首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incidents that slow or stall replication fork progression, collectively known as replication stress, represent a major source of spontaneous genomic instability. Here, we determine the requirement for global protein biosynthesis on DNA replication and associated downstream signaling. We study this response side by side with dNTP deprivation; one of the most commonly used means to investigate replication arrest and replicative stress. Our in vitro interrogations reveal that inhibition of translation by cycloheximide (CHX) rapidly impairs replication fork progression without decoupling helicase and polymerase activities or inducing DNA damage. In line with this, protein deprivation stress does not activate checkpoint signaling. In contrast to the direct link between insufficient dNTP pools and genome instability, our findings suggest that replication forks remain stable during short-term protein deficiency. We find that replication forks initially endure fluctuations in protein supply in order to efficiently resume DNA synthesis upon reversal of the induced protein deprivation stress. These results reveal distinct cellular responses to replication arrest induced by deprivation of either nucleotides or proteins.  相似文献   

2.
Phosphorylation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) upon ionizing radiation (IR) is essential for cellular radioresistance and nonhomologous-end-joining-mediated DNA double-strand break repair. In addition to IR induction, we have previously shown that DNA-PKcs phosphorylation is increased upon camptothecin treatment, which induces replication stress and replication-associated double-strand breaks. To clarify the involvement of DNA-PKcs in this process, we analyzed DNA-PKcs phosphorylation in response to UV irradiation, which causes replication stress and activates ATR (ATM-Rad3-related)/ATM (ataxia-telangiectasia mutated) kinases in a replication-dependent manner. Upon UV irradiation, we observed a rapid DNA-PKcs phosphorylation at T2609 and T2647, but not at S2056, distinct from that induced by IR. UV-induced DNA-PKcs phosphorylation occurs specifically only in replicating cells and is dependent on ATR kinase. Inhibition of ATR activity via caffeine, a dominant-negative kinase-dead mutant, or RNA interference led to the attenuation of UV-induced DNA-PKcs phosphorylation. Furthermore, DNA-PKcs associates with ATR in vivo and is phosphorylated by ATR in vitro, suggesting that DNA-PKcs could be the direct downstream target of ATR. Taken together, these results strongly suggest that DNA-PKcs is required for the cellular response to replication stress and might play an important role in the repair of stalled replication forks.  相似文献   

3.
Elevated level of oxygen (hyperoxia) is widely used in critical care units and in respiratory insufficiencies. In addition, hyperoxia has been implicated in many diseases such as bronchopulmonary dysplasia or acute respiratory distress syndrome. Although hyperoxia is known to cause DNA base modifications and strand breaks, the DNA damage response has not been adequately investigated. We have investigated the effect of hyperoxia on DNA damage signaling and show that hyperoxia is a unique stress that activates the ataxia telangiectasia mutant (ATM)- and Rad3-related protein kinase (ATR)-dependent p53 phosphorylations (Ser6, -15, -37, and -392), phosphorylation of histone H2AX (Ser139), and phosphorylation of checkpoint kinase 1 (Chk1). In addition, we show that phosphorylation of p53 (Ser6) and histone H2AX (Ser139) depend on both ATM and ATR. We demonstrate that ATR activation precedes ATM activation in hyperoxia. Finally, we show that ATR is required for ATM activation in hyperoxia. Taken together, we report that ATR is the major DNA damage signal transducer in hyperoxia that activates ATM.  相似文献   

4.
Perturbed DNA replication in early stages of cancer development induces chromosomal instability preferentially at fragile sites. However, the molecular basis for this instability is unknown. Here, we show that even under normal growth conditions, replication fork progression along the fragile site, FRA16C, is slow and forks frequently stall at AT-rich sequences, leading to activation of additional origins to enable replication completion. Under mild replication stress, the frequency of stalling at AT-rich sequences is further increased. Strikingly, unlike in the entire genome, in the FRA16C region additional origins are not activated, suggesting that all potential origins are already activated under normal conditions. Thus, the basis for FRA16C fragility is replication fork stalling at AT-rich sequences and inability to activate additional origins under replication stress. Our results provide a mechanism explaining the replication stress sensitivity of fragile sites and thus, the basis for genomic instability during early stages of cancer development.  相似文献   

5.
Egel R 《Current biology : CB》2004,14(21):R915-R917
Mating-type switching in fission yeast has long been known to be directed by a DNA 'imprint'. This imprint has now been firmly characterized as a protected site-specific and strand-specific nick. New work also links the widely conserved Swi1-Swi3 complex to the protection of stalled replication forks in general.  相似文献   

6.
Functional telomeres are required to maintain the replicative ability of cancer cells and represent putative targets for G-quadruplex (G4) ligands. Here, we show that the pentacyclic acridinium salt RHPS4, one of the most effective and selective G4 ligands, triggers damages in cells traversing S phase by interfering with telomere replication. Indeed, we found that RHPS4 markedly reduced BrdU incorporation at telomeres and altered the dynamic association of the telomeric proteins TRF1, TRF2 and POT1, leading to chromosome aberrations such as telomere fusions and telomere doublets. Analysis of the molecular damage pathway revealed that RHPS4 induced an ATR-dependent ATM signaling that plays a functional role in the cellular response to RHPS4 treatment. We propose that RHPS4, by stabilizing G4 DNA at telomeres, impairs fork progression and/or telomere processing resulting in telomere dysfunction and activation of a replication stress response pathway. The detailed understanding of the molecular mode of action of this class of compounds makes them attractive tools to understand telomere biology and provides the basis for a rational use of G4 ligands for the therapy of cancer.  相似文献   

7.
Mammalian CST (CTC1-STN1-TEN1) associates with telomeres and depletion of CTC1 or STN1 causes telomere defects. However, the function of mammalian CST remains poorly understood. We show here that depletion of CST subunits leads to both telomeric and non-telomeric phenotypes associated with DNA replication defects. Stable knockdown of CTC1 or STN1 increases the incidence of anaphase bridges and multi-telomeric signals, indicating genomic and telomeric instability. STN1 knockdown also delays replication through the telomere indicating a role in replication fork passage through this natural barrier. Furthermore, we find that STN1 plays a novel role in genome-wide replication restart after hydroxyurea (HU)-induced replication fork stalling. STN1 depletion leads to reduced EdU incorporation after HU release. However, most forks rapidly resume replication, indicating replisome integrity is largely intact and STN1 depletion has little effect on fork restart. Instead, STN1 depletion leads to a decrease in new origin firing. Our findings suggest that CST rescues stalled replication forks during conditions of replication stress, such as those found at natural replication barriers, likely by facilitating dormant origin firing.  相似文献   

8.
Konrad Winnicki 《Protoplasma》2013,250(5):1139-1145
DNA damage or stalled replication forks activate cell cycle checkpoints. However, the regulation of metabolic pathways that are responsible for maintenance of genome integrity in plants is still largely unknown. Present research on Vicia faba root meristem cells indicates that inhibitory phosphorylation of cyclin-dependent kinases (Cdks) at Tyr15 plays a prominent role during blockage of cell cycle in response to genotoxic stress. Phosphorylation of P-loop in Cdks takes place in ATM/ATR-dependent manner. Although, Tyr15 phosphorylation upon hydroxyurea (HU) treatment was found in most cells classified to G1 and S phase, interestingly, the number of phoshpo-Tyr15-positive cells decreases in G2 phase. Presented data confirm much similarity in regulation of Cdks functions under genotoxic stress between plants and animals; however, they may also substantiate evolutionarily developed differences especially in regulation of G2/M transition between these two kingdoms.  相似文献   

9.
Replication fork stalling at DNA lesions is a common problem during the process of DNA replication. One way to allow the bypass of these lesions is via specific recombination-based mechanisms that involve switching of the replication template to the sister chromatid. Inherent to these mechanisms is the formation of DNA joint molecules (JMs) between sister chromatids. Such JMs need to be disentangled before chromatid separation in mitosis and the activity of JM resolution enzymes, which is under stringent cell cycle control, is therefore up-regulated in mitosis. An additional layer of control is facilitated by scaffold proteins. In budding yeast, specifically during mitosis, Slx4 and Dpb11 form a cell cycle kinase-dependent complex with the Mus81-Mms4 structure-selective endonuclease, which allows efficient JM resolution by Mus81. Furthermore, Slx4 and Dpb11 interact even prior to joining Mus81 and respond to replication fork stalling in S-phase. This S-phase complex is involved in the regulation of the DNA damage checkpoint as well as in early steps of template switch recombination. Similar interactions and regulatory principles are found in human cells suggesting that Slx4 and Dpb11 may have an evolutionary conserved role organizing the cellular response to replication fork stalling.  相似文献   

10.
DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.  相似文献   

11.
Replication fork stalling at DNA lesions is a common problem during the process of DNA replication. One way to allow the bypass of these lesions is via specific recombination-based mechanisms that involve switching of the replication template to the sister chromatid. Inherent to these mechanisms is the formation of DNA joint molecules (JMs) between sister chromatids. Such JMs need to be disentangled before chromatid separation in mitosis and the activity of JM resolution enzymes, which is under stringent cell cycle control, is therefore up-regulated in mitosis. An additional layer of control is facilitated by scaffold proteins. In budding yeast, specifically during mitosis, Slx4 and Dpb11 form a cell cycle kinase-dependent complex with the Mus81-Mms4 structure-selective endonuclease, which allows efficient JM resolution by Mus81. Furthermore, Slx4 and Dpb11 interact even prior to joining Mus81 and respond to replication fork stalling in S-phase. This S-phase complex is involved in the regulation of the DNA damage checkpoint as well as in early steps of template switch recombination. Similar interactions and regulatory principles are found in human cells suggesting that Slx4 and Dpb11 may have an evolutionary conserved role organizing the cellular response to replication fork stalling.  相似文献   

12.
We report an efficient, controllable, site-specific replication roadblock that blocks cell proliferation, but which can be rapidly and efficiently reversed, leading to recovery of viability. Escherichia coli replication forks of both polarities stalled in vivo within the first 500 bp of a 10 kb repressor-bound array of operator DNA-binding sites. Controlled release of repressor binding led to rapid restart of the blocked replication fork without the participation of homologous recombination. Cytological tracking of fork stalling and restart showed that the replisome-associated SSB protein remains associated with the blocked fork for extended periods and that duplication of the fluorescent foci associated with the blocked operator array occurs immediately after restart, thereby demonstrating a lack of sister cohesion in the region of the array. Roadblocks positioned near oriC or the dif site did not prevent replication and segregation of the rest of the chromosome.  相似文献   

13.
The DNA damage-response regulators ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) are structurally and functionally related protein kinases that exhibit nearly identical substrate specificities in vitro. Current paradigms hold that the relative contributions of ATM and ATR to nuclear substrate phosphorylation are dictated by the type of initiating DNA lesion; ATM-dependent substrate phosphorylation is principally activated by DNA double strand breaks, whereas ATR-dependent substrate phosphorylation is induced by UV light and other forms of DNA replication stress. In this report, we employed the cyclic AMP-response element-binding (CREB) protein to provide evidence for substrate discrimination by ATM and ATR in cellulo. ATM and ATR phosphorylate CREB in vitro, and CREB is phosphorylated on Ser-121 in intact cells in response to ionizing radiation (IR), UV light, and hydroxyurea. The UV light- and hydroxyurea-induced phosphorylation of CREB was delayed in comparison to the canonical ATR substrate CHK1, suggesting potentially different mechanisms of phosphorylation. UV light-induced CREB phosphorylation temporally correlated with ATM autophosphorylation on Ser-1981, and an ATM-specific small interfering RNA suppressed CREB phosphorylation in response to this stimulus. UV light-induced CREB phosphorylation was absent in ATM-deficient cells, confirming that ATM is required for CREB phosphorylation in UV irradiation-damaged cells. Interestingly, RNA interference-mediated suppression of ATR partially inhibited CREB phosphorylation in response to UV light, which correlated with reduced phosphorylation of ATM on Ser-1981. These findings suggest that ATM is the major genotoxin-induced CREB kinase in mammalian cells and that ATR lies upstream of ATM in a UV light-induced signaling pathway.  相似文献   

14.
Accurate response to replication arrest is crucial to preserve genome stability and requires both the ATR and ATM functions. The Werner syndrome protein (WRN) is implicated in the recovery of stalled replication forks, and although an ATR/ATM‐dependent phosphorylation of WRN was observed after replication arrest, the function of such modifications during the response to perturbed replication is not yet appreciated. Here, we report that WRN is directly phosphorylated by ATR at multiple C‐terminal S/TQ residues. Suppression of ATR‐mediated phosphorylation of WRN prevents proper accumulation of WRN in nuclear foci, co‐localisation with RPA and causes breakage of stalled forks. On the other hand, inhibition of ATM kinase activity or expression of an ATM‐unphosphorylable WRN allele leads to retention of WRN in nuclear foci and impaired recruitment of RAD51 recombinase resulting in reduced viability after fork collapse. Altogether, our findings indicate that ATR and ATM promote recovery from perturbed replication by differently regulating WRN at defined moments of the response to replication fork arrest.  相似文献   

15.
UV-induced DNA damage stalls DNA replication forks and activates the intra-S checkpoint to inhibit replicon initiation. In response to stalled replication forks, ATR phosphorylates and activates the transducer kinase Chk1 through interactions with the mediator proteins TopBP1, Claspin, and Timeless (Tim). Murine Tim recently was shown to form a complex with Tim-interacting protein (Tipin), and a similar complex was shown to exist in human cells. Knockdown of Tipin using small interfering RNA reduced the expression of Tim and reversed the intra-S checkpoint response to UVC. Tipin interacted with replication protein A (RPA) and RPA-coated DNA, and RPA promoted the loading of Tipin onto RPA-free DNA. Immunofluorescence analysis of spread DNA fibers showed that treating HeLa cells with 2.5 J/m(2) UVC not only inhibited the initiation of new replicons but also reduced the rate of chain elongation at active replication forks. The depletion of Tim and Tipin reversed the UV-induced inhibition of replicon initiation but affected the rate of DNA synthesis at replication forks in different ways. In undamaged cells depleted of Tim, the apparent rate of replication fork progression was 52% of the control. In contrast, Tipin depletion had little or no effect on fork progression in unirradiated cells but significantly attenuated the UV-induced inhibition of DNA chain elongation. Together, these findings indicate that the Tim-Tipin complex mediates the UV-induced intra-S checkpoint, Tim is needed to maintain DNA replication fork movement in the absence of damage, Tipin interacts with RPA on DNA and, in UV-damaged cells, Tipin slows DNA chain elongation in active replicons.  相似文献   

16.
17.
Pradhan A  Hussain EM  Tuteja R 《Gene》2008,420(1):66-75
Helicases are essential enzymes, which play important role in the metabolism of nucleic acids. In the present study we report further characterization of PfH45 (Plasmodium falciparum helicase 45), which is an essential enzyme for parasite survival. The results show that the helicase activity of PfH45 is significantly stimulated by replication fork like structure. The studies using truncated derivatives of PfH45 show that its nucleic acid dependent ATPase activity resides in the N-terminal one third of the protein and its RNA and DNA-binding activity predominantly resides in the C-terminal two third of the protein. The phosphorylation of PfH45 by protein kinase C at Ser and Thr residues stimulated its DNA and RNA helicase and ssDNA and RNA-dependent ATPase activities. DNA-interacting compounds actinomycin, DAPI, daunorubicin, ethidium bromide, netropsin and nogalamycin were able to inhibit the helicase and ssDNA-dependent ATPase activity with apparent IC50 values ranging from 0.5 to 5.0 microM respectively. These compounds distinctively inhibit the helicase activity probably by forming complex with DNA and obstructing enzyme movement.  相似文献   

18.
19.
Oxidative stress linked to DNA damage is involved in the pathogenesis of Helicobacter pylori-associated gastric diseases. The DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair, and apoptosis through the activation of ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) and their target proteins. However, neither H. pylori-induced DDR nor the effects of antioxidants on the DNA damage have been established. This study aimed to investigate the detailed process of H. pylori-induced DNA damage and to examine whether lycopene, a natural antioxidant, inhibits DNA damage and cellular response of gastric epithelial AGS cells infected with H. pylori. AGS cells were cultured with H. pylori in Korean isolates and treated with or without lycopene. Cell viability, DNA damage indices, levels of 8-OH-dG, and reactive oxygen species (ROS) as well as cell-cycle distributions were determined. The activation of ATM, ATR, Chk1, and Chk2; histone H2AX focus formation; activation and induction of p53; and levels of Bax and Bcl-2 and poly(ADP-ribose) polymerase-1 (PARP-1) were assessed. The results showed that H. pylori induced apoptosis in AGS cells with increased Bax and decreased Bcl-2 expression as well as PARP-1 cleavage. Culture with H. pylori led to increases in intracellular ROS, 8-OH-dG, double-strand DNA breaks (DSBs), and DNA fragmentation. H. pylori induced activation of the ATM/Chk2 and ATR/Chk1 pathways, phosphorylation of H2AX and p53, and a delay in the progression of the cells entering the S phase. Lycopene inhibited H. pylori-induced increases in ROS, apoptosis, alterations in cell-cycle distribution, DSBs, and ATM- and ATR-mediated DDR in AGS cells. In conclusion, lycopene may be beneficial for treatment of H. pylori-induced gastric diseases associated with oxidative DNA damage.  相似文献   

20.
The ATR-mediated checkpoint is not only critical for responding to genotoxic stress but also essential for cell proliferation. The RFC-related checkpoint protein Rad17, a phosphorylation substrate of ATR, is critical for ATR-mediated checkpoint signaling and cell survival. Here, we show that phosphorylation of Rad17 by ATR is important for genomic stability and restraint of S phase but is not essential for cell survival. The phosphomutant Rad17AA exhibits distinct defects in hydroxyurea- (HU) and ultraviolet- (UV) induced Chk1 activation, indicating that separate Rad17 functions are required differently in response to different types of replication interference. Although cells expressing Rad17AA can initiate Chk1 phosphorylation after HU treatment, they fail to sustain Chk1 phosphorylation after withdrawal of HU and are profoundly sensitive to HU. Importantly, we found that phosphorylated Rad17 interacts with Claspin and regulates its phosphorylation. These findings reveal a phosphorylation-dependent function of Rad17 in an ATR-Rad17-Claspin-Chk1-signaling cascade that responds to specific replication stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号