首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gaucher disease is caused by mutations in the gene encoding acid beta-glucosidase (GlcCerase), resulting in glucosylceramide (GlcCer) accumulation. The only currently available orally administered treatment for Gaucher disease is N-butyl-deoxynojirimycin (Zavesca, NB-DNJ), which partially inhibits GlcCer synthesis, thus reducing levels of GlcCer accumulation. NB-DNJ also acts as a chemical chaperone for GlcCerase, although at a different concentration than that required to completely inhibit GlcCer synthesis. We now report the crystal structures, at 2A resolution, of complexes of NB-DNJ and N-nonyl-deoxynojirimycin (NN-DNJ) with recombinant human GlcCerase, expressed in cultured plant cells. Both inhibitors bind at the active site of GlcCerase, with the imino sugar moiety making hydrogen bonds to side chains of active site residues. The alkyl chains of NB-DNJ and NN-DNJ are oriented toward the entrance of the active site where they undergo hydrophobic interactions. Based on these structures, we make a number of predictions concerning (i) involvement of loops adjacent to the active site in the catalytic process, (ii) the nature of nucleophilic attack by Glu-340, and (iii) the role of a conserved water molecule located in a solvent cavity adjacent to the active site. Together, these results have significance for understanding the mechanism of action of GlcCerase and the mode of GlcCerase chaperoning by imino sugars.  相似文献   

2.
The structure determination of apotransketolase and the comparison of its three-dimensional structure with that of the holoenzyme has revealed that no large conformational changes are associated with cofactor binding. Two loops at the active site are flexible in the apoenzyme which enables ThDP to reach its binding site. Binding of the cofactor induces defined conformations for these two loops at the active site. One of these loops is directly involving in binding of the cofactors, Ca2+ and ThDP. This loop acts like a flap which closes off the diphosphate binding site. After binding of the cofactor, residues of this loop form interactions to residues of loop 383-398 from the second subunit. These interactions stabilize the conformation of the two loops from a flexible to a 'closed' conformation.  相似文献   

3.
In mammalian cells, glucosylceramide (GlcCer), the simplest glycosphingolipid, is hydrolyzed by the lysosomal enzyme acid beta-glucosidase (GlcCerase). In the human metabolic disorder Gaucher disease, GlcCerase activity is significantly decreased owing to one of approximately 200 mutations in the GlcCerase gene. The most common therapy for Gaucher disease is enzyme replacement therapy (ERT), in which patients are given intravenous injections of recombinant human GlcCerase; the Genzyme product Cerezyme has been used clinically for more than 15 years and is administered to approximately 4000 patients worldwide. Here we review the crystal structure of Cerezyme and other recombinant forms of GlcCerase, as well as of their complexes with covalent and non-covalent inhibitors. We also discuss the stability of Cerezyme, which can be altered by modification of its N-glycan chains with possible implications for improved ERT in Gaucher disease.  相似文献   

4.
The three-dimensional structure of rat pancreatic RNase A expressed in Escherichia coli was determined. The backbone conformations of certain critical loops are significantly different in this enzyme compared to its bovine counterpart. However, the core structure of rat RNase A is similar to that of the other members of the pancreatic ribonuclease family. The structural variations within a loop bordering the active site can be correlated with the subtle differences in the enzymatic activities of bovine and rat ribonucleases for different substrates. The most significant difference in the backbone conformation was observed in the loop 15-25. This loop incorporates the subtilisin cleavage site which is responsible for RNase A to RNase S conversion in the bovine enzyme. The rat enzyme does not get cleaved under identical conditions. Molecular docking of this region of the rat enzyme in the active site of subtilisin shows steric incompatibility, although the bovine pancreatic ribonuclease A appropriately fits into this active site. It is therefore inferred that the local conformation of the substrate governs the specificity of subtilisin.  相似文献   

5.
Gaucher disease, the most common lysosomal storage disease, is caused by mutations in the gene that encodes acid-β-glucosidase (GlcCerase). Type 1 is characterized by hepatosplenomegaly, and types 2 and 3 by early or chronic onset of severe neurological symptoms. No clear correlation exists between the ~200 GlcCerase mutations and disease severity, although homozygosity for the common mutations N370S and L444P is associated with non- neuronopathic and neuronopathic disease, respectively. We report the X-ray structure of GlcCerase at 2.0 Å resolution. The catalytic domain consists of a (β/α)8 TIM barrel, as expected for a member of the glucosidase hydrolase A clan. The distance between the catalytic residues E235 and E340 is consistent with a catalytic mechanism of retention. N370 is located on the longest α-helix (helix 7), which has several other mutations of residues that point into the TIM barrel. Helix 7 is at the interface between the TIM barrel and a separate immunoglobulin-like domain on which L444 is located, suggesting an important regulatory or structural role for this non-catalytic domain. The structure provides the possibility of engineering improved GlcCerase for enzyme-replacement therapy, and for designing structure-based drugs aimed at restoring the activity of defective GlcCerase.  相似文献   

6.
Gaucher disease is a glycosphingolipid storage disease caused by defects in the activity of the lysosomal hydrolase, glucocerebrosidase (GlcCerase), resulting in accumulation of glucocerebroside (glucosylceramide, GlcCer) in lysosomes. The acute neuronopathic type of the disease is characterized by severe loss of neurons in the central nervous system, suggesting that a neurotoxic agent might be responsible for cellular disruption and neuronal death. We now demonstrate that upon incubation with a chemical inhibitor of GlcCerase, conduritol-B-epoxide (CBE), cultured hippocampal neurons accumulate GlcCer. Surprisingly, increased levels of tubular endoplasmic reticulum elements, an increase in [Ca(2+)](i) response to glutamate, and a large increase in [Ca(2+)](i) release from the endoplasmic reticulum in response to caffeine were detected in these cells. There was a direct relationship between these effects and GlcCer accumulation since co-incubation with CBE and an inhibitor of glycosphingolipid synthesis, fumonisin B(1), completely antagonized the effects of CBE. Similar effects on endoplasmic reticulum morphology and [Ca(2+)](i) stores were observed upon incubation with a short-acyl chain, nonhydrolyzable analogue of GlcCer, C(8)-glucosylthioceramide. Finally, neurons with elevated GlcCer levels were much more sensitive to the neurotoxic effects of high concentrations of glutamate than control cells; moreover, this enhanced toxicity was blocked by pre-incubation with ryanodine, suggesting that [Ca(2+)](i) release from ryanodine-sensitive intracellular stores can induce neuronal cell death, at least in neurons with elevated GlcCer levels. These results may provide a molecular mechanism to explain neuronal dysfunction and cell death in neuronopathic forms of Gaucher disease.  相似文献   

7.
The atomic resolution structure of Leishmania mexicana triosephosphate isomerase complexed with 2-phosphoglycolate shows that this transition state analogue is bound in two conformations. Also for the side chain of the catalytic glutamate, Glu(167), two conformations are observed. In both conformations, a very short hydrogen bond exists between the carboxylate group of the ligand and the catalytic glutamate. The distance between O11 of PGA and Oepsilon2 of Glu(167) is 2.61 and 2.55 A for the major and minor conformations, respectively. In either conformation, Oepsilon1 of Glu(167) is hydrogen-bonded to a water network connecting the side chain with bulk solvent. This network also occurs in two mutually exclusive arrangements. Despite the structural disorder in the active site, the C termini of the beta strands that construct the active site display the least anisotropy compared with the rest of the protein. The loops following these beta strands display various degrees of anisotropy, with the tip of the dimer interface loop 3 having very low anisotropy and the C-terminal region of the active site loop 6 having the highest anisotropy. The pyrrolidine ring of Pro(168) at the N-terminal region of loop 6 is in a strained planar conformation to facilitate loop opening and product release.  相似文献   

8.
Escherichia coli dihydrofolate reductase (DHFR) has several flexible loops surrounding the active site that play a functional role in substrate and cofactor binding and in catalysis. We have used heteronuclear NMR methods to probe the loop conformations in solution in complexes of DHFR formed during the catalytic cycle. To facilitate the NMR analysis, the enzyme was labeled selectively with [(15)N]alanine. The 13 alanine resonances provide a fingerprint of the protein structure and report on the active site loop conformations and binding of substrate, product, and cofactor. Spectra were recorded for binary and ternary complexes of wild-type DHFR bound to the substrate dihydrofolate (DHF), the product tetrahydrofolate (THF), the pseudosubstrate folate, reduced and oxidized NADPH cofactor, and the inactive cofactor analogue 5,6-dihydroNADPH. The data show that DHFR exists in solution in two dominant conformational states, with the active site loops adopting conformations that closely approximate the occluded or closed conformations identified in earlier X-ray crystallographic analyses. A minor population of a third conformer of unknown structure was observed for the apoenzyme and for the disordered binary complex with 5,6-dihydroNADPH. The reactive Michaelis complex, with both DHF and NADPH bound to the enzyme, could not be studied directly but was modeled by the ternary folate:NADP(+) and dihydrofolate:NADP(+) complexes. From the NMR data, we are able to characterize the active site loop conformation and the occupancy of the substrate and cofactor binding sites in all intermediates formed in the extended catalytic cycle. In the dominant kinetic pathway under steady-state conditions, only the holoenzyme (the binary NADPH complex) and the Michaelis complex adopt the closed loop conformation, and all product complexes are occluded. The catalytic cycle thus involves obligatory conformational transitions between the closed and occluded states. Parallel studies on the catalytically impaired G121V mutant DHFR show that formation of the closed state, in which the nicotinamide ring of the cofactor is inserted into the active site, is energetically disfavored. The G121V mutation, at a position distant from the active site, interferes with coupled loop movements and appears to impair catalysis by destabilizing the closed Michaelis complex and introducing an extra step into the kinetic pathway.  相似文献   

9.
Triosephosphate isomerase (TIM) is a dimeric glycolytic enzyme. TIM from Trypanosoma brucei brucei has been crystallized at pH 7.0 in 2.4 M-ammonium sulphate. The well-diffracting crystals have one dimer per asymmetric unit. The structure has been refined at 1.83 A resolution with an R-factor of 18.3% for all data between 6 A and 1.83 A (37,568 reflections). The model consists of 3778 protein atoms and 297 solvent atoms. Subunit 1 is involved in considerably more crystal contacts than subunit 2. Correlated with these differences in crystal packing is the observation that only in the active site of subunit 2 is a sulphate ion bound. Furthermore, significant differences with respect to structure and flexibility are observed in three loops near the active site. In particular, there is a 7 A positional difference of the tip of the flexible loop (loop 6) when comparing subunit 1 and subunit 2. Also, the neighbouring loops (loop 5 and loop 7) have significantly different conformations and flexibility. In subunit 1, loop 6 is in an "open" conformation, in subunit 2, loop 6 is in an "almost closed" conformation. Only in the presence of a phosphate-containing ligand, such as glycerol-3-phosphate, does loop 6 take up the "closed" conformation. Loop 6 and loop 7 (and also to some extent loop 5) are rather flexible in the almost closed conformation, but well defined in the open and closed conformations. The closing of loop 6 (167 to 180), as observed in the almost closed conformation, slightly changes the main-chain conformation of the catalytic glutamate, Glu167, leading to a change of the chi 1 angle of this residue from approximately -60 degrees to approximately 60 degrees and the weakening of the hydrogen bonds between its polar side-chain atoms and Ser96. In the closed conformation, in the presence of glycerol-3-phosphate, the main-chain atoms of Glu167 remain in the same position as in the almost closed conformation, but the side-chain has rotated around the CA-CB bond changing chi 1 from approximately 60 degrees to approximately -60 degrees. In this new position the hydrogen bonding to Ser96 is completely lost and also a water-mediated salt bridge between OE2(Glu167) and NE(Arg99) is lost. Comparison of the two independently refined subunits, showed that the root-mean-square deviation for all 249 CA atoms is 0.9 A; for the CA atoms of the beta-strands this is only 0.2 A. The average B-factor for all subunit 1 and subunit 2 atoms is 20 A2 and 25 A2, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Previously we demonstrated by random saturation mutagenesis a set of mutations in the extracellular (EC) loops that constitutively activate the C5a receptor (C5aR) (Klco et al., Nat Struct Mol Biol 2005;12:320-326; Klco et al., J Biol Chem 2006;281:12010-12019). In this study, molecular modeling revealed possible conformations for the extracellular loops of the C5a receptors with mutations in the EC2 loop or in the EC3 loop. Comparison of low-energy conformations of the EC loops defined two distinct clusters of conformations typical either for strongly constitutively active mutants of C5aR (the CAM cluster) or for nonconstitutively active mutants (the non-CAM cluster). In the CAM cluster, the EC3 loop was turned towards the transmembrane (TM) helical bundle and more closely interacted with EC2 than in the non-CAM cluster. This suggested a structural mechanism of constitutive activity where EC3 contacts EC2 leading to EC2 interactions with helix TM3, thus triggering movement of TM7 towards TM2 and TM3. The movement initiates rearrangement of the system of hydrogen bonds between TM2, TM3 and TM7 including formation of the hydrogen bond between the side chains of D82(2.50) in TM2 and N296(7.49) in TM7, which is crucial for formation of the activated states of the C5a receptors (Nikiforovich et al., Proteins: Struct Funct Gene 2011;79:787-802). Since the relative large length of EC3 in C5aR (13 residues) is comparable with those in many other members of rhodopsin family of GPCRs (13-19 residues), our findings might reflect general mechanisms of receptor constitutive activation. The very recent X-ray structure of the agonist-induced constitutively active mutant of rhodopsin (Standfuss et al., Nature 2011;471:656-660) is discussed in view of our modeling results.  相似文献   

11.
Myosin has three highly-conserved, unique loops [B (320-327), M (677-689), and N (127-136)] at the entrance of the ATP binding cleft, and we previously showed that the effects of actin are mediated by a conformational change in loop M [Maruta and Homma (1998) J. Biochem. 124, 528-533]. In the present study, loops M and N were photolabeled respectively with fluorescent probes Mant-8-N(3)-ADP and Mant-2-N(3)-ADP in order to study conformational changes in the loops related to energy transduction. The effect of actin on the conformation of loop N was examined by analyzing fluorescence polarization and acrylamide quenching; the results were then compared with those previously reported for loop M. In contrast to loop M, the fluorescence polarization and the value of K(sv) of the Mant-groups crosslinked to loop N were slightly affected by actin binding. To study conformational changes in loops M and N during the ATPase cycle, FRET was analyzed using TNP-ADP.BeFn and TNP-ADP. AlF(4)(-) as FRET acceptors of Mant fluorescence. The resultant estimated distances between loop M and the active site differed for the Mant-S1.TNP-ADP.BeFn and Mant-S1.TNP-ADP.AlF(4)(-) complexes, whereas the distances between loop N and the active site differed slightly. These findings indicate that the conformation of loop M changes during the ATPase cycle, suggesting that Loop M acts as a signal transducer mediating communication between the ATP- and actin-binding sites. Loop N, by contrast, is not significantly flexible.  相似文献   

12.
The reaction mechanism of sucrose phosphorylase from Bifidobacterium adolescentis (BiSP) was studied by site-directed mutagenesis and x-ray crystallography. An inactive mutant of BiSP (E232Q) was co-crystallized with sucrose. The structure revealed a substrate-binding mode comparable with that seen in other related sucrose-acting enzymes. Wild-type BiSP was also crystallized in the presence of sucrose. In the dimeric structure, a covalent glucosyl intermediate was formed in one molecule of the BiSP dimer, and after hydrolysis of the glucosyl intermediate, a beta-D-glucose product complex was formed in the other molecule. Although the overall structure of the BiSP-glucosyl intermediate complex is similar to that of the BiSP(E232Q)-sucrose complex, the glucose complex discloses major differences in loop conformations. Two loops (residues 336-344 and 132-137) in the proximity of the active site move up to 16 and 4 A, respectively. On the basis of these findings, we have suggested a reaction cycle that takes into account the large movements in the active-site entrance loops.  相似文献   

13.
Gaucher disease is a lysosomal storage disorder caused by deficiency of human acid β-glucosidase. Recent x-ray structural elucidation of the enzyme alone and in the presence of its inhibitor was done, which provided an excellent template for further studies on the binding of substrate, product and inhibitor. To draw correlations between the clinical manifestation of the disease driven by point mutations, L444P and L444R, and the placement and function of putative S-binding sites, the presented theoretical studies were undertaken, which comprised of molecular dynamics and molecular docking methods. The obtained results indicate the D443 and D445 residues as extremely important for physiological functionality of an enzyme. They also show, although indirectly, that binding of the substrate is influenced by an interplay of E235 and E334 residues, constituting putative substrate binding site, and the region flanked by D435 and D445 residues. Figure The binding of an arbitrarily chosen structure of glucosylceramide (A), conduritol-β-epoxide (B), glucose (C) to the active site D443/D445 (A1, B1, C1) and E320/E340 (A2, B2, C2) of the wild-type structure of human acid-β-glucosidase. A1, B1, C1 blue mask represents the residues D443-D445; red mask represents the residue D444; A2, B2, C2 blue mask represents loop1 (Ser345-Glu349) and loop2 (Val394-Asp399), whereas red mask the residues E235 and 340  相似文献   

14.
The active sites of caspases are composed of four mobile loops. A loop (L2) from one half of the dimer interacts with a loop (L2′) from the other half of the dimer to bind substrate. In an inactive form, the two L2′ loops form a cross‐dimer hydrogen‐bond network over the dimer interface. Although the L2′ loop has been implicated as playing a central role in the formation of the active‐site loop bundle, its precise role in catalysis has not been shown. A detailed understanding of the active and inactive conformations is essential to control the caspase function. We have interrogated the contributions of the residues in the L2′ loop to catalytic function and enzyme stability. In wild‐type and all mutants, active‐site binding results in substantial stabilization of the complex. One mutation, P214A, is significantly destabilized in the ligand‐free conformation, but is as stable as wild type when bound to substrate, indicating that caspase‐7 rests in different conformations in the absence and presence of substrate. Residues K212 and I213 in the L2′ loop are shown to be essential for substrate‐binding and thus proper catalytic function of the caspase. In the crystal structure of I213A, the void created by side‐chain deletion is compensated for by rearrangement of tyrosine 211 to fill the void, suggesting that the requirements of substrate‐binding are sufficiently strong to induce the active conformation. Thus, although the L2′ loop makes no direct contacts with substrate, it is essential for buttressing the substrate‐binding groove and is central to native catalytic efficiency.  相似文献   

15.
Loops are integral components of protein structures, providing links between elements of secondary structure, and in many cases contributing to catalytic and binding sites. The conformations of short loops are now understood to depend primarily on their amino acid sequences. In contrast, the structural determinants of longer loops involve hydrogen-bonding and packing interactions within the loop and with other parts of the protein. By searching solved protein structures for regions similar in main chain conformation to the antigen-binding loops in immunoglobulins, we identified medium-sized loops of similar structure in unrelated proteins, and compared the determinants of their conformations. For loops that form compact substructures the major determinant of the conformation is the formation of hydrogen bonds to inward-pointing main chain atoms. For loops that have more extended conformations, the major determinant of their structure is the packing of a particular residue or residues against the rest of the protein. The following picture emerges: Medium-sized loops of similar conformation are stabilized by similar interactions. The groups that interact with the loop have very similar spatial dispositions with respect to the loop. However, the residues that provide these interactions may arise from dissimilar parts of the protein: The conformation of the loop requires certain interactions that the protein may provide in a variety of ways.  相似文献   

16.
Gaucher disease is caused by the defective activity of the lysosomal hydrolase, glucosylceramidase. Although the x-ray structure of wild type glucosylceramidase has been resolved, little is known about the structural features of any of the >200 mutations. Various treatments for Gaucher disease are available, including enzyme replacement and chaperone therapies. The latter involves binding of competitive inhibitors at the active site to enable correct folding and transport of the mutant enzyme to the lysosome. We now use molecular dynamics, a set of structural analysis tools, and several statistical methods to determine the flexible behavior of the N370S Gaucher mutant at various pH values, with and without binding the chaperone, N-butyl-deoxynojirimycin. We focus on the effect of the chaperone on the whole protein, on the active site, and on three important structural loops, and we demonstrate how the chaperone modifies the behavior of N370S in such a way that it becomes more active at lysosomal pH. Our results suggest a mechanism whereby the binding of N-butyl-deoxynojirimycin helps target correctly folded glucosylceramidase to the lysosome, contributes to binding with saposin C, and explains the initiation of the substrate-enzyme complex. Such analysis provides a new framework for determination of the structure of other Gaucher disease mutants and suggests new approaches for rational drug design.  相似文献   

17.
Oxalate decarboxylase (EC 4.1.1.2) catalyzes the conversion of oxalate to formate and carbon dioxide and utilizes dioxygen as a cofactor. By contrast, the evolutionarily related oxalate oxidase (EC 1.2.3.4) converts oxalate and dioxygen to carbon dioxide and hydrogen peroxide. Divergent free radical catalytic mechanisms have been proposed for these enzymes that involve the requirement of an active site proton donor in the decarboxylase but not the oxidase reaction. The oxidase possesses only one domain and manganese binding site per subunit, while the decarboxylase has two domains and two manganese sites per subunit. A structure of the decarboxylase together with a limited mutagenesis study has recently been interpreted as evidence that the C-terminal domain manganese binding site (site 2) is the catalytic site and that Glu-333 is the crucial proton donor (Anand, R., Dorrestein, P. C., Kinsland, C., Begley, T. P., and Ealick, S. E. (2002) Biochemistry 41, 7659-7669). The N-terminal binding site (site 1) of this structure is solvent-exposed (open) and lacks a suitable proton donor for the decarboxylase reaction. We report a new structure of the decarboxylase that shows a loop containing a 3(10) helix near site 1 in an alternative conformation. This loop adopts a "closed" conformation forming a lid covering the entrance to site 1. This conformational change brings Glu-162 close to the manganese ion, making it a new candidate for the crucial proton donor. Site-directed mutagenesis of equivalent residues in each domain provides evidence that Glu-162 performs this vital role and that the N-terminal domain is either the sole or the dominant catalytically active domain.  相似文献   

18.
We have predicted the three-dimensional structures of the serine protease subunits (gamma-NGF, alpha-NGF, and EGF-BP) of the high molecular weight complexes of nerve growth factor (7S NGF) and epidermal growth factor (HMW-EGF) from the mouse submandibular gland (from the X-ray crystal structures of two related glandular kallikreins). The conformations of three of the six loops surrounding the active site are relatively well defined in the models of gamma-NGF and EGF-BP, but three other loops are likely to have flexible conformations. Although the amino acid sequence of alpha-NGF is closely related to those of gamma-NGF and EGF-BP, it is catalytically inactive. Model-building studies on alpha-NGF suggested that mutations (in alpha-NGF) just prior to the active site serine (195) and an unusual N-terminal sequence are consistent with alpha-NGF having a zymogen-like conformation (similar to that in chymotrypsinogen). An hypothetical model of the quaternary structure of HMW-EGF has been constructed using this model of EGF-BP and the NMR structure of murine EGF. The C-terminal arm of EGF was modeled into the active site of EGF-BP based on data indicating that the C-terminal arginine of EGF occupies the S1 subsite of EGF-BP. Data suggesting one of the surface loops of EGF-BP is buried in the HMW-EGF complex and symmetry constraints were important in deriving a schematic model. A molecular docking program was used to fit EGF to EGF-BP.  相似文献   

19.
The three-dimensional structures of NAD-dependent D-lactate dehydrogenase (D-LDH) and formate dehydrogenase (FDH), which resemble each other, imply that the two enzymes commonly employ certain main chain atoms, which are located on corresponding loop structures in the active sites of the two enzymes, for their respective catalytic functions. These active site loops adopt different conformations in the two enzymes, a difference likely attributable to hydrogen bonds with Asn97 and Glu141, which are also located at equivalent positions in D-LDH and FDH, respectively. X-ray crystallography at 2.4-A resolution revealed that replacement of Asn97 with Asp did not markedly change the overall protein structure but markedly perturbed the conformation of the active site loop in Lactobacillus pentosus D-LDH. The Asn97-->Asp mutant D-LDH exhibited virtually the same k(cat), but about 70-fold higher K(M) value for pyruvate than the wild-type enzyme. For Paracoccus sp. 12-A FDH, in contrast, replacement of Glu141 with Gln and Asn induced only 5.5- and 4.3-fold increases in the K(M) value, but 110 and 590-fold decreases in the k(cat) values for formate, respectively. Furthermore, these mutant FDHs, particularly the Glu141-->Asn enzyme, exhibited markedly enhanced catalytic activity for glyoxylate reduction, indicating that FDH is converted to a 2-hydroxy-acid dehydrogenase on the replacement of Glu141. These results indicate that the active site loops play different roles in the catalytic reactions of D-LDH and FDH, stabilization of substrate binding and promotion of hydrogen transfer, respectively, and that Asn97 and Glu141, which stabilize suitable loop conformations, are essential elements for proper loop functioning.  相似文献   

20.
The active site loop of triosephosphate isomerase (TIM) exhibits a hinged-lid motion, alternating between the two well defined "open" and "closed" conformations. Until now the closed conformation had only been observed in protein complexes with substrate analogues. Here, we present the first rabbit muscle apo TIM structure, refined to 1.5A resolution, in which the active site loop is either in the open or in the closed conformation in different subunits of the enzyme. In the closed conformation described here, the lid loop residues participate in stabilizing hydrogen bonds characteristic of holo TIM structures, whereas chemical interactions observed in the open loop conformation are similar to those found in the apo structures of TIM. In the closed conformation, a number of water molecules are observed at the projected ligand atom positions that are hydrogen bonded to the active site residues. Additives used during crystallization (DMSO and Tris molecules and magnesium atoms) were modeled in the electron density maps. However, no specific binding of these molecules is observed at, or close to, the active site and the lid loop. To further investigate this unusual closed conformation of the apo enzyme, two more rabbit muscle TIM structures, one in the same and another in a different crystal form, were determined. These structures present the open lid conformation only, indicating that the closed conformation cannot be explained by crystal contact effects. To rationalize why the active site loop is closed in the absence of ligand in one of the subunits, extensive comparison with previously solved TIM structures was carried out, supported by the bulk of available experimental information about enzyme kinetics and reaction mechanism of TIM. The observation of both open and closed lid conformations in TIM crystals might be related to a persistent conformational heterogeneity of this protein in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号