine of NADPH is surrounded by polar and positively charged residues in QOR(Tt), suggesting that QOR(Tt) binds NADPH more readily than NADH. The putative substrate-binding site of QOR(Tt), unlike that of QOR(Ec), is largely blocked by nearby residues, permitting access only to small substrates. This may explain why QOR(Tt) has weak p-benzoquinone reduction activity and is inactive with such large substrates of QOR(Ec) as 5-hydroxy-1,4-naphthoquinone and phenanthraquinone.  相似文献   

14.
J Dodd  J M Kolb  M Nomura 《Biochimie》1991,73(6):757-767
Earlier studies have shown that the reconstitution of Escherichia coli 50S as well as 30S ribosomal subunits from component rRNA and ribosomal protein (r-protein) molecules in vitro is not completely cooperative and binding of more than one r-protein to a single 16S rRNA (or 23S rRNA) molecule is required to initiate a successful 30S (or 50S) ribosome assembly reaction. We first confirmed this conclusion by carrying out 30S subunit reconstitution in the presence of a constant amount of 16S rRNA together with various amounts of total 30S r-proteins (TP30) and by analyzing the physical state of reconstituted particles rather than by assaying protein synthesizing activity of the particles as was done in the earlier studies. As expected, under conditions of excess rRNA, the efficiency of 30S subunit reconstitution per unit amount of TP30 decreased greatly with the decrease in the ratio of TP30 to rRNA, indicating the lack of complete cooperativity in the assembly reaction. We then asked the question whether the cooperativity of ribosome assembly is complete in vivo. We treated exponentially growing E coli cells with low concentrations of chloramphenicol which is known to inhibit protein synthesis without inhibiting rRNA synthesis, creating conditions of excess synthesis of rRNA relative to r-proteins. Several concentrations of chloramphenicol (ranging from 0.4 to 4.0 micrograms/ml) were used so that inhibition of protein synthesis ranged from 40 to 95%. Under these conditions, we examined the synthesis of RNA, ribosomal proteins and 50S ribosomal subunits as well as the synthesis of total protein. We found that the synthesis of 50S subunits was not inhibited as much as the synthesis of total protein at lower concentrations of chloramphenicol, but the degree of inhibition of 50S subunit synthesis increased sharply with increasing concentrations of chloramphenicol and was in fact greater than the degree of inhibition of total protein synthesis at chloramphenicol concentrations of 2 micrograms/ml or higher. The inhibition of 50S subunit synthesis was significantly greater than the inhibition of r-protein synthesis at all chloramphenicol concentrations examined. These data are consistent with the hypothesis that the cooperativity of ribosome assembly in vivo is also not complete as is the case for in vitro ribosome reconstitution, but are difficult, if not impossible, to explain on the basis of the complete cooperativity model.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Proteins Rpf2 and Rrs1 are required for 60S ribosomal subunit maturation. These proteins are necessary for the recruitment of three ribosomal components (5S ribosomal RNA [rRNA], RpL5 and RpL11) to the 90S ribosome precursor and subsequent 27SB pre-rRNA processing. Here we present the crystal structure of the Aspergillus nidulans (An) Rpf2-Rrs1 core complex. The core complex contains the tightly interlocked N-terminal domains of Rpf2 and Rrs1. The Rpf2 N-terminal domain includes a Brix domain characterized by similar N- and C-terminal architecture. The long α-helix of Rrs1 joins the C-terminal half of the Brix domain as if it were part of a single molecule. The conserved proline-rich linker connecting the N- and C-terminal domains of Rrs1 wrap around the side of Rpf2 and anchor the C-terminal domain of Rrs1 to a specific site on Rpf2. In addition, gel shift analysis revealed that the Rpf2-Rrs1 complex binds directly to 5S rRNA. Further analysis of Rpf2-Rrs1 mutants demonstrated that Saccharomyces cerevisiae Rpf2 R236 (corresponds to R238 of AnRpf2) plays a significant role in this binding. Based on these studies and previous reports, we have proposed a model for ribosomal component recruitment to the 90S ribosome precursor.  相似文献   

16.
Iben JR  Draper DE 《Biochemistry》2008,47(9):2721-2731
Large ribosomal subunit proteins L10 and L12 form a pentameric protein complex, L10(L12) 4, that is intimately involved in the ribosome elongation cycle. Its contacts with rRNA or other ribosomal proteins have been only partially resolved by crystallography. In Escherichia coli, L10 and L12 are encoded from a single operon for which L10(L12) 4 is a translational repressor that recognizes a secondary structure in the mRNA leader. In this study, L10(L12) 4 was expressed from the moderate thermophile Bacillus stearothermophilus to quantitatively compare strategies for binding of the complex to mRNA and ribosome targets. The minimal mRNA recognition structure is widely distributed among bacteria and has the potential to form a kink-turn structure similar to one identified in the rRNA as part of the L10(L12) 4 binding site. Mutations in equivalent positions between the two sequences have similar effects on L10(L12) 4-RNA binding affinity and identify the kink-turn motif and a loop AA sequence as important recognition elements. In contrast to the larger rRNA structure, the mRNA apparently positions the kink-turn motif and loop for protein recognition without the benefit of Mg (2+)-dependent tertiary structure. The mRNA and rRNA fragments bind L10(L12) 4 with similar affinity ( approximately 10 (8) M (-1)), but fluorescence binding studies show that a nearby protein in the ribosome, L11, enhances L10(L12) 4 binding approximately 100-fold. Thus, mRNA and ribosome targets use similar RNA features, held in different structural contexts, to recognize L10(L12) 4, and the ribosome ensures the saturation of its L10(L12) 4 binding site by means of an additional protein-protein interaction.  相似文献   

17.
The synthesis of iron-sulfur clusters in Escherichia coli is believed to require a complex protein machinery encoded by the isc (iron-sulfur cluster) operon. The product of one member of this operon, IscA, has been overexpressed, purified, and characterized. It can assemble an air-sensitive [2Fe-2S] cluster as shown by UV-visible and resonance Raman spectroscopy. The metal form but not the apoform of IscA binds ferredoxin, another member of the isc operon, selectively, allowing transfer of iron and sulfide from IscA to ferredoxin and formation of the [2Fe-2S] holoferredoxin. These results thus suggest that IscA is involved in ferredoxin cluster assembly and activation. This is an important function because a functional ferredoxin is required for maturation of other cellular Fe-S proteins.  相似文献   

18.
The hydrophobically guided complex formation between the Cu(A) fragment from Thermus thermophilus ba(3) terminal oxidase and its electron transfer substrate, cytochrome c(552), was investigated electrochemically. In the presence of the purified Cu(A) fragment, a clear downshift of the c(552) redox potential from 171 to 111mV±10mV vs SHE' was found. Interestingly, this potential change fully matches complex formation with this electron acceptor site in other oxidases guided by electrostatic or covalent interactions. Redox induced FTIR difference spectra revealed conformational changes associated with complex formation and indicated the involvement of heme propionates. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

19.
Purified acetylcholinesterase (AChE) of the horn fly was characterized to elucidate the enzymological, inhibitory, and molecular properties of the enzyme. Maximum activity of the AChE against the substrate acetylthiocholine (ATCh) occurred when reactions were conducted at 37°C and pH 7.5. Km and Vmax values were (9.2 ± 0.35) × 10?6 M and 239.8 ± 10.8 units/mg, respectively, for ATCh and (1.5 ± 0.07) × 10?5 M and 138.5 ± 5.5 units/mg, respectively, for butyrylthiocholine (BTCh). The activity of AChE decreased when concentrations of ATCh or BTCh were higher than 1 mM. Studies of the interaction of AChE with different inhibitors revealed pl50 values of 8.88 for eserine, 6.90 for BW284C51, and 4.97 for ethopropazine. Bimolecular reaction constants (kis) for the organophosphorus (OP) anticholinesterases were (2.74 ± 0.14) × 106 M?1 min?1 for coroxon, (7.20 ± 0.28) × 105 M?1 min?1 for paraoxon, and (2.33 ± 0.12) × 105 M?1 min?1 for stirofos. Two major forms of native AChE molecules were found on non-denaturing polyacrylamide gel electrophoresis (PAGE) with Triton X-100, corresponding to bands AChE-2 and AChE-4 found on PAGE without Triton X-100. AChE-2 had an estimated molecular weight of 603,000 and was amphiphilic. AChE-4 had a molecular weight of 147,000 and was hydrophilic. Results of PAGE analyses indicated that the purified enzyme had two bands, one of about 123 kDa and the other greater than 320 kDa, prior to disulfide reduction and only one band at about 54 kDa after reduction on SDS-PAGE. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    20.
    P Hellwig  T Soulimane  G Buse  W M?ntele 《Biochemistry》1999,38(30):9648-9658
    The ba3 cytochrome c oxidase from Thermus thermophilus has been studied with a combined electrochemical, UV/VIS, and FTIR spectroscopic approach. Oxidative electrochemical redox titrations yielded midpoint potentials of Em1= -0.02 +/- 0.01 V and Em2 = 0.16 +/- 0.04 V for heme b and Em1 = 0.13 +/- 0.04 V and Em2 = 0.22 +/- 0.03 V for heme a(3) (vs Ag/AgCl/3 M KCl). Fully reversible electrochemically induced UV/VIS and FTIR difference spectra were obtained for the full potential step from -0. 5 to 0.5 V as well as for the critical potential steps from -0.5 to 0.1 V (heme b is fully oxidized and heme a3 remains essentially reduced) and from 0.1 to 0.5 V (heme b remains oxidized and heme a3 becomes oxidized). The difference spectra thus allow to us distinguish modes coupled to heme b and heme a3. Analogous difference spectra were obtained for the enzyme in D2O buffer for additional assignments. The FTIR difference spectra reveal the reorganization of the polypeptide backbone, perturbations of single amino acids and of hemes b and a3 upon electron transfer to/from the four redox-active centers heme b and a3, as well as CuB and CuA. Proton transfer coupled to redox transitions can be expected to manifest in the spectra. Tentative assignments of heme vibrational modes, of individual amino acids, and of secondary structure elements are presented. Aspects of the uncommon electrochemical and spectroscopic properties of the ba3 oxidase from T. thermophilus are discussed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号