首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The distribution of activities for synthesis of phosphatidylinositol among cell fractions from rat liver was determined. Activity was concentrated in endoplasmic reticulum; rough and smooth fractions were nearly equal. Golgi apparatus exhibited a biosynthetic rate 44% that of endoplasmic reticulum. Plasma membranes and mitochondrial fractions were only 6% as active as endoplasmic reticulum. Thus, endoplasmic reticulum and Golgi apparatus fractions from rat liver catalyze the net synthesis of phosphatidylinositol in vitro, whereas plasma membrane and mitochondrial fractions do not.  相似文献   

3.
Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5'-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membranes enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   

4.
A rapid method of preparing plasma membranes from isolated fat cells is described. After homogenization of the cells, various fractions were isolated by differential centrifugation and linear gradients. Ficoll gradients were preferred because total preparation time was under 3 hr. The density of the plasma membranes was 1.14 in sucrose. The plasma membrane fraction was virtually uncontaminated by nuclei but contained 10% of the mitochondrial succinic dehydrogenase activity and 25–30% of the RNA and reduced nicotinamide adenine dinucleotide cytochrome c reductase activity of the microsomal fraction. Part of the RNA and NADH-cytochrome c reductase activity was believed to be native to the plasma membrane or to the attached endoplasmic reticulum membranes demonstrated by electron microscopy. The adenyl cyclase activity of the plasma membrane fraction was five times that of Rodbell's "ghost" preparation and retained sensitivity to epinephrine. The plasma membrane ATPase activity was five times that of the homogenate and microsomal fractions. Electron microscopic evidence suggested contamination of the plasma membrane fraction by other subcellular components to be less than the biochemical data indicated.  相似文献   

5.
S-Adenosylhomocysteine (AdoHcy) binding to various membrane fractions of rat liver was determined at pH 7.4, using an oil centrifugation technique. The highest binding activity was found in the heavy microsomal (M-H) fraction enriched in endoplasmic reticulum, but high binding activity was also observed in the light microsomal fractions enriched in blood sinusoidal membranes (M-L fraction), and the heavy nuclear fraction (N-H fraction) containing the contiguous area. A substantial portion of AdoHcy binding activity in the M-L fraction may be ascribed to contamination of this fraction with endoplasmic reticulum, as indicated by the distribution of NADPH cytochrome c reductase activity. Binding activity was low in the light nuclear (N-L) fraction corresponding to the bile canaliculi. Phospholipid methyltransferase activity was determined in the same membrane fractions under similar conditions (pH 7.4), and in the absence and presence of added phospholipids. The distribution of the enzyme activity was dependent on the presence of exogenous phospholipids, and grossly similar to AdoHcy binding, the highest activities being observed in the M-H and the M-L fractions. The N-H fraction, rich in AdoHcy-binding activity, demonstrated, however, a very low phospholipid methyltransferase activity. It is concluded that AdoHcy-binding activity is not confined to the plasma membranes, and a major fraction of the binding activity resides on membranes derived from the endoplasmic reticulum. Also, the present results add to previous data suggesting that phospholipid methyltransferase does not totally account for the AdoHcy-binding sites on rat liver membranes.  相似文献   

6.
Highly purified rough endoplasmic reticulum and three subfractions of golgi were prepared from 105,000g pellet of the homogenate by centrifugation in floatation and sedimentation discontinuous sucrose gradients. Highly purified plasma membranes were also prepared from 9,000g pellet of the same homogenates for assessment under the same experimental conditions. Although 5′-nucleotidase, a marker for plasma membranes, was markedly enriched in plasma membranes, very little or none of this enzyme activity was found in other fractions. Very little or no NADH cytochrome c reductase activity, a marker for rough endoplasmic reticulum, was found in fractions other than rough endoplasmic reticulum. Galactosyl transferase, a marker for golgi, was found and enriched in all the fractions; however, enrichment in golgi fractions was higher than in other fractions. Very little or no lysosomal marker activity, i.e., acid phosphatase, was found in rough endoplasmic reticulum or golgi fractions as compared to lysosomes. These marker enzyme data suggested that rough endoplasmic reticulum and golgi fractions were relatively pure with little or no cross contamination with other organelles. The [125I]human choriogonadotropin ([125I]hCG), [3H]prostaglandin (PG)E1, and [3H]PGF2a specifically bound to rough endoplasmic reticulum and golgi fractions in addition to plasma membranes. The enrichments of binding in the former two fractions, in some cases, were as high as plasma membranes itself. The specific binding of some of the ligands was found to be partially latent in rough endoplasmic reticulum and golgi fractions but not in plasma membranes. Marker enzyme data, ratio between bindings and marker enzyme activities (an index of organelle contamination), and partial latency of binding suggest that rough endoplasmic reticulum and golgi fractions intrinsically contain gonadotropin and PGs binding sites.  相似文献   

7.
The following enzymes have been studied (subcellular fractions are shown between parentheses): NAG and beta-glucuronidase (lysosomes); SDH (mitochondrial); glucose-6-phosphatase (endoplasmic reticulum); 5'-nucleotidase and (Na+, K+)Mg2+ ATPase (plasma membranes). Alterations on their activities were observed after subcutaneous injection of sex hormones, compared with controls. NAG activity from liver was always significantly decreased in lysosomal and microsomal fractions after the hormonal treatment. In the same conditions, NAG from brain was always increased. beta-Glucuronidase behaves like NAG in brain; in liver it was not modified by testosterone and it was slightly increased in lysosomal fraction after oestradiol treatment. SDH activity was not modified in mitochondrial fractions from liver, but this activity was always significantly increased in brain. Glucose-6-phosphatase activity was always significantly decreased in microsomal fractions from liver. It was increased in brain after oestradiol and testosterone injection, but medroxyprogesterone treatment caused a decreased activity. 5'-Nucleotidase and (Na+, K+)Mg2+ ATPase from brain were significantly increased in microsomal fractions by oestradiol and testosterone. Medroxyprogesterone, however, caused an increase in ATPase, but did not affect 5'-nucleotidase. Both activities in liver were decreased by oestradiol and increased by testosterone, but medroxyprogesterone caused (Na+, K+)Mg2+ ATPase to rise and 5'-nucleotidase to fall.  相似文献   

8.
Plasma-membrane as well as smooth-, rough- and degranulated-endoplasmic-reticulum-membrane fractions were isolated from the microsomal pellet of rat liver. The purity of these fractions, as determined by marker-enzyme activities, electron microscopy, cholesterol content and RNA content, was found to be adequate for a comparative structural study. Major differences in lipid and protein composition were found to exist between the plasma membrane and the endoplasmic reticulum, but not between the smooth and the rough fractions of the endoplasmic reticulum. Differences in the location of membrane protein thiol groups and the mobility of the membrane phospholipids were observed between the plasma membranes and the endoplasmic reticulum, and these could be explained by differences in protein and lipid composition. However, by employing fluorescence and spin-labelling techniques structural changes were also observed between the smooth and the rough endoplasmic-reticulum fractions. These results suggest that the structural heterogeneity existing between the two latter membrane fractions occurs near or on their membrane surfaces and is not due to the greater number of ribosomes bound to the rough endoplasmic-reticulum fraction.  相似文献   

9.
Isolated membrane vesicles from pig stomach smooth muscle (antral part) were subfractionated by a density gradient procedure modified in order to obtain an efficient extraction of extrinsic proteins. By using this method in combination with digitonin-treatment, an endoplasmic reticulum fraction contaminated with maximally 10 to 20% of plasma membranes was isolated, together with a plasma membrane fraction containing at most 30% endoplasmic reticulum. The endoplasmic reticulum and plasma membrane fractions differed in protein composition, reaction to digitonin, binding of wheat germ agglutinin, activities of marker enzymes and in the characteristics of the Ca2+ uptake. The Ca2+ uptake by the endoplasmic reticulum was much more stimulated by oxalate than the uptake by plasma membranes. Both fractions showed a (Ca2+ + Mg2+)-ATPase activity, but the largest amount of this enzyme was present in the plasma membranes. The study of the phosphorylated intermediates of the (Ca2+ + Mg2+)-ATPase by polyacrylamide gel electrophoresis revealed two phosphoproteins one of 130 kDa and one of 100 kDa (Wuytack, F., Raeymaekers, L., De Schutter, G. and Casteels, R. (1982) Biochim. Biophys. Acta 693, 45-52). The 130 kDa enzyme was predominant in the fraction enriched in plasma membrane whereas the distribution of the 100 kDa polypeptide correlated with the endoplasmic reticulum markers. The 130 kDa ATPase was the main 125I-calmodulin binding protein detected on nitrocellulose blots of proteins separated by gel electrophoresis. The (Ca2+ + Mg2+)-ATPase activity of the plasma membranes was higher than the (Na+ + K+)-ATPase activity, suggesting that the Ca2+ extrusion from these cells depends much more on the activity of the (Ca2+ + Mg2+)-ATPase than on Na+-Ca2+ exchange.  相似文献   

10.
Specific binding of insulin to highly purified preparations of rough endoplasmic reticulum, Golgi apparatus, and plasma membrane of mouse liver was determined. 125I-labeled insulin bound maximally to the plasma membrane in radio-receptor assays. Golgi apparatus fractions exhibited binding 10--20% that of plasma membrane and rough endoplasmic reticulum exhibited only 1--2% of plasma membrane binding. Binding was proportional to membrane concentration and dose vs. response curves were very similar for the different fractions. Scatchard analysis of the insulin binding data for the plasma membrane and Golgi apparatus fractions showed curvilinear plots yielding similar apparent binding affinities (0.9 and 3.0-10(8) M-1, respectively). Purity of the isolated endomembranes was analyzed by morphometry and (Na+ + K+ + Mg2+)-ATPase and these preparations displayed less than 1% contamination by plasma membrane. These findings provide important confirmation of the presence of insulin receptors in Golgi apparatus membranes comparable to those located on the plasma membrane. Finally, the present study did not allow us to verify the existence of insulin receptors in the endoplasmic reticulum.  相似文献   

11.
Prostaglandins E1 and E2 are specifically bound by particulate fractions from bovine adrenal medulla. The subcellular localization of these binding sites has been investigated by comparing their distribution in subcellular fractions obtained by differential and gradient centrifugation to those of marker enzymes for various organelles. Prostaglandin E2 binding sites were purified about 16-fold with respect to the homogenate in a fraction which was highly enriched in plasma membranes on the basis of the activities of the marker enzymes acetylcholinesterase and calcium-dependent ATPase, which were both purified by about 12-fold in this fraction. The plasma membrane fraction contained relatively low activities of marker enzymes for mitochondria (monoamine oxidase), lysosomes (acid phosphatase), endoplasmic reticulum (glucose-6-phosphatase), Golgi (galactosyl transferase) and chromaffin granule membranes (dopamine β-hydroxylase). The only other fractions enriched in prostaglandin E2 binding sites were those for the endoplasmic reticulum and the Golgi, in which the binding sites were purified about 4-fold and 7-fold, respectively. This is probably due mainly to contamination with plasma membranes, since calcium-dependent ATPase and acetylcholinesterase were each purified to a similar extent in these two fractions. These data suggest that the high-affinity prostaglandin E2 binding sites of the adrenal medulla are localized primarily on the plasma membranes of the medullary cells.  相似文献   

12.
H. Liß  E. W. Weiler 《Planta》1994,194(2):169-180
Procedures have been developed which allow the preparation of highly pure endoplasmic reticulum and plasma membrane from tendrils ofBryonia dioica. These and further membrane fractions were used to study vanadate-sensitive ATPase activity as well as Mg2+ATP-driven transport of45Ca2+. Calcium-translocating ATPases were detected in the endoplasmic reticulum, the plasma membrane and the mitochondrial fraction and characterized kinetically and with respect to the effects of various inhibitors. The endoplasmic-reticulum Ca2+-translocating ATPase was stimulated by KCl and was calmodulin-dependent. The plasma-membrane enzyme was not affected by these agents. These, as well as the inhibitor data, show that the Ca2+-translocating ATPases of the endoplasmic reticulum and the plasma membrane are distinctly different enzymes. Upon mechanical stimulation, the activities of the vanadate-sensitive K+, Mg2+-ATPase and the Ca2+-translocating ATPase(s) increased rapidly and transiently, indicating that increasing transmembrane proton and calcium fluxes are involved in the early stages of tendril coiling.Abbreviations CAM calmodulin - CCCP carbonylcyanidem-chlorophenylhydrazone - IC50 concentration giving 50% inhibition - PM plasma membrane - rER rough endoplasmic reticulum - sER smooth endoplasmic reticulum - FC fusicoccin - U3+U3 the two PM-rich upper phases obtained after phase partitioning of microsomal membranes The authors wish to thank the Deutsche Forschungsgemeinschaft, Bonn, Germany, and the Fonds der Chemischen Industrie, Frankfurt, Germany (literature provision) for financial support.  相似文献   

13.
L Rovis  S Baekkeskov 《Parasitology》1980,80(3):507-524
A procedure is described for the isolation of sub-cellular fractions from bloodstream forms of Trypanosoma brucei. The method leaves intact most of the nuclei, mitochondria and microbodies. All the fractions have been chemically characterized and tested for 10 enzymatic markers. About 5% of total cell protein was isolated as a microsomal fraction containing mostly plasma membranes and endoplasmic reticulum vesicles. Plasma membranes were purified by high-speed centrifugation on magnesium-containing Dextran, and on linear sucrose-density gradients. The yield of membranes was approximately 0.3% of the total cell protein. The purified material had a sucrose density of 1.14 g/cm3 and consisted of smooth vesicles. Specific activity of the membrane markers Na+, K+, ouabain-sensitive ATPase and adenylate cyclase were 26- and 20-fold higher, respectively, than in total cells. Neither DNA nor RNA was detected. The sum of the cholesterol and phospholipid content was 0.99 mg/mg protein. The cholesterol/phospholipid molar ratio was 1:2.  相似文献   

14.
The effects of 3 different procedures for stripping ribosomes from membranes on theantigeniticity and conformation of isolated rough and smooth endoplasmic reticulum from rat liver were examined by microcomplement fixation and circular dichroism. Some of the blocked antigenic binding sites in rough endoplasmic reticulum became available after stripping of ribosomes. None of the 3 methods used is capable of stripping ribosomes completely from rough endoplasmic reticulum without the concomitant removal of protein from the membrane. Such loss of membrane protein by the stripping treatments is probably involved in the observed changes in rough endoplasmic reticulum, since a marked reduction in complement fixing capacity and in ellipticity of circular dichroism is observed also in smooth endoplasmic reticulum after similar treatments.  相似文献   

15.
Specific binding of insulin to highly purified preparations of rough endoplasmic reticulum, Golgi apparatus, and plasma membrane of mouse liver was determined. 125I-labeled insulin bound maximally to the plasma membrane in radio-receptor assays. Golgi apparatus fractions exhibited binding 10–20% that of plasma membrane and rough endoplasmic reticulum exhibited only 1–2% of plasma membrane binding. Binding was proportional to membrane concentration and dose vs. response curves were very similar for the different fractions. Scatchard analysis of the insulin binding data for the plasma membrane and Golgi apparatus fractions showed curvilinear plots yielding similar apparent binding affinities (0.9 and 3.0 · 108 M?1, respectively). Purity of the isolated endomembranes was analyzed by morphometry and (Na+ + K+ + Mg2+)-ATPase and these preparations displayed less than 1% contamination by plasma membrane. These findings provide important confirmation of the presence of insulin receptors in Golgi apparatus membranes comparable to those located on the plasma membrane. Finally, the present study did not allow us to verify the existence of insulin receptors in the endoplasmic reticulum.  相似文献   

16.
The fractionation of rat liver hepatocytes using a mechanical disruption technique followed by centrifugation is reported; the whole procedure requires approximately 10 min. Marker enzyme distribution data are in good agreement with distribution data from standard techniques connected with the production of three subcellular fractions—cytoplasmic, mitochondrial, and microsomal. Electrophoretic analysis of the mitochondrial and microsomal fractions show total band correspondence between the fractions produced by the method and traditional techniques. Examination of the fractions by electron microscopy supports the view that the mitochondrial fraction is comprised of both intact mitochondria and mitochondria from which the outer membrane has been removed. The microsomal fraction contains discrete vesicles derived from both rough and smooth endoplasmic reticulum.  相似文献   

17.
Homogenates of baby-hamster kidney cells and rat embryo fibroblasts prepared by nitrogen cavitation contain a small population of slowly sedimenting mitochondria or mitochondrial fragments, which contaminate the microsomal fraction. This appears to limit the resolution of surface membrane and endoplasmic reticulum on magnesium-containing dextran gradients. The microsomal material and mitochondria can, however, be completely separated on a 10-60% (w/w) sucrose zonal gradient containing a 30% sucrose plateau. On magnesium-containing dextran gradients this mitochondria-free microsomal material can be resolved into at least two surface membrane fractions and at least two endoplasmic reticulum fractions. Comparison of polyoma virus-transformed and normal baby-hamster kidney cells reveals some interesting differences in their microsomal fractionation patterns and the characteristics of the Na(+)/K(+)-Mg(2+) adenosine triphosphatase of their surface membranes, in particular a tenfold lower K(m) in the virus-transformed cells. The fractionation patterns of normal and spontaneously transformed rat embryo fibroblasts are also briefly discussed, particularly in relation to the significance of the observation that both the surface membrane and endoplasmic reticulum from these cells can be subfractionated.  相似文献   

18.
The influence of the mode of preparation upon some of the characteristics of white adipose tissue plasma membranes and microsomes has been reported. Plasma membrane fractions prepared from mitochondrial pellet were shown to have higher specific activities of (Mg2+ + Na+ + K+)-ATPase than plasma membranes originating in crude microsomes. Isolation of fat cells by collagenase treatment was found to result in a decrease in specific activity of the plasma membrane enzymes; in plasma membranes prepared from isolated fat cells, the specific activity values obtained for (Mg2+ + Na+ +k+)-ATPase and 5'-nucleotidase were only 42% and 6.3% respectively of those obtained in plasma membranes prepared from whole adipose tissue. Purification of whole adipose tissue crude microsomes by hypotonic treatment caused extensive solubilization of the endoplasmic reticulum marker enzymes, NADH oxidase and NADPH cytochrome c reductase. The lability of endoplasmic reticulum marker enzymes, however, was found to be greatly diminished in the preparations from isolated fat cells. The possibility that NADH oxidase and NADPH cytochrome c reductase activities found in the plasma membranes are microsomal enzymes adsorbed by the plasma membranes is discussed. The peptide patterns as well as the NADH oxidase and NADPH cytochrome c reductase activity patterns of plasma membranes and purified microsomes were compared by means of sodium dodecyl sulfate or Triton X-100 polyacrylamide gel electrophoresis.  相似文献   

19.
The pivotal role of the cell nucleus in androgenic control of target organs, such as the prostate, has become increasingly suspect. Equally qualified receptor activities have been found in the cytosol, endoplasmic reticulum, and plasma membrane. It is presently difficult to explain how a sex steroid can manage proliferation, metabolism, biosynthesis and secretion, all through chromatin-directed signals. In my search for a more satisfactory mediator of androgen action, I discovered that the sodium-potassium-dependent ATPase of the prostate plasma membrane binds androgen, and is activated by the hormone's presence to serve as a metabolic pacemaker. This paper is my terminal status report on one aspect of this hypothesis; namely, the nature and site of androgen binding, with clues as to the mode of action. SDS-PAGE indicates that androgen can be bound to the beta-subunit of prostatic Na,K-ATPase. Selective enrichment of the enzyme by reversible coupling to either concanavalin A or a DHT-affinity column support this conclusion. Several studies show the dynamic effect of androgen binding: increased ouabain binding; enhancement of this binding by facilitated phosphorylation; spectroscopic evidence of conformational shifts, possibly consequences of these suggested activities for regulation, especially of metabolism, are examined.  相似文献   

20.
Localization of cytochrome P-450 on various membrane fractions of rat liver cells was studied by direct immunoelectron microscopy using ferritin-conjugated antibody to the cytochrome. The outer surfaces of almost all the microsomal vesicles were labeled with ferritin particles. The distribution of the particles on each microsomal vesicle was usually heterogeneous, indicating clustering of the cytochrome, and phenobarbital treatment markedly increased the labeled regions of the microsomal membranes. The outer nuclear envelopes were also labeled with ferritin particles, while on the surface of other membrane structures such as Golgi complexes, outer mitochondrial membranes and plasma membranes the labeling was scanty and at the control level. The present observation indicates that cytochrome P-450 molecules are localized exclusively on endoplasmic reticulum membranes and outer nuclear envelopes where they are probably distributed not uniformly but heterogeneously, forming clusters or patches. The physiological significance of such microheterogeneity in the distribution of the cytochrome on endoplasmic reticulum membranes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号