首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most bacteria possess the enzyme acetohydroxyacid synthase, which is used to produce branched-chain amino acids. Enteric bacteria contain several isozymes suited to different conditions, but the distribution of acetohydroxyacid synthase in soil bacteria is largely unknown. Growth experiments confirmed that Escherichia coli, Salmonella enterica serotype Typhimurium, and Enterobacter aerogenes contain isozymes of acetohydroxyacid synthase, allowing the bacteria to grow in the presence of valine (which causes feedback inhibition of AHAS I) or the sulfonylurea herbicide triasulfuron (which inhibits AHAS II) although a slight lag phase was observed in growth in the latter case. Several common soil isolates were inhibited by triasulfuron, but Pseudomonas fluorescens and Rhodococcus erythropolis were not inhibited by any combination of triasulfuron and valine. The extent of sulfonylurea-sensitive acetohydroxyacid synthase in soil was revealed when 21 out of 27 isolated bacteria in pure culture were inhibited by triasulfuron, the addition of isoleucine and/or valine reversing the effect in 19 cases. Primers were designed to target the genes encoding the large subunits (ilvB, ilvG and ilvI) of acetohydroxyacid synthase from available sequence data and a ∼355 bp fragment in Bacillus subtilis, Arthrobacter globiformis, E. coli and S. enterica was subsequently amplified. The primers were used to create a small clone library of sequences from an agricultural soil. Phylogenetic analysis revealed significant sequence variation, but all 19 amino acid sequences were most closely related to published large subunit acetohydroxyacid synthase amino acid sequences within several phyla including the Proteobacteria and Actinobacteria. The results suggested the majority of soil microorganisms contain only one functional acetohydroxyacid synthase enzyme sensitive to sulfonylurea herbicides.  相似文献   

2.
The gene encoding an endo-β-1,4-xylanase from an Indonesian indigenous Bacillus licheniformis strain I5 was amplified using PCR, cloned, and expressed in Escherichia coli. The nucleotide sequence of a 642 bp DNA fragment was determined, revealing one open reading frame that encoded a xylanase. Based on the nucleotide sequence, calculated molecular mass of the enzyme was 23 kDa. This xylanase has a predicted typical putative signal peptide; however, in E. coli, the active protein was located mainly in intracellular form. Neither culture supernatant of recombinant E. coli nor periplasmic fraction has significantly detectable xylanase activity. The deduced amino acid of the gene has 91% identity with that of Bacillus subtilis endoxylanase. Optimal activity of the recombinant enzyme was at pH 7 and 50°C  相似文献   

3.
Thallium sulphate inhibited microbial growth, withBacillus megaterium KM, more sensitive to the metal thanSaccharomyces cerevisiae andEscherichia coli. Inhibition ofB. megaterium KM andS. cerevisiae, but not ofE. coli, was alleviated by increasing the potassium concentration of the medium; inhibition of respiration ofS. cerevisiae, but not ofE. coli, was similarly alleviated. Thallium was rapidly bound, presumably to cell surfaces, byS. cerevisiae andE. coli, and was progressively accumulated by energy-dependent transport systems (probably concerned primarily with potassium uptake) with both organisms. Thallium uptake kinetics suggested more than one transport system operated in yeast, possibly reflecting a multiplicity of potassium transport systems. ApparentK m andK i values for competitive inhibition of thallium uptake by potassium indicatedS. cerevisiae to have a higher affinity for thallium uptake than for potassium, whileE. coli had a transport system with a higher affinity for potassium than for thallium. The likely systems for thallium transport are discussed. A mutant ofE. coli with tenfold decreased sensitivity to thallium was isolated and apparently effected surface binding of thallium in amounts equivalent to the wild type organism, but showed no subsequent uptake and accumulation of the metal from buffer, even though it was able to accumulate potassium to normal intracellular concentrations during growth. Abbreviations: Metal are referred to by their recognised atomic symbols (e.g. TI = Thallium; K = potassium; Co = cobalt)  相似文献   

4.
Fatty acid synthesis in bacteria and plants is catalysed by a multi-enzyme fatty acid synthetase complex (FAS II) which consists of separate monofunctional polypeptides. Here we present a comparative molecular genetic and biochemical study of the enoyl-ACP reductase FAS components of plant and bacterial origin. The putative bacterial enoyl-ACP reductase gene (envM) was identified on the basis of amino acid sequence similarities with the recently cloned plant enoyl-ACP reductase. Subsequently, it was unambiguously demonstrated by overexpression studies that theenvM gene encodes the bacterial enoyl-ACP reductase. An anti-bacterial agent called diazaborine was shown to be a specific inhibitor of the bacterial enoyl-ACP reductase, whereas the plant enzyme was insensitive to this synthetic antibiotic. The close functional relationship between the plant and bacterial enoyl-ACP reductases was inferred from genetic complementation of anenvM mutant ofEscherichia coli. Ultimately,envM gene-replacement studies, facilitated by the use of diazaborine, demonstrated for the first time that a single component of the plant FAS system can functionally replace its counterpart within the bacterial multienzyme complex. Finally, lipid analysis of recombinantE. coli strains with the hybrid FAS system unexpectedly revealed that enoyl-ACP reductase catalyses a rate-limiting step in the elongation of unsaturated fatty acids.  相似文献   

5.
Thiolactomycin, an antibiotic with the structure of (4S)-(2E,5E)-2,4,6-trimethyl-3-hydroxy-2,5,7-octatriene-4-++ +thiolide, selectively inhibits type II fatty acid synthases. The mode of the thiolactomycin action on the fatty acid synthase system of Escherichia coli was investigated. Of the six individual enzymes of the fatty acid synthase system, [acyl-carrier-protein] (ACP) acetyltransferase and 3-oxoacyl-ACP synthase were inhibited by thiolactomycin. On the other hand, the other enzymes were not affected by this antibiotic. The thiolactomycin inhibition of the fatty acid synthase system was reversible. As to ACP acetyltransferase, the inhibition was competitive with respect to ACP and uncompetitive with respect to acetyl-CoA. As to 3-oxoacyl-ACP synthase, the inhibition was competitive with respect to malonyl-ACP and noncompetitive with respect to acetyl-ACP. The thiolactomycin action on the fatty acid synthase system was compared with that of cerulenin.  相似文献   

6.
The genome of Lactococcus lactis encodes a single long chain 3-ketoacyl-acyl carrier protein synthase. This is in contrast to its close relative, Enterococcus faecalis, and to Escherichia coli, both of which have two such enzymes. In E. faecalis and E. coli, one of the two long chain synthases (FabO and FabB, respectively) has a role in unsaturated fatty acid synthesis that cannot be satisfied by FabF, the other long chain synthase. Since L. lactis has only a single long chain 3-ketoacyl-acyl carrier protein synthase (annotated as FabF), it seemed likely that this enzyme must function both in unsaturated fatty acid synthesis and in elongation of short chain acyl carrier protein substrates to the C18 fatty acids found in the cellular phospholipids. We report that this is the case. Expression of L. lactis FabF can functionally replace both FabB and FabF in E. coli, although it does not restore thermal regulation of phospholipid fatty acid composition to E. coli fabF mutant strains. The lack of thermal regulation was predictable because wild-type L. lactis was found not to show any significant change in fatty acid composition with growth temperature. We also report that overproduction of L. lactis FabF allows growth of an L. lactis mutant strain that lacks the FabH short chain 3-ketoacyl-acyl carrier protein synthase. The strain tested was a derivative (called the ∆fabH bypass strain) of the original fabH deletion strain that had acquired the ability to grow when supplemented with octanoate. Upon introduction of a FabF overexpression plasmid into this strain, growth proceeded normally in the absence of fatty acid supplementation. Moreover, this strain had a normal rate of fatty acid synthesis and a normal fatty acid composition. Both the ∆fabH bypass strain that overproduced FabF and the wild type strain incorporated much less exogenous octanoate into long chain phospholipid fatty acids than did the ∆fabH bypass strain. Incorporation of octanoate and decanoate labeled with deuterium showed that these acids were incorporated intact as the distal methyl and methylene groups of the long chain fatty acids.  相似文献   

7.
A fibrinolytic metalloprotease gene from Bacillus subtilis has been cloned in Escheridria coliXL1-Blue and the bacterial expressed enzyme was purified. The nucleotide sequence of the cloned fibrinolytic enzyme gene revealed a single open reading frame of 1023 bp coding for 341 amino acids (M r 37708.21 Da). N-terminal amino acid sequencing of the fibrinolytic enzyme excreted from E. coli host cells revealed that the mature fibrinolytic enzyme consists of 288 amino acids (M r 31391.1 Da). The deduced amino acid sequence showed significant homology with Erwina carotovora neutral metalloprotease and Serratia marcescens minor metalloprotease by 65 and 58% amino acid sequence identity, respectively. The protein showed significant alignments with the conserved domain of catalytic activity and the -helix domain in Bacillus anthracisthermolysis metalloprotease. The biochemical properties of the purified enzyme suggested that the enzyme is a fibrinolytic metalloprotease, which has optimal activity at pH 7.0 and 50 °C.  相似文献   

8.
To investigate the distribution of the hemolysin II determinant among strains of Bacillus cereus and Bacillus thuringiensis, thirteen strains of B. cereus and fourteen strains of B. thuringiensis strains were tested for hybridization of their chromosomal DNAs with a DNA probe containing the B. cereus hemolysin II gene. In addition, the production of hemolysin II, whose activity is not inhibited by cholesterol, was tested. The presence (absence) of the hybridization response in the microorganism's genome correlated with the presence (absence) of cholesterol-unaffected hemolysin production. Only four out of thirteen B. cereus strains were found to give a positive response in hybridization experiments, whereas thirteen out of fourteen B. thuringiensis strains responded positively. DNAs from ten B. thuringiensis strains contained a 3.5 kb EcoRV fragment, which hybridized with the B. cereus hemolysin II gene probe. The 3.5 kb EcoRV DNA fragment from one of these strains (B. thuringiensis VKM-B1555) was cloned and expressed in Escherichia coli cells. The hemolysin encoded by the cloned DNA fragment was not inhibited by cholesterol and possessed all other properties of B. cereus hemolysin II. The obtained data clearly show limited distribution of hemolysin II among B. cereus strains and demonstrate that hemolysin II is more characteristic of B. thuringiensis than B. cereus.  相似文献   

9.
The recombinant enzyme binase II was isolated from the culture liquid of Bacillus subtilis 3922 transformed with the pJF28 plasmid bearing the birB gene. The procedure of the enzyme purification included precipitation by polyethylene glycol with subsequent chromatography on DEAE-cellulose, heparin-Sepharose, and Toyopearl TSK-gel. The enzyme was purified 142-fold yielding a preparation with specific activity 1633 U/mg. The molecular weight of binase II is 30 kD. The enzyme is activated by Mg2+ and virtually completely inhibited by EDTA. The pH optimum for the reaction of RNA hydrolysis is 8.5. The properties of the enzyme are close to those of RNase Bsn from B. subtilis. The character of cleaving of synthetic single- and double-stranded polyribonucleotides by binase II suggests that the enzyme binds the substrate in the helix conformation, and its catalytic mechanism is close to that of RNase VI from cobra venom.  相似文献   

10.
The gene encoding pectate lyase (PL) from Bacillus subtilis WSHB04-02 was amplified by PCR, fused with a periplasmic secretion signal peptide sequence, pelB, from pET22b(+), cloned and expressed in Escherichia coli cells using a temperature control vector, pHsh. The recombinant E. coil was grown in a 5 l fermentor. PL was secreted in broth at 22 U l−1 after 20 h when temperature was increased from 30°C to 42°C. The recombinant enzyme was purified to homogeneity as judged by SDS-PAGE. It was optimally active at pH 9.4 and 50°C over 30 min. Analysis of polygalacturonic acid (PGA) degradation products by electrospray ionization (ESI)-mass spectrometry (MS) indicated that PL produced a mixture of unsaturated oligo-galacturonides including unsaturated tri-galacturonic acid and unsaturated bi-galacturonic acid but not unsaturated mono-galacturonic acid.  相似文献   

11.
The activity of fatty acid synthetase (FAS) from Vibrio sp. strain ABE-1 required the presence of acyl carrier protein and was completely inhibited by thiolactomycin, an inhibitor specific for a type II FAS. These observations indicate that this enzyme is a type II FAS. Analysis by gas-liquid chromotography of the reaction products synthesized in vitro from [2-14C]malonyl-CoA by the partially purified FAS revealed, in addition to 16-and 18-carbon fatty acids which are normal constituents of this bacterium, the presence of fatty acids with very long chains. These fatty acids were identified as saturated and mono-unsaturated fatty acids with 20 up to as many as 30 carbon atoms. The longest fatty acids normally found in this bacterium contain 18-carbon atoms. These results suggest that the FAS from Vibrio sp. strain ABE-1 has potentially the ability to synthesize fatty acids with very long chains.Abbreviations ACP acyl carrier protein - FAME fatty acid methyl ester - FAS fatty acid synthetase - FID flame ionization detection - GLC gas-liquid chromatography - TLC thin-layer chromatography - In designations of fatty acids, such as 16:0, 16:1, etc the colon separates the number that denotes the number of carbon atoms and the number that denotes the number of double bonds, respectively, in the molecule - 16:0-CoA CoA ester of 16:0  相似文献   

12.
The gene for β-agarase of an Agarivorans sp. JA-1 was expressed in Bacillus subtilis strain DB104 for efficient and economical mass-production of the enzyme. We isolated 360 mg protein with a specific activity of 201 U/mg from the culture broth. The efficiency of production was approximately 130-fold higher than that in E. coli. The enzyme produced neoagarohexaose, neoagarotetraose and neoagarobiose from agar. Neoagarooligosaccharides produced by the enzyme had a whitening effect and inhibited tyrosinase activity in the murine melanoma cell line, B16F10. Neoagarooligosaccharides were not cytotoxic to B16F10 or normal cells. β-Agarase could therefore be a good whitening, cosmetic additive.  相似文献   

13.
The Escherichia coli fabH gene encoding 3-ketoacyl-acyl carrier protein synthase III (KAS III) was isolated and the effect of overproduction of bacterial KAS III was compared in both E. coli and Brassica napus. The change in fatty acid profile of E. coli was essentially the same as that reported by Tsay et al. (J Biol Chem 267 (1992) 6807–6814), namely higher C14:0 and lower C18:1 levels. In our study, however, an arrest of cell growth was also observed. This and other evidence suggests that in E. coli the accumulation of C14:0 may not be a direct effect of the KAS III overexpression, but a general metabolic consequence of the arrest of cell division. Bacterial KAS III was expressed in a seed- and developmentally specific manner in B. napus in either cytoplasm or plastid. Significant increases in KAS III activities were observed in both these transformation groups, up to 3.7 times the endogenous KAS III activity in mature seeds. Only the expression of the plastid-targeted KAS III gene, however, affected the fatty acid profile of the storage lipids, such that decreased amounts of C18:1 and increased amounts of C18:2 and C18:3 were observed as compared to control plants. Such changes in fatty acid composition reflect changes in the regulation and control of fatty acid biosynthesis. We propose that fatty acid biosynthesis is not controlled by one rate-limiting enzyme, such as acetyl-CoA carboxylase, but rather is shared by a number of component enzymes of the fatty acid biosynthetic machinery.  相似文献   

14.
Fatty acid synthesis is essential for cell growth and viability. The 3-oxoacyl-acyl carrier protein synthase II (KAS II) from Mycobacterium tuberculosis catalyses initiation of the fatty acid synthesis pathway by condensation of acyl CoA and mycolic acid during the elongation phase. KAS II is a key regulator of bacterial fatty acid synthesis, and a promising target in the search for potent antibacterial drugs. Homology modelling was used to generate the 3-D protein structure using the known crystal structure, and the stereochemical quality of KAS II was validated. Effective drugs were selected that target the active amino acid residues of KAS II. The drugs thiolactomycin, thiophenone and the multidrug cerulenin isoniazed were found to be more potent for inhibition of M. tuberculosis due to the robust binding affinity of their protein–drug interactions. KAS II enzymes of M. tuberculosis and other species of Mycobacterium are conserved, as revealed by their close phylogenetic relationships. This study may provide new insights towards understanding the 3-D structural conformation and active amino acids of KAS II, thus providing rationale for the design of novel antibacterial drugs.  相似文献   

15.
An enzyme was identified in human serum which unlike lysozyme cleaved the amide bond between N-acetyl-muramic acid and l-alanine of the peptide side chain of the rigid layer (murein) of Escherichia coli. The N-acetylmuramyl-l-alanine amidase released all of the peptide side chains including those to which the lipoprotein is bound. A portion of the peptide side chains of the Micrococcus lysodeikticus murein was also hydrolysed from the polysaccharide chains. E. coli, M. lysodeikticus, Bacillus subtilis and Staphylococcus aureus were not killed by the amidase. Treatment of E. coli with EDTA or osmotic shock rendered the cells sensitive to the amidase and they were killed. Possible biological functions of the amidase are discussed.The enzyme was separated from lysozyme in human serum. Gel permeation chromatography indicated a molecular weight of the active enzyme of 82,000 while gel electrophoresis in the presence of sodium dodecyl sulfate revealed a molecular weight of 75,000. Thus, the enzyme probably consists of a single polypeptide chain. Incubation with neuraminidase rendered the amidase more basic suggesting the release of sialic acid residues. The modified glycoprotein disclosed an increased activity to murein. Enzyme activity was inhibited by p-chloromercuribenzene sulfonate and ethyleneglycol-bis(2-aminomethyl) tetraacetate (EGTA) at 1 and 0.2 mM concentration, respectively, whereas EDTA up to 5 mM was without effect. The amidase was also inactivated by agents that reduce disulfide bridges.  相似文献   

16.
A stable-isotope assay was used to analyze the effectiveness of various perdeuterated short-chain acyl coenzyme A (acyl-CoA) compounds as starter units for straight- and branched-chain fatty acid biosynthesis in cell extracts of Streptomyces collinus. In these extracts perdeuterated isobutyryl-CoA was converted to isopalmitate (a branched-chain fatty acid), while butyryl-CoA was converted to palmitate (a straight-chain fatty acid). These observations are consistent with previous in vivo analyses of fatty acid biosynthesis in S. collinus, which suggested that butyryl-CoA and isobutyryl-CoA function as starter units for palmitate and isopalmitate biosynthesis, respectively. Additionally, in vitro analysis demonstrated that acetyl-CoA can function as a starter unit for palmitate biosynthesis. Palmitate biosynthesis and isopalmitate biosynthesis in these cell extracts were both effectively inhibited by thiolactomycin, a known type II fatty acid synthase inhibitor. In vivo experiments demonstrated that concentrations of thiolactomycin ranging from 0.1 to 0.2 mg/ml produced both a dramatic decrease in the cellular levels of branched-chain fatty acids and a surprising three- to fivefold increase in the cellular levels of the straight-chain fatty acids palmitate and myristate. Additional in vivo incorporation studies with perdeuterated butyrate suggested that, in accord with the in vitro studies, the biosynthesis of the palmitate from butyryl-CoA decreases in the presence of thiolactomycin. In contrast, in vivo incorporation studies with perdeuterated acetate demonstrated that the biosynthesis of palmitate from acetyl-CoA increases in the presence of thiolactomycin. These observations clearly demonstrate that isobutyryl-CoA is a starter unit for isopalmitate biosynthesis and that either acetyl-CoA or butyryl-CoA can be a starter unit for palmitate biosynthesis in S. collinus. However, the pathway for palmitate biosynthesis from acetyl-CoA is less sensitive to thiolactomycin, and it is suggested that the basis for this difference is in the initiation step.  相似文献   

17.
Summary The recent placement of major Gramnegative prokaryotes (Superfamily B) on a phylogenetic tree (including, e.g., lineages leading toEscherichia coli, Pseudomonas aeruginosa, andAcinetobacter calcoaceticus) has allowed initial insights into the evolution of the biochemical pathway for aromatic amino acid biosynthesis and its regulation to be obtained. Within this prokaryote grouping,Xanthomonas campestris ATCC 12612 (a representative of the Group V pseudomonads) has played a key role in facilitating deductions about the major evolutionary events that shaped the character of aromatic biosynthesis within this grouping.X. campestris is likeP. aeruginosa (and unlikeE. coli) in its possession of dual flow routes to bothl-phenylalanine andl-tyrosine from prephenate. Like all other members of Superfamily B,X. campestris possesses a bifunctional P-protein bearing the activities of both chorismate mutase and prephenate dehydratase. We have found an unregulated arogenate dehydratase similar to that ofP. aeruginosa inX. campestris. We separated the two tyrosine-branch dehydrogenase activities (prephenate dehydrogenase and arogenate dehydrogenase); this marks the first time this has been accomplished in an organism in which these two activities coexist. Superfamily B organisms possess 3-deoxy-d-arabino-heptulosonate 7-P (DAHP) synthase as three isozymes (e.g., inE. coli), as two isozymes (e.g., inP. aeruginosa), or as one enzyme (inX. campestris). The two-isozyme system has been deduced to correspond to the ancestral state of Superfamily B. Thus,E. coli has gained an isozyme, whereasX. campestris has lost one. We conclude that the single, chorismate-sensitive DAHP synthase enzyme ofX. campestris is evolutionarily related to the tryptophan-sensitive DAHP synthase present throughout the rest of Superfamily B. InX. campestris, arogenate dehydrogenase, prephenate dehydrogenase, the P-protein, chorismate mutase-F, anthranilate synthase, and DAHP synthase are all allosteric proteins; we compared their regulatory properties with those of enzymes of other Superfamily B members with respect to the evolution of regulatory properties. The network of sequentially operating circuits of allosteric control that exists for feedback regulation of overall carbon flow through the aromatic pathway inX. campestris is thus far unique in nature.  相似文献   

18.
Summary In two previous reports (Narhi LO, Fulco AJ, J. Biol. Chem. 261: 7160–7169, 1986; Ibid., 262: 6683–6690, 1987) we described the characterization of a catalytically self-sufficient 119000-dalton P-450 cytochrome that was induced by barbiturates in Bacillus megaterium. In the presence of NADPH and O2, this polypeptide (cytochrome P-450BM-3) catalyzed the hydroxylation of long-chain fatty acids without the aid of any other protein. The gene encoding this unique monooxygenase was cloned into Escherichia coli and the clone harboring the recombinant plasmid produced a protein that behaved electrophoretically and immunochemically like the B. megaterium enzyme (Wen LP, Fulco AJ, J. Biol. Chem. 262: 6676–6682, 1987). We have now compared authentic P-450BM-3 from B. megaterium and putative P-450BM-3 isolated from transformed E. coli and have found them to be indistinguishable with respect to chromatographic and electrophoretic behavior, reaction with specific antibody, prosthetic group (heme, FAD and FMN) analyses, spectra, enzymology, limited trypsin proteolysis and partial amino acid sequencing. We thus conclude that the P-450 cytochrome expressed by the transformed E. coli is essentially identical to native P-450BM-3 induced by barbiturates in B. megaterium. The evidence furthermore suggests that the primary amino acid sequence of this complex protein is alone sufficient to direct the proper integration of the three prosthetic groups and to specify folding of the polypeptide into the correct tertiary structure.Abbreviations SDS Sodium Dodecylsulfate - PAGE Polyacrylamide Gel Electrophoresis - HPLC High Performance Liquid Chromatography  相似文献   

19.
Summary The structural gene for the enzyme levanase of Bacillus subtilis (SacC) was cloned in Escherichia coli. The cloned gene was mapped by PBS1 transduction near the sacL locus on the B. subtilis chromosome, between leu4 and aroD. Expression of the enzyme was demonstrated both in B. subtilis and in E. coli. The presence of sacC allowed E. coli to grow on sucrose as the sole carbon source. The complete nucleotide sequence of sacC was determined. It includes an open reading frame of 2,031 bp, coding for a protein with calculated molecular weight of 75,866 Da, including a putative signal peptide similar to precursors of secreted proteins found in Bacilli. The apparent molecular weight of purified levanase is 73 kDa. The sacC gene product was characterized in an in vitro system and in a minicellproducing strain of E. coli, confirming the existence of a precursor form of levanase of about 75 kDa. Comparison of the predicted aminoacid sequence of levanase with those of the two other known -D-fructofuranosidases of B. subtilis indicated a homology with sucrase, but not with levansucrase. A stronger homology was detected with the N-terminal region of yeast invertase, suggesting the existence of a common ancestor.  相似文献   

20.
The cultivated peanut is a valuable source of dietary oil and ranks fifth among the world oil crops. Plant fatty acid biosynthesis is catalysed by type II fatty acid synthase (FAS) in plastids and mitochondria. By constructing a full-length cDNA library derived from immature peanut seeds and homology-based cloning, candidate genes of acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, β-ketoacyl-ACP synthase (I, II, III), β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase and enoyl-ACP reductase were isolated. Sequence alignments revealed that primary structures of type II FAS enzymes were highly conserved in higher plants and the catalytic residues were strictly conserved in Escherichia coli and higher plants. Homologue numbers of each type II FAS gene expressing in developing peanut seeds varied from 1 in KASII, KASIII and HD to 5 in ENR. The number of single-nucleotide polymorphisms (SNPs) was quite different in each gene. Peanut type II FAS genes were predicted to target plastids except ACP2 and ACP3. The results suggested that peanut may contain two type II FAS systems in plastids and mitochondria. The type II FAS enzymes in higher plants may have similar functions as those in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号