首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DL-gluco-Hept-3-ulose was synthesised by oxidation of tri-O-isopropylidene-meso-glycero-gulo-heptitol with methyl sulphoxide-phosphorus pentaoxide, and subsequent hydrolysis. D-gluco-Hept-3-ulose (3) was synthesised by oxidation of one of the two isopropylidene derivatives from perseitol (D-glycero-D-galacto-heptitol), which is presumed to have the 2,2:4,5:6,7 structure, followed by hydrolysis. The crude product from the reduction of DL-gluco-hept-3-ulose with sodium borohydride showed two peaks corresponding to meso-glycero-gulo-heptitol and perseitol on g.l.c. of the trimethylsilyl derivatives. Isolation and acetylation of the latter heptitol revealed it to be racemic perseitol. Oxodation of DL-gluco-hept-3-ulose with oxygen in alkali followed by treatment with ferric acetate-hydrogen peroxide gave products with chromatographic behaviour characteristic of arabinonolactone and erythrose. Treatment of DL-gluco-hept-3-ulose with 2,4-dinitrophenylhydrazine gave a 1-deoxy-2,4-dinitrophenylosazone.  相似文献   

2.
Serum values of retinol, carotenoids, tocopherol and ascorbic acid were assayed in healthy adult females (Group A: 20 cases) and in subjects with fibrocistic mastopathy (Group B: 20 cases), benign breast neoplasms, as fibroadenomas and intraductal papillomas (Group C: 18 cases), and breast carcinoma in situ (Group D: 36 cases). Retinol and carotenoids were evaluated by spectrophotometry using trifluoroacetic acid. Tocopherol was determined by a colorimetric method involving the reduction of Fe to Fe++ by tocopherol with the formation of a red complex of the Fe++ with alpha, alpha'-dipirydyl. Ascorbic acid was estimated by a colorimetric method after derivatization with 2,4-dinitrophenylhydrazine. Our results point out that there is a highly significant decrease (p less than 0.001) of average retinol serum levels in all three patient groups as compared with group A, whereas carotenoids resulted decreased but not significantly. Tocopherol was found to be significantly lower only in groups B (p less than 0.05) and D (p less than 0.01), ascorbic acid in groups B (p less than 0.01) C (p less than 0.05) and D (p less than 0.001).  相似文献   

3.
Oxidation of the biological antioxidant alpha-tocopherol (vitamin E; TH) by peroxyl radicals yields 8a-(alkyldioxy)tocopherones, which either may hydrolyze to alpha-tocopheryl quinone (TQ) or may be reduced by ascorbic acid to regenerate TH. To define the chemistry of this putative two-electron TH redox cycle, we studied the hydrolysis and reduction of 8a-[(2,4-dimethyl-1-nitrilopent-2-yl)dioxy]tocopherone (1) in acetonitrile/buffer mixtures and in phospholipid liposomes. TQ formation in acetonitrile/buffer mixtures, which was monitored spectrophotometrically, declined with increasing pH and could not be detected above pH 4. The rate of TQ formation from 1 first increased with time and then decreased in a first-order terminal phase. Rearrangement of 8a-hydroxy-alpha-tocopherone (2) to TQ displayed first-order kinetics identical with the terminal phase for TQ formation from 1. Both rate constants increased with decreasing pH. Hydrolysis of 1 in acetonitrile/H2(18)O yielded [18O]TQ. These observations suggest that 1 loses the 8a-(alkyldioxy) moiety to produce the tocopherone cation (T+), which hydrolyzes to 2, the TQ-forming intermediate. Incubation of either 1 or 2 with ascorbic acid in acetonitrile/buffer yielded TH. Reduction of both 1 and 2 decreased with increasing pH. In phosphatidylcholine liposomes at pH 7, approximately 10% of the T+ generated from 1 was reduced to TH by 5 mM ascorbic acid. The results collectively demonstrate that T+ is the ascorbic acid reducible intermediate in a two-electron TH redox cycle, a process that probably would require biocatalysis to proceed in biological membranes.  相似文献   

4.
Some physiological and biochemical changes were measured between embryogenic and non-embryogenic callus obtained from Cardiospermum halicacabum. Combination of auxin with cytokinin was more favourable for high amount of callus formation. 2,4-D played a key role in triggering somatic embryo formation. Embryogenic callus had more total carbohydrate and starch contents, total free amino acids, nucleic acids, phenols and ascorbic acid. Non-embryogenic callus exhibited high chlorophyll content, total soluble sugar, protein, ammonia and enzymes like peroxidase and polyphenol oxidase. Thus, the present study indicated that the process of somatic embryogenesis was characterized by some biochemical and physiological changes induced by plant growth regulators.  相似文献   

5.
Ascorbic acid is a strong inhibitor of indole-3-acetic oxidation catalyzed by commercial horse-radish peroxidase. In the presence of excess ascorbic acid, the indole-acetic acid oxidation catalysis is apparently blocked. The activity of peroxidase for indoleacetic acid at pH 3.7 and 33°C, in the presence of 2,4-dichlorophenol and MnCl2 as promotors was measured by polarographic technique. The Km was 0.27 m M and the maximum velocity was 1.02 mmol O2 (mg protein)−1 min−1. Dixon plots lead to an apparent Ki of 1.25 (μ M for ascorbic acid and the inhibition was apparently competitive. Ascorbic acid, besides appearing to be a strong inhibitor of the IAA oxidase activity of peroxidase, seemed to protect IAA from total degradation. Addition of more than 5 μ M ascorbic acid produced both an exponential increase in the lag time before the onset of reaction and, at the end, an oxidation protection of 26 μ M IAA when 111 μ M IAA was present at the stawrt. The possibility of ascorbic acid-IAA auxin from endogenous oxidation in plants, is proposed.  相似文献   

6.
The 3-deoxy-n-pentosone (I) was isolated from the browning degradation mixture of N-n-xy1osy1-n-butylamine by the action of acetic acid at 55°C. The 3-deoxy-d-erythrohexosone (IIa) and the 3-deoxy-n-threohexosone (IIb) were also prepared by degradation of the corresponding N-glycosyl-n-butylamine. The 3-deoxy-d-pentosone was characterized as the 2,4-dinitrophenylosazone and its diacetate, and the p-nitrophenylosazone. The two 3-deoxy-d-hexosones were also characterized as the analogous derivatives. The three 3-deoxyosones gave positive color reactions with 2-thiobarbituric acid.

As one of the intermediates in 3-deoxyosone formation from N-glycoside, 1,2-eno1 form of 1-deoxy-1-n-butylamino-2-ketose (IV) was proposed.  相似文献   

7.
A modified method has been described for the estimation of ascorbic acid (AA) and dehydroascorbic acid (DHA) in blood and plasma. DHA is practically absent in the blood of normal human beings. On the other hand, diabetic patients have a persistently high blood DHA level. The DHA from diabetic blood has been isolated as the 2,4-dinitrophenylhydrazone derivative and identified by thin-layer chromatography and spectrophotometry.  相似文献   

8.
Experiments were performed to evaluate the nonenzymatic reaction between glutathione (GSH) and dehydroascorbic acid (DHA). Though both ascorbic acid and glutathione disulfide (GSSG) are formed from this reaction, previous work has focused almost exclusively on measurements of ascorbic acid. In contrast, there is very little information about the formation of GSSG under the same conditions as those used to produce ascorbic acid. The emphasis on ascorbic acid stems from the fact that a spectrophotometric technique is available for its measurement, whereas 1H-NMR or an amino acid analyzer has been used to measure GSSG. The present experiments use a simple, rapid method for accurately and precisely measuring the concentrations of GSSG in a solution. The spectrophotometric (340 nm) procedure uses NADPH and glutathione reductase; analysis time is very short, many replicate samples can be tested and as little as 0.05-0.1 mM GSSG can be detected. Using this method, it is shown that there is an equimolar production of GSSG and ascorbic acid from GSH and DHA and that the decrease in GSH is stoichiometrically related to the increase in the concentration of GSSG. The present findings provide additional insight into the interaction between the GSH/GSSG redox couple and the ascorbic acid/DHA redox couple.  相似文献   

9.
Exeised roots ofSolanum laciniatum Ait. grown in vitro in a liquid medium will form the typical rich white callus with a high water content. Its formation is made possible by the presence of 2,4-dichlorophenoxyacetic acid and niyo-inositol in the nutrient medium. Choline, ascorbic acid, riboflavin, calcium pantothenate and biotin are inactive. A mixture of thiamine, pyridoxine and nicotinic acid will induce only slight proliferation.  相似文献   

10.
The development of somatic embryos is, in many plants, inhibited by 2,4-dichlorophenoxyacetic acid (2,4-D) and other auxins. The finding that difluoromethylornithine (DFMO) can counteract this inhibition has been used to test some of the hypotheses for the mechanism of inhibition.
Inhibition of somatic embryogenesis in carrot ( Daucus carota L.) by exogenous ethylene (from ethephon), antioxidants (ascorbic acid and glutathione), ethanol/acetaldehyde and abscisic acid was not counteracted by DFMO, indicating that the inhibitory effect of 2,4-D is not manifest through the formation of these compounds. Embryogenesis was abolished by micromolar concentrations of the polar auxin transport inhibitors 2, 3, 5-triiodobenzoic acid (TIBA), N-1-naphthylphthalamic acid (NPA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA). This inhibition was counteracted to a considerable extent by DFMO. Inhibition by relatively high concentrations of the antiauxin 2-( p -chlorophenoxy)-isobutyric acid (CPIB), which does not affect polar auxin transport, was in contrast not counteracted by DFMO. These findings indicate that exogenous auxins may inhibit embryogenesis by interfering with the ability of postglobular embryos to set up internal auxin gradients necessary for polarized growth.  相似文献   

11.
A rapid, easy, and accurate method for the determination of uric acid and ascorbic acid in human serum by reversed-phase high-performance liquid chromatography with electrochemical detection has been developed. Human serum (0.5 ml) was mixed with 1.5 ml of an aqueous solution containing 2.0% metaphosphoric acid and the mixture was centrifuged at 3000g for 30 min. The supernatant was passed through a membrane filter to remove the particulate matter. Ten microliters of the filtrate was injected into the chromatographic system employed in this study. Complete separation of uric acid and ascorbic acid was achieved in about 2 min. The assay limit for quantitation was about 10 pg for uric acid and ascorbic acid under the present chromatographic conditions. The analytical recoveries of uric acid and ascorbic acid in human serum samples were found to be almost 100%.  相似文献   

12.
The reduction of prostaglandin H synthase compound II by ascorbic acid in the presence of diethyldithiocarbamate was studied in 0.1 M phosphate buffer (pH 8.0) at 4.0 +/- 0.5 degrees C, by rapid scan spectrometry and transient state kinetics. A saturation effect and nonzero intercept were observed in the plot of pseudo-first-order rate constant versus ascorbic acid concentration. The saturation behavior suggests formation of a complex between prostaglandin H synthase compound II and ascorbic acid, whereas the nonzero intercept is attributable to the reaction of compound II of prostaglandin H synthase with diethyldithiocarbamate present in the system as a stabilizing agent. A rate equation has been derived which includes all pathways for the conversion of prostaglandin H synthase compound II back to native enzyme. Kinetic parameters for the reduction of compound II by ascorbic acid were obtained. They are the second-order rate constant of (1.4 +/- 0.5) X 10(5) M-1, S-1, for the formation of the compound II-ascorbic acid complex, the first-order rate constant of (14 +/- 4) S-1 for the oxidation-reduction reaction of the complex and its dissociation, and a parameter, Km of 92 +/- 10 microM analogous to the Michaelis-Menten constant. Thus we demonstrate that a quantitative kinetic study on the prostaglandin H synthase reactions can be performed in the presence of diethyldithiocarbamate.  相似文献   

13.
The UV absorption method and the thiobarbituric acid (TBA) test for oxidation of an aqueous suspension of linoleate were compared. The absorption method depends on the formation of hydroperoxides having conjugated double bonds that absorb strongly at 233 nm. The absorption at 233 nm increased markedly during oxidation of linoleate catalyzed by either ascorbic acid or cupric ions. The concentration of ascorbic acid in the reaction mixture was also measured by UV absorption at 265 nm and pH 7.0. Color development in the TBA test also increased markedly with the extent of oxidation of linoleate. When ascorbic acid was the catalyst, UV absorption detected early stages of oxidation with greater sensitivity than the TBA test. The reverse was true when Cu(++) was the catalyst. In general, the relation between the two procedures will depend on whether copper is present when the TBA test is made.  相似文献   

14.
The effect of ascorbic acid on the conversion of dopamine to norepinephrine was investigated in isolated chromaffin granules from bovine adrenal medulla. Ascorbic acid was shown to double the rate of [3H]norepinephrine formation from [3H]dopamine, despite no demonstrable accumulation of ascorbic acid into chromaffin granules. The enhancement of norepinephrine biosynthesis by ascorbic acid was dependent on the external concentrations of dopamine and ascorbate. The apparent Km of the dopamine beta-hydroxylation system for external dopamine was approximately 20 microM in the presence or absence of ascorbic acid. However, the apparent maximum velocity of norepinephrine formation was nearly doubled in the presence of ascorbic acid. By contrast, the apparent Km and Vmax of dopamine uptake into chromaffin granules were not affected by ascorbic acid. Norepinephrine formation was increased by ascorbic acid when the concentration of ascorbate was 200 microM or higher; a concentration of 2 mM appeared to induce the maximal effect under the experimental conditions used here. The effect of ascorbic acid on conversion of dopamine to norepinephrine required Mg-ATP-dependent dopamine uptake into chromaffin granules. In contrast to ascorbic acid, other reducing agents such as NADH, glutathione, and homocysteine were unable to enhance norepinephrine biosynthesis. These data suggest that ascorbic acid provides reducing equivalents for hydroxylation of dopamine despite the lack of ascorbate accumulation into chromaffin granules. These findings imply the functional existence of an electron carrier system in the chromaffin granule which transfers electrons from external ascorbic acid for subsequent intragranular norepinephrine biosynthesis.  相似文献   

15.
The effect of diethylmaleate administration on ascorbic acid release following cerebral ischemia was investigated in anesthetized rat brain cortex. Cerebral ischemia, induced by ligating bilateral common carotid arteries and unilateral middle cerebral artery, significantly increased the extracellular ascorbic acid levels. Diethylmaleate (4 mmoles/kg, i.p.), which has been shown in earlier studies to decrease the ischemia-induced glutamate release, significantly reduced the ischemia-induced ascorbic acid release. The ischemia-induced ascorbic acid release was unaffected by perfusing NMDA receptor antagonist MK 801 (75 microM). Additionally, elevated extracellular glutamate levels, achieved by either externally applied glutamate solutions or by perfusing L-trans-pyrrolidine-2,4-dicarboxylate (PDC) (31.4 mM and 15.7 mM) to inhibit the glutamate uptake transporter, also significantly increased the extracellular ascorbic acid levels. These results suggested that ascorbic acid release in cerebral ischemia might be related to the elevated extracellular glutamate levels, which occurs following cerebral ischemia.  相似文献   

16.
A complex antioxidant system is present in human saliva, with uric acid being the most concentrated component. Ascorbic acid, present at low concentrations in saliva, is actively secreted into the gastric lumen. We report that ascorbic acid added to human saliva at pH 2 was consumed within a few minutes, regenerating HNO2, whereas uric acid was consumed relatively slowly in a nitrite-dependent manner. The consumption of uric acid was (i) rapid under normoxic conditions and slower at low oxygen tensions, (ii) coupled to NO release, (iii) linked to the decrease in nitrite consumption and in nitrate formation, and (iv) unaffected by the nitrosation catalyst thiocyanate. Both chlorogenic acid and bovine serum albumin, representative of a phenol- and a protein-rich meal, respectively, were able to spare uric acid, although chlorogenic acid increased, whereas bovine serum albumin inhibited, NO release. We hypothesize that the major role of uric acid in saliva at pH 2 could be to preserve the stomach from the formation of toxic nitrogen species and that low levels of uric acid, together with ascorbic acid consumption, may contribute to the high occurrence of tumors at the gastroesophageal junction and cardia. The sparing effects of dietary compounds may therefore be an important not fully appreciated effect.  相似文献   

17.
The ratio of isothiocyanates (ITCs) to nitriles formed in the myrosinase-catalyzed hydrolysis of glucosinolates is a key factor determining the physiological effect of glucosinolate containing plants and materials. In this context, the mechanism by which nitrile formation occurs is not well understood. In the present paper we have studied the effect of three redox reagents – Fe2+, glutathione (GSH) and ascorbic acid – on the profile of products obtained upon the hydrolysis of a model glucosinolate (glucosibarin ((2R)-2-hydroxy-2-phenylethylglucosinolate)) catalyzed by Brassica carinata myrosinase. A Micellar Electrokinetic Capillary Chromatography method that allows following on-line the hydrolysis of the glucosinolate, the formation of the degradation products and the oxidation of GSH was used. Increasing the concentration of Fe2+ and GSH (from 0.25- to 2-fold molar excess with respect to the glucosinolate) increased the ratio of nitrile ((2R)-2-hydroxy-2-phenylethylcyanide) to oxazolidine-2-thione ((5S)-5-phenyloxazolidine-2-thione), whereas increasing the concentration of ascorbic acid decreased this ratio. Low concentrations of ascorbic acid favored nitrile formation. A mechanism for nitrile formation involving a disulfide bond in the myrosinase complex is proposed.  相似文献   

18.
We have previously shown that vitamin C (ascorbic acid) can initiate hydroxyl radical formation in copper contaminated household drinking water. In the present study, we have examined the stability of vitamin C in copper and bicarbonate containing household drinking water. In drinking water samples, contaminated with copper from the pipes and buffered with bicarbonate, 35% of the added vitamin C was oxidized to dehydroascorbic acid within 15?min. After 3?h incubation at room temperature, 93% of the added (2?mM) ascorbic acid had been oxidized. The dehydroascorbic acid formed was further decomposed to oxalic acid and threonic acid by the hydrogen peroxide generated from the copper (I) autooxidation in the presence of oxygen. A very modest oxidation of vitamin C occurred in Milli-Q water and in household water samples not contaminated by copper ions. Moreover, addition of vitamin C to commercially sold domestic bottled water samples did not result in vitamin C oxidation. Our results demonstrate that ascorbic acid is rapidly oxidized to dehydroascorbic acid and further decomposed to oxalic- and threonic acid in copper contaminated household tap water that is buffered with bicarbonate. The impact of consuming ascorbic acid together with copper and bicarbonate containing drinking water on human health is discussed.  相似文献   

19.
Ascorbic acid enhancement of norepinephrine formation from tyrosine in cultured bovine chromaffin cells was characterized in detail as a model system for determining ascorbate requirements. In resting cells, ascorbic acid increased dopamine beta-monooxygenase activity without changing tyrosine 3-monooxygenase activity. [14C]Norepinephrine specific activity was increased by ascorbic acid, while [14C]dopamine specific activity was unchanged. Dopamine content, dopamine biosynthesis, tyrosine content, and tyrosine uptake were also unaffected by ascorbic acid. Furthermore, increased norepinephrine formation could not be attributed to changes in norepinephrine catabolism. Enhancement of dopamine beta-monooxygenase activity was specific for ascorbic acid, since other reducing agents with higher redox potentials were unable to increase norepinephrine formation. The specific effect of ascorbic acid on enhancement of norepinephrine formation was also observed in chromaffin cells stimulated to secrete with carbachol, acetylcholine, veratridine, and potassium chloride. In stimulated cells with and without ascorbate, there were no differences in dopamine content, tyrosine uptake, dopamine specific activity, and norepinephrine catabolism. These data indicate that, under a wide variety of conditions, only one catecholamine biosynthetic enzyme activity, dopamine beta-monooxygenase, is specifically stimulated by ascorbic acid alone in cultured chromaffin cells. This model system exemplifies a new approach for determining ascorbic acid requirements in cells and animals.  相似文献   

20.
The removal or reduction in concentration of auxin is often a successful method for obtaining morphogenesis in cell cultures of higher plants, such as carrot, but not for soybean. For this reason, the metabolism of one auxin, 2,4-dichlorophenoxyacetic acid (2,4-D), was compared in both carrot and soybean cells. Whereas soybean cells conjugated a high percentage of their 2,4-D to amino acids, carrot cells contained primarily free 2,4-D. Moreover, after long-term exposure to 2,4-D, carrot cells released much more 2,4-D upon transfer to 2,4-D-free (embryogenic) medium than did soybean cells. It appears that the retention of 2,4-D by soybean cells might interfere with subsequent morphogenesis. Because no impairment of 2,4-D efflux was found with short-term exposure to radiolabeled 2,4-D, it was concluded that 2,4-D retention in soybean cells might be due to a time-dependent, metabolic process. The conjugation of 2,4-D to amino acids was shown to be one such time-dependent process. Additionally, the release of 2,4-D from the cells was shown to be due primarily to a loss of free 2,4-D and not 2,4-D-amino acid conjugates. It seems that the greater retention of 2,4-D by soybean cells upon transfer to 2,4-D-free medium is due to greater formation of 2,4-D-amino acid conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号