首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endo-β-N-acetylglucosaminidases (ENGases) are widely used to remove N-linked oligosaccharides from glycoproteins for glycomic and proteomic studies and biopharmaceutical processes. Although several ENGases are widely available and their main oligosaccharide structural preferences are generally known (i.e. high mannose, hybrid or complex), the preferences of ENGases from different kingdoms for individual structural isoforms within the major classes of N-linked oligosaccharides have previously not been compared. In this work, a fungal ENGase (Endo Tv) was purified for the first time from a commercial Trichoderma viride chitinase mixture by sequential anion exchange and size exclusion chromatography, a commonly used strategy for purification of chitinases and endo enzymes. Oligosaccharides released from substrate glycoproteins by Endo Tv were identified and quantified by high pH anion exchange chromatography with pulsed amperometric detection and verified by mass spectrometric analysis. Unlike the widely-used bacterial ENGases, Endo H and Endo F1, Endo Tv released exclusively high mannose N-linked oligosaccharides from RNase B, ovalbumin, and yeast invertase. Endo Tv did not hydrolyze fucosylated, hybrid, complex type or bisecting N-acetylglucosamine-containing structures from bovine fetuin, ovalbumin and IgG. When compared to the bacterial ENGase, Endo H, the relative ratio of high-mannose oligosaccharide structural isoforms released from RNase B by Endo Tv was found to differ, with Endo Tv releasing more Man?GlcNAc and Man?GlcNAc isoform I and less Man(9)GlcNAc from RNase B. Based on these data, it is suggested that use of ENGases from multiple sources may serve to balance an introduced bias in quantitative analysis of released structural isoforms and may further prove valuable in biochemical structure-function studies.  相似文献   

2.
A procedure for the enzymatic synthesis of neoglycoenzymes is described. The gene encoding endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) was overexpressed in Escherichia coli as a fusion protein linked to glutathione S-transferase (GST). GST-Endo-A fusion was extracted as a soluble protein. The fusion protein was purified to homogeneity with glutathione-Sepharose 4B and showed transglycosylation activity toward high-mannose-type glycopeptides without removing the GST moiety. The GST-Endo-A immobilized on glutathione-Sepharose 4B retained its transglycosylation activity. The immobilized enzyme could transfer (Man)(6)GlcNAc en bloc to partially deglycosylated ribonuclease B without damaging its enzyme activity. The immobilized GST-Endo-A should be very useful for synthesizing active neoglycoenzymes attached with homogeneous N-linked oligosaccharides.  相似文献   

3.
Two extracellular chitinases were purified from Paecilomyces variotii DG-3, a chitinase producer and a nematode egg-parasitic fungus, to homogeneity by DEAE Sephadex A-50 and Sephadex G-100 chromatography. The purified enzymes were a monomer with an apparent molecular mass of 32 kDa (Chi32) and 46 kDa (Chi46), respectively, and showed chitinase activity bands with 0.01% glycol chitin as a substrate after SDS-PAGE. The first 20 and 15 N-terminal amino acid sequences of Chi32 and Chi46 were determined to be Asp-Pro-Typ-Gln-Thr-Asn-Val-Val-Tyr-Thr-Gly-Gln-Asp-Phe-Val-Ser-Pro-Asp-Leu-Phe and Asp-Ala-X-X-Tyr-Arg-Ser-Val-Ala-Tyr-Phe-Val-Asn-Trp-Ala, respectively. Optimal temperature and pH of the Chi32 and Chi46 were found to be both 60°C, and 2.5 and 3.0, respectively. Chi32 was almost inhibited by metal ions Ag+ and Hg2+ while Chi46 by Hg2+ and Pb2+ at a 10 mM concentration but both enzymes were enhanced by 1 mM concentration of Co2+. On analyzing the hydrolyzates of chitin oligomers [(GlcNAc) n , n = 2–6)], it was considered that Chi32 degraded chitin oligomers as an exo-type chitinase while Chi46 as an endo-type chitinase.  相似文献   

4.
Four kinds of thermostable chitinase were isolated from the cell-free culture broth of Bacillus licheniformis X-7u by successive column chromatographies on Butyl-Toyopearl, Q-Sepharose, and Sephacryl S-200. We named the enzymes chitinases I(89 kDa), II(76 kDa), III(66 kDa) and IV(59 kDa). Chitinases II, III and IV possessed extremely high optimum temperatures (70-80 degrees C), showing remarkable heat stability. Chitinases II, III and IV produced (GlcNAc)2 and GlcNAc from colloidal chitin and chitinase I predominantly produced (GlcNAc)2. The action pattern of chitinase I on PN-(GlcNAc)4 also showed a stronger propensity to cleave off the (GlcNAc)2 unit from the non-reducing end than the other three chitinases. Chitinases II, III and IV catalyzed a transglycosylation reaction that converted (GlcNAc)4 into (GlcNAc)6.  相似文献   

5.
Five extracellular chitinases of Bacillus cereus 6E1 were detected by a novel in-gel chitinase assay using carboxymethyl-chitin-remazol brilliant violet 5R (CM-chitin-RBV) as a substrate. The major chitinase activity was associated with a 36-kDa (Chi36) gel band. Chi36 was purified by a one-step, native gel purification procedure derived from the new in-gel chitinase assay. The purified Chi36 has optimal activity at pH 5.8 and retains some enzymatic activity between pH 2.5-8. The temperature optimum for Chi36 was 35 degrees C, but the enzyme was active between 4-70 degrees C. Based on its ability to hydrolyze mainly p-nitrophenyl-(N-acetyl-beta-D-glucosaminide)(2), Chi36 is characterized as a chitobiosidase, a type of exochitinase. The N-terminal amino acid sequence of mature Chi36 was determined (25 amino acids). Alanine is the first N-terminal amino acid residue indicating the cleavage of a signal peptide from a Chi36 precursor to form the mature extracellular Chi36. The N-terminal sequence of Chi36 demonstrated highest similarity with Bacillus circulans WL-12 chitinase D and significant similarity with several other bacterial chitinases.  相似文献   

6.
The transglycosylation activity of endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae was used for the enzymatic synthesis of novel oligosaccharides. When (Man)6(GlcNAc)2Asn was used as a substrate for the transglycosylation, (Man)6GlcNAc-Glc, (Man)6GlcNAc-Man, (Man)6GlcNAc-chitobiose, and (Man)6GlcNAc-gentiobiose were synthesized. Their structures were identified by HPLC, ion spray mass spectrometry, and digestion with glycosidases. Endo-beta-N-acetylglucosaminidases hydrolyzed the pyridylamino derivatives of these oligosaccharides.  相似文献   

7.
Hydrolytic mechanisms of family 18 chitinases from rice (Oryza sativa L.) and Bacillus circulans WL-12 were comparatively studied by a combination of HPLC analysis of the reaction products and theoretical calculation of reaction time-courses. All of the enzymes tested produced beta-anomers from chitin hexasaccharide [(GlcNAc)(6)], indicating that they catalyze the hydrolysis through a retaining mechanism. The rice chitinases hydrolyzed predominantly the fourth and fifth glycosidic linkages from the nonreducing end of (GlcNAc)(6), whereas B. circulans chitinase A1 hydrolyzed the second linkage from the nonreducing end. In addition, the Bacillus enzyme efficiently catalyzed transglycosylation, producing significant amounts of chitin oligomers larger than the initial substrate, but the rice chitinases did not. The time-courses of (GlcNAc)(6) degradation obtained by HPLC were analyzed by theoretical calculation, and the subsite structures of the rice chitinases were identified to be (-4)(-3)(-2)(-1)(+1)(+2). From the HPLC profile of the reaction products previously reported [Terwisscha van Scheltinga et al. (1995) Biochemistry 34, 15619-15623], family 18 chitinase from rubber tree (Hevea brasiliensis) was estimated to have the same type of subsite structure. Theoretical analysis of the reaction time-course for the Bacillus enzyme revealed that the enzyme has (-2)(-1) (+1)(+2)(+3)(+4)-type subsite structure, which is identical to that of fungal chitinase from Coccidioides immitis [Fukamizo et al. (2001) Biochemistry 40, 2448-2454]. The Bacillus enzyme also resembled the fungal chitinase in its transglycosylation activity. Minor structural differences between plant and microbial enzymes appear to result in such functional variations, even though all of these chitinases are classified into the identical family of glycosyl hydrolases.  相似文献   

8.
Streptomyces coelicolor A3(2) has 13 chitinase genes encoding 11 family 18 and two family 19 chitinases. To compare enzymatic properties of family 19 chitinase and family 18 chitinases produced by the same organism, the four chitinases (Chi18bA, Chi18aC, Chi18aD, and Chi19F), whose genes are expressed at high levels in the presence of chitin, were produced in Escherichia coli and purified. The effect of pH on the hydrolytic activity was very different not only among the four chitinases but also among the substrates. The hydrolytic activity of Chi19F, family 19 chitinase, against soluble substrates was remarkably high as compared with three family 18 chitinases, but was the lowest against crystalline substrates among the four chitinases. On the contrary, Chi18aC, a family 18-subfamily A chitinase, showed highest activity against crystalline substrates. Only Chi19F exhibited significant antifungal activity. Based on these observations, the roles of family 19 chitinases are discussed.  相似文献   

9.
A new beta1,4-N-acetylglucosaminyltransferase (GnT) responsible for the formation of branched N-linked complex-type sugar chains has been purified 64,000-fold in 16% yield from a homogenate of hen oviduct by column chromatography procedures using Q-Sepharose FF, Ni(2+)-chelating Sepharose FF, and UDP-hexanolamine-agarose. This enzyme catalyzes the transfer of GlcNAc from UDP-GlcNAc to tetraantennary oligosaccharide and produces pentaantennary oligosaccharide with the beta1-4-linked GlcNAc residue on the Manalpha1-6 arm. It requires a divalent cation such as Mn(2+) and has an apparent molecular weight of 72,000 under nonreducing conditions. The enzyme does not act on biantennary oligosaccharide (GnT I and II product), and beta1,6-N-acetylglucosaminylation of the Manalpha1-6 arm (GnT V product) is essential for its activity. This clearly distinguishes it from GnT IV, which is known to generate a beta1-4-linked GlcNAc residue only on the Manalpha1-3 arm. Based on these findings, we conclude that this enzyme is UDP-GlcNAc:GlcNAcbeta1-6(GlcNAcbeta1-2)Manalpha1-R [GlcNAc to Man]-beta1,4-N-acetylglucosaminyltransferase VI. This is the only known enzyme that has not been previously purified among GnTs responsible for antenna formation on the cores of N-linked complex-type sugar chains.  相似文献   

10.
The chitinase A (ChiA)-coding gene of Pseudomonas sp. BK1, which was isolated from a marine red alga Porphyra dentata, was cloned and expressed in Escherichia coli. The structural gene consists of 1602 bp encoding a protein of 534 amino acids, with a predicted molecular weight of 55,370 Da. The deduced amino acid sequence of ChiA showed low identity (less than 32%) with other bacterial chitinases. The ChiA was composed of multiple domains, unlike the arrangement of domains in other bacterial chitinases. Recombinant ChiA overproduced as inclusion bodies was solubilized in the presence of 8 M urea, purified in a urea-denatured form and re-folded by removing urea. The purified enzyme showed maximum activity at pH 5.0 and 40 degrees C. It exhibited high activity towards glycol chitosan and glycol chitin, and lower activity towards colloidal chitin. The enzyme hydrolyzed the oligosaccharides from (GlcNAc)4 to (GlcNAc)6, but not GlcNAc to (GlcNAc)3. The results suggest that the ChiA is a novel enzyme, with different domain structure and action mode from bacterial family 18 chitinases.  相似文献   

11.
A family 19 chitinase gene from Aeromonas sp. No.10S-24 was cloned, sequenced, and expressed in Escherichia coli. From the deduced amino acid sequence, the enzyme was found to possess two repeated N-terminal chitin-binding domains, which are separated by two proline-threonine rich linkers. The calculated molecular mass was 70 391 Da. The catalytic domain is homologous to those of plant family 19 chitinases by about 47%. The enzyme produced alpha-anomer by hydrolyzing beta-1,4-glycosidic linkage of the substrate, indicating that the enzyme catalyzes the hydrolysis through an inverting mechanism. When N-acetylglucosamine hexasaccharide [(GlcNAc)6] was hydrolyzed by the chitinase, the second glycosidic linkage from the nonreducing end was predominantly split producing (GlcNAc)2 and (GlcNAc)4. The evidence from this work suggested that the subsite structure of the enzyme was (-2)(-1)(+1)(+2)(+3)(+4), whereas most of plant family 19 chitinases have a subsite structure (-3)(-2)(-1)(+1)(+2)(+3). Thus, the Aeromonas enzyme was found to be a novel type of family 19 chitinase in its structural and functional properties.  相似文献   

12.
T Szumilo  G P Kaushal  A D Elbein 《Biochemistry》1987,26(17):5498-5505
The presence of an N-acetylglucosaminyltransferase (GlcNAc-transferase) capable of adding a GlcNAc residue to GlcNAcMan3GlcNAc was demonstrated in mung bean seedlings. This enzyme was purified about 3400-fold by using (diethylaminoethyl)cellulose and phosphocellulose chromatographies and chromatography on Concanavalin A-Sepharose. The transferase was assayed by following the change in the migration of the [3H]mannose-labeled GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc on Bio-Gel P-4, or by incorporation of [3H]GlcNAc from UDP-[3H]GlcNAc into a neutral product, (GlcNAc)2Man3GlcNAc. Thus, the purified enzyme catalyzed the addition of a GlcNAc to that mannose linked in alpha 1,6 linkage to the beta-linked mannose. GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc was an excellent acceptor while Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, Man alpha 1,6(Man alpha 1,3)Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, and Man alpha 1,6(Man apha 1,3)Man alpha 1,6[GlcNAcMan alpha 1,3]Man beta 1,4GlcNAc were not acceptors. Methylation analysis and enzymatic digestions showed that both terminal GlcNAc residues on (GlcNAc)2Man3GlcNAc were attached to the mannoses in beta 1,2 linkages. The GlcNAc transferase had an almost absolute requirement for divalent cation, with Mn2+ being best at 2-3 mM. Mn2+ could not be replaced by Mg2+ or Ca2+, but Cd2+ showed some activity. The enzyme was also markedly stimulated by the presence of detergent and showed optimum activity at 0.15% Triton X-100. The Km for UDP-GlcNAc was found to be 18 microM and that for GlcNAcMan3GlcNAc about 16 microM.  相似文献   

13.
Streptomyces coelicolor A3(2) has 13 chitinase genes encoding 11 family 18 and two family 19 chitinases. To compare enzymatic properties of family 19 chitinase and family 18 chitinases produced by the same organism, the four chitinases (Chi18bA, Chi18aC, Chi18aD, and Chi19F), whose genes are expressed at high levels in the presence of chitin, were produced in Eschericha coli and purified. The effect of pH on the hydrolytic activity was very different not only among the four chitinases but also among the substrates. The hydrolytic activity of Chi19F, family 19 chitinase, against soluble substrates was remarkably high as compared with three family 18 chitinases, but was the lowest against crystalline substrates among the four chitinases. On the contrary, Chi18aC, a family 18-subfamily A chitinase, showed highest activity against crystalline substrates. Only Chi19F exhibited significant antifungal activity. Based on these observations, the roles of family 19 chitinases are discussed.  相似文献   

14.
Karaoglu D  Kelleher DJ  Gilmore R 《Biochemistry》2001,40(40):12193-12206
The oligosaccharyltransferase (OST) preferentially utilizes the fully assembled dolichol-linked oligosaccharide Glc(3)Man(9)GlcNAc(2)-PP-Dol as the donor for N-linked glycosylation of asparagine residues in N-X-T/S consensus sites in newly synthesized proteins. A wide variety of assembly intermediates (Glc(0-2)Man(0-9)GlcNAc(2)-PP-Dol) can serve as the donor substrate for N-linked glycosylation of peptide acceptor substrates in vitro or of nascent glycoproteins in mutant cells that are defective in donor substrate assembly. A kinetic mechanism that can account for the selection of the fully assembled donor substrate from a complex mixture of dolichol-linked oligosaccharides (OS-PP-Dol) has not been elucidated. Here, the steady-state kinetic properties of the OST were reinvestigated using a proteoliposome assay system consisting of the purified yeast enzyme, near-homogeneous preparations of a dolichol-linked oligosaccharide (Glc(3)Man(9)GlcNAc(2)-PP-Dol or Man(9)GlcNAc(2)-PP-Dol) and an (125)I-labeled tripeptide as the acceptor substrate. The K(m) of the OST for the acceptor tripeptide was only slightly enhanced when Glc(3)Man(9)GlcNAc(2)-PP-Dol was the donor substrate relative to when Man(9)GlcNAc(2)-PP-Dol was the donor substrate. Evaluation of the kinetic data for both donor substrates showed deviations from typical Michaelis-Menten kinetics. Sigmoidal saturation curves, Lineweaver-Burk plots with upward curvature, and apparent Hill coefficients of about 1.4 suggested a substrate activation mechanism involving distinct regulatory (activator) and catalytic binding sites for OS-PP-Dol. Results of competition experiments using either oligosaccharide donor as an alternative substrate were also consistent with this hypothesis. We propose that binding of either donor substrate to the activator site substantially enhances Glc(3)Man(9)GlcNAc(2)-PP-Dol occupancy of the enzyme catalytic site via allosteric activation.  相似文献   

15.
A novel chemoenzymatic approach to synthesize neoglycoproteins containing high-mannose-type oligosaccharides is described. p-Isothiocyanatophenyl-beta-d-glucopyranoside (Glc-ITC) was transferred to the reducing end of the high-mannose-type oligosaccharides using a transglycosylation activity of endo-beta-N-acetylglucosaminidase A (Endo-A). A novel oligosaccharide, Man(6)GlcNAc-Glc-ITC, was synthesized as a coupling reagent for lysyl and N-terminal residues of the protein moiety. The neoglycoconjugate was coupled with several nonglycosylated proteins such as ribonuclease A, lysozyme, and alpha-lactalbumin. Between one and four high-mannose-type oligosaccharides were incorporated per molecule of these proteins. This method should be very useful for the synthesis of neoglycoproteins with homogeneous high-mannose-type oligosaccharides.  相似文献   

16.
Aeromonas caviae CB101 secretes four chitinases (around 92, 82, 70, and 55 kDa) into the culture supernatant. A chitinase gene chi1 (92 kDa) was previously studied. To identify the genes encoding the remaining three chitinases, a cosmid library of CB101 was constructed to screen for putative chitinase genes. Nine cosmid clones were shown to contain a chitinase gene on chitin plates. Surprisingly, all the positive clones contained chi1. In parallel, we purified the 55-kDa chitinase (Chi55) from the CB101 culture supernatant by continuous DEAE-Sepharose and Mono-Q anion exchange chromatography. The N-terminal amino acid sequence of the purified chitinase exactly matched the N-terminal sequence of mature Chi1, indicating that the purified chitinase (Chi55) is a truncated form of Chi1. The N- and C-terminal domains of chi1 were cloned, expressed, and purified, separately. Western blots using anti-sera to the N- and C-terminal domains of chi1 on the chitinases of CB101 showed that the four chitinases in the culture supernatant are either chi1 or C-terminal truncations of Chi1. In addition, the CB101 chi1 null mutant showed no chitinolytic activity, while CB101 chi1 null mutant complemented by pUC19chi1 containing chi1 showed all four chitinases in gel activity assay. These data indicated that all four chitinases secreted by CB101 in the culture supernatant are the product of one chitinase gene chi1.  相似文献   

17.
Sasaki A  Ishimizu T  Geyer R  Hase S 《The FEBS journal》2005,272(7):1660-1668
Endo-beta-mannosidase is an endoglycosidase that hydrolyzes only the Man beta 1-4GlcNAc linkage of the core region of N-linked sugar chains. Recently, endo-beta-mannosidase was purified to homogeneity from Lilium longiflorum (Lily) flowers, its corresponding gene was cloned and important catalytic amino acid residues were identified [Ishimizu T., Sasaki A., Okutani S., Maeda M., Yamagishi M. & Hase S. (2004) J. Biol. Chem.279, 38555-38562]. In the presence of Man beta 1-4GlcNAc beta 1-4GlcNAc-peptides as a donor substrate and p-nitrophenyl beta-N-acetylglucosaminide as an acceptor substrate, the enzyme transferred mannose to the acceptor substrate by a beta1-4-linkage regio-specifically and stereo-specifically to give Man beta 1-4GlcNAc beta 1-pNP as a transfer product. Further studies indicated that not only p-nitrophenyl beta-N-acetylglucosaminide but also p-nitrophenyl beta-glucoside and p-nitrophenyl beta-mannoside worked as acceptor substrates, however, p-nitrophenyl beta-N-acetylgalactosaminide did not work, indicating that the configuration of the hydroxyl group at the C4 position of an acceptor is important. Besides mannose, oligomannoses were also transferred. In the presence of (Man)(n)Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc-peptides (n = 0-2) and pyridylamino GlcNAc beta 1-4GlcNAc, the enzyme transferred (Man)(n)Man alpha 1-6Man en bloc to the acceptor substrate to produce pyridylamino (Man)(n)Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc (n =0-2). Thus, the lily endo-beta-mannosidase is useful for the enzymatic preparation of oligosaccharides containing the mannosyl beta 1,4-structure, chemical preparations of which have been frequently reported to be difficult.  相似文献   

18.
An alpha-1,2-mannosidase involved in the processing of N-linked oligosaccharides was prepared from the microsomal fraction of developing castor bean cotyledons. The processing alpha-mannosidase was solubilized with 1.0% Triton X-100 and purified by ion-exchange chromatography followed by two gel filtration steps. The enzyme obtained could convert Man9GlcNAc2-PA to Man5GlcNAc2-PA, but this enzyme was inactive with Man5GlcNAc2-PA, Man4GlcNAc2-PA, and p-nitrophenyl-alpha-D-mannopyranoside. The enzyme was optimally active between pH 5.5-6.0. The processing mannosidase was inhibited by deoxymannojirimycin, EDTA, and Tris ions but not by swainsonine. Structural analyses of the mannose-trimming intermediates produced by the alpha-mannosidase revealed that specific intermediates were formed during conversion of Man9GlcNAc2-PA to Man5GlcNAc2-PA.  相似文献   

19.
The binding to concanavalin A (Con A) by pyridylaminated oligosaccharides derived from bromelain (Man alpha 1,6(Xyl beta 1, 2) Man beta 1, 4GlcNAc beta 1, 4(Fuc alpha 1, 3)GlcNAc), horseradish peroxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1, 3) GlcNAc), bee venom phospholipase A2 (Man alpha 1,6Man beta 1,4GlcNAc beta 1,4GlcNAc and Man alpha 1,6(Man alpha 1, 3)Man beta 1,4GlcNAc beta 1, 4 (Fuc alpha 1, 3)GlcNAc) and zucchini ascorbate oxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4 GlcNAc beta 1, 4GlcNAc) was compared to the binding by Man3GlcNAc2, Man5GlcNAc2 and the asialo-triantennary complex oligosaccharide from bovine fetuin. While the fetuin oligosaccharide did not bind, bromelain, zucchini, Man2GlcNAc2 and horseradish peroxidase were retarded (in that order). The alpha 1, 3-fucosylated phospholipase, Man3GlcNAc2 and Man5GlcNAc2 structures were eluted with 15 M alpha -methylmannoside. It is concluded that core alpha 1,3-fucosylation has little or no effect on ConA binding while xylosylation decreases affinity for ConA. In a parallel study comparing the endoglycosidase D (Endo D) sensitivities of Man3GlcNAc2, IgG-derived GlcNAc beta 1, 2Man alpha 1,6(GlcNAc beta 1,2Man alpha 1,3)Man beta 1,4GlcNAc beta 1,4(Fuc alpha 1,6)GlcNAc, the phospholipase Man alpha 1,6(Man alpha 1, 3)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1,3)GlcNAc, and horseradish and zucchini pyridylaminated N-linked oligosaccharides, it was found that only the Man3GlcNAc2 structure was cleaved. The IgG structure was sensitive only when beta -hexosaminidase was also present. Thus, in contrast to core alpha 1,6-fucosylated structures, such as those present in mammals, the presence of core alpha 1,3-fucose, as found in structures from plants and insects, and/or beta 1,2-xylose, as found in plants, causes resistance to Endo D.  相似文献   

20.
【目的】通过构建假交替单胞菌(Pseudoalteromonassp.DL-6)低温几丁质酶(chitinaseA,chi A;chitinase C,chi C)的重组乳酸克鲁维酵母菌株、纯化重组蛋白并对其进行酶学性质表征,为低温几丁质酶潜在工业化生产几丁寡糖奠定理论基础。【方法】人工合成密码子优化的几丁质酶基因,构建重组乳酸克鲁维酵母表达质粒(p KLAC1-chi A、p KLAC1-chi C)并用电脉冲法转化到乳酸克鲁维酵母中,实现低温几丁质酶的可溶表达。利用镍柱亲和层析纯化得到高纯度的重组几丁质酶。【结果】成功构建产低温几丁质酶的重组乳酸克鲁维酵母并纯化获得高纯度的重组几丁质酶。经SDS-PAGE分析在110 k Da与90 k Da附近出现符合预期大小的蛋白条带。铁氰化钾法测得Chi A和Chi C的酶活分别为51.45 U/mg与108.56 U/mg。最适反应温度分别为20°C和30°C,最适p H分别为8.0和9.0。在低于40°C,p H 8.0–12.0时,Chi A和Chi C重组酶较稳定。Chi A和Chi C对胶体几丁质以及粉状底物α-几丁质与β-几丁质具有明显的降解活性,且具有一定协同降解能力。【结论】首次实现假交替单胞菌来源的低温几丁质酶在乳酸克鲁维酵母中的重组表达、纯化、酶学性质及其降解产物分析,为其他低温几丁质酶的研究提供借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号