首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of the S locus F-box (SLF) protein was examined by immunocytochemistry and Western blot techniques using an antibody against the C-terminal part of AhSLF-S2 in self-incompatible lines of Antirrhinum. Abundant gold particles were found where pollen tubes emerge in vitro. With the elongation of pollen tubes, binding sites for the antibody were found in the cytoplasm of the pollen tubes,including the peripheral part of the endoplasmic reticulum. After germination in vitro for 16 h, the product of AhSLF-S2 and possibly its allelic products could still be detectable, implying that the SLF protein has a role in the elongating process of pollen tubes. The present study provides evidence at the protein level that the SLF protein is present in pollen cytoplasm during pollen tube growth. These findings are discussed, as is their potential role in the self-incompatible response in Antirrhinum.  相似文献   

2.
S-RNase-based self-incompatibility has been identified in three flowering plant families, including the Solanaceae, and this self/non-self recognition mechanism between pollen and pistil is controlled by two polymorphic genes at the S -locus, S-RNase and S-locus F-box ( SLF ). S-RNase is produced in the pistil and taken up by pollen tubes in a non- S- haplotype-specific manner. How an allelic product of SLF interacts with self and non-self S-RNases to result in growth inhibition of self pollen tubes is not completely understood. One model predicts that SLF targets non-self S-RNases for ubiquitin/26S proteasome-mediated degradation, thereby only allowing self S-RNase to exert cytotoxic activity inside a pollen tube. To test this model, we studied whether any of the 20 lysine residues in S3-RNase of Petunia inflata might be targets for ubiquitination. We identified six lysines near the C-terminus for which mutation to arginine significantly reduced ubiquitination and degradation of the mutant S3-RNase, GST:S3-RNase (K141–164R) in pollen tube extracts. We further showed that GST:S3-RNase (K141–164R) and GST:S3-RNase had similar RNase activity, suggesting that their degradation was probably not caused by an ER-associated protein degradation pathway that removes mis-folded proteins. Finally, we showed that PiSBP1 ( P. inflata S-RNase binding protein 1), a potential RING-HC subunit of the PiSLF ( P. inflata SLF)-containing E3-like complex, could target S-RNase for ubiquitination in vitro . All these results suggest that ubiquitin/26S proteasome-dependent degradation of S-RNase may be an integral part of the S-RNase-based self-incompatibility mechanism.  相似文献   

3.
Qiao H  Wang H  Zhao L  Zhou J  Huang J  Zhang Y  Xue Y 《The Plant cell》2004,16(3):582-595
Self-incompatibility S-locus-encoded F-box (SLF) proteins have been identified in Antirrhinum and several Prunus species. Although they appear to play an important role in self-incompatible reaction, functional evidence is lacking. Here, we provide several lines of evidence directly implicating a role of AhSLF-S(2) in self-incompatibility in Antirrhinum. First, a nonallelic physical interaction between AhSLF-S(2) and S-RNases was demonstrated by both coimmunoprecipitation and yeast two-hybrid assays. Second, AhSLF-S(2) interacts with ASK1- and CULLIN1-like proteins in Antirrhinum, and together, they likely form an Skp1/Cullin or CDC53/F-box (SCF) complex. Third, compatible pollination was specifically blocked after the treatment of the proteasomal inhibitors MG115 and MG132, but they had little effect on incompatible pollination both in vitro and in vivo, indicating that the ubiquitin/26S proteasome activity is involved in compatible pollination. Fourth, the ubiquitination level of style proteins was increased substantially after compatible pollination compared with incompatible pollination, and coimmunoprecipitation revealed that S-RNases were ubiquitinated after incubating pollen proteins with compatible but not with incompatible style proteins, suggesting that non-self S-RNases are possibly degraded by the ubiquitin/26S proteasome pathway. Fifth, the S-RNase level appeared to be reduced after 36 h of compatible pollination. Taken together, these results show that AhSLF-S(2) interacts with S-RNases likely through a proposed SCF(AhSLF-S2) complex that targets S-RNase destruction during compatible rather than incompatible pollination, thus providing a biochemical basis for the inhibition of pollen tube growth as observed in self-incompatible response in Antirrhinum.  相似文献   

4.
Qiao H  Wang F  Zhao L  Zhou J  Lai Z  Zhang Y  Robbins TP  Xue Y 《The Plant cell》2004,16(9):2307-2322
Recently, we have provided evidence that the polymorphic self-incompatibility (S) locus-encoded F-box (SLF) protein AhSLF-S(2) plays a role in mediating a selective S-RNase destruction during the self-incompatible response in Antirrhinum hispanicum. To investigate its role further, we first transformed a transformation-competent artificial chromosome clone (TAC26) containing both AhSLF-S(2) and AhS(2)-RNase into a self-incompatible (SI) line of Petunia hybrida. Molecular analyses showed that both genes are correctly expressed in pollen and pistil in four independent transgenic lines of petunia. Pollination tests indicated that all four lines became self-compatible because of the specific loss of the pollen function of SI. This alteration was transmitted stably into the T1 progeny. We then transformed AhSLF-S(2) cDNA under the control of a tomato (Lycopersicon esculentum) pollen-specific promoter LAT52 into the self-incompatible petunia line. Molecular studies revealed that AhSLF-S(2) is specifically expressed in pollen of five independent transgenic plants. Pollination tests showed that they also had lost the pollen function of SI. Importantly, expression of endogenous SLF or SLF-like genes was not altered in these transgenic plants. These results phenocopy a well-known phenomenon called competitive interaction whereby the presence of two different pollen S alleles within pollen leads to the breakdown of the pollen function of SI in several solanaceaous species. Furthermore, we demonstrated that AhSLF-S(2) physically interacts with PhS(3)-RNase from the P. hybrida line used for transformation. Together with the recent demonstration of PiSLF as the pollen determinant in P. inflata, these results provide direct evidence that the polymorphic SLF including AhSLF-S(2) controls the pollen function of S-RNase-based self-incompatibility.  相似文献   

5.
The role of Ca2+ signalling during the self-incompatibility (SI) response in Papaver rhoeas L. has been investigated using Ca2+-sensitive dyes. Pollen tubes were micro-injected with Calcium Green-1 and cytosolic free calcium ([Ca2+]i) imaged using laser scanning confocal microscopy (LSCM). Addition of incompatible stigmatic S-glycoproteins induced a transient increase in the level of [Ca2+]i in pollen tubes. In contrast, no rise in [Ca2+]i was detectable after addition of either compatible or heat-denatured incompatible stigmatic S-glycoproteins. The elevation of [Ca2+]i was followed by the specific inhibition of pollen tube growth in incompatible reactions. It has been shown previously that gene expression in pollen tubes is switched on during an incompatible reaction. Since the [Ca2+]i transient appeared to originate from the region where the nuclei are located, Ca2+ may be involved in locally regulating the expression of these genes. The photoactivation of caged Ca2+ to artificially elevate [Ca2+]i resulted in the inhibition of pollen tube growth and thus mimicked the SI response. Taken together, the results provide an important link between a transient rise in [Ca2+]i and the biological phenomenon of inhibition of pollen tube growth and demonstrate, for the first time, direct evidence that the SI response in P. rhoeas is mediated by [Ca2+]i.  相似文献   

6.
Trivalent chromium has previously been found to effectively inhibit kiwifruit pollen tube emergence and elongation in vitro . In the present study, a photometric measure of increases in tube wall production during germination showed that 25 and 50 μ m CrCl3 treatment induced a substantial reduction in levels of polysaccharides in walls over those in controls. Moreover, chromium-treated kiwifruit pollen tubes had irregular and indented cell walls. Callose, the major tube wall polysaccharide, was deposited in an anomalous punctuate pattern. Arabinogalactan proteins (AGPs), which are integral in maintaining correct tube growth and shape in kiwifruit pollen, were found to be strongly altered in their distribution after CrCl3 treatment compared to control tube walls. Transmission electron microscopy–immunogold analysis using four monoclonal antibodies (JIM8, JIM13, JIM14 and MAC207) revealed discontinuous AGP distribution within the treated tube walls. Such clearly discernable alterations in the molecular and morphological architecture of pollen tube walls may be detrimental in vivo for the male gametophyte to accomplish its vital role in the fertilisation process.  相似文献   

7.
Self-Incompatibility (SI) Is a genetic mechanism of self/non-self pollen recognition to prevent self-fertilization In many flowering plants and, In most cases, this is controlled by a multl-allellc S-locus. S-RNase and Slocus F box (SLF) proteins have been shown to be the female and male determinants of gametophytlc selfIncompatibility (GSI), respectively, In the Solanaceae, Scrophulariaceae and Rosaceae. Nevertheless, It is thought that additional factors are required for the SI response. Herein, we constructed a mature anther cDNA library from a self-Incompatible Petunia hybrida Vllm. line of the S3S3 haplotype. Using AhS2-RNase from Antirrhinum hispanicum as a bait for yeast two-hybrid screening, we found that petunia germinating pollen (PGP) S/D3 was capable of Interacting physically with the bait. However, the Interaction lacked haplotype specificity. The PGPS/D3 gene Is a single copy gene that Is expressed In tissues such as the style, ovary, pollen, and leaf. The PGPS/D3::GFP (green fluorescence protein) construct was detected In both the membrane and cytoplasm. The Implications of these findings In the operation of S-RNase-based SI are discussed.  相似文献   

8.
In self-incompatible plants of the Solanaceae, the specificity of pollen rejection is controlled by a single multiallelic S-locus. Pollen tube growth is inhibited in the style when its single S-allele matches either S-allele present in the diploid pistil. Each S-allele encodes an S-RNase with a unique sequence. S-RNases are secreted into the extracellular matrix of the transmitting tract which guides pollen tubes toward the ovary. Although it is known that S-RNases are the determinants of S-allele specificity in the pistil, it is not known how allele-specific information is encoded in the sequence. Therefore, we exchanged domains between S-RNases with different recognition specificities and expressed the chimeric proteins in transgenic plants to determine their effects on pollination behavior. Nine chimeric constructs were prepared in which domains from Nicotiana alata SA2- and SC10-RNases were exchanged. Among these nine constructs, the entire S-RNase sequence was sampled by exchanging single variable domains as well as larger blocks of contiguous sequences. The chimeric S-RNases retained enzymatic activity and were expressed at levels comparable to control transformants expressing SA2- and SC10-RNase. However, none of the chimeric S-RNases caused rejection of either SA2- or SC10-pollen. We conclude that the recognition function of S-RNases can be disrupted by alterations in many parts of the sequence. It appears that the recognition function of S-RNase is not localized to a specific domain.  相似文献   

9.
In many flowering plants, self-fertilization is prevented by an intraspecific reproductive barrier known as self-incompatibility (SI), that, in most cases, is controlled by a single multiallelic S locus. So far, the only known S locus product in self-incompatible species from the Solanaceae, Scrophulariaceae and Rosaceae is a class of ribonucleases called S RNases. Molecular and transgenic analyses have shown that S RNases are responsible for pollen rejection by the pistil but have no role in pollen expression of SI, which appears to be mediated by a gene called the pollen self-incompatibility or Sp gene. To identify possible candidates for this gene, we investigated the genomic structure of the S locus in Antirrhinum, a member of the Scrophulariaceae. A novel F-box gene, AhSLF-S2, encoded by the S2 allele, with the expected features of the Sp gene was identified. AhSLF-S2 is located 9 kb downstream of S2 RNase gene and encodes a polypeptide of 376 amino acids with a conserved F-box domain in its amino-terminal part. Hypothetical genes homologous to AhSLF-S2 are apparent in the sequenced genomic DNA of Arabidopsis and rice. Together, they define a large gene family, named SLF (S locus F-box) family. AhSLF-S2 is highly polymorphic and is specifically expressed in tapetum, microspores and pollen grains in an allele-specific manner. The possibility that Sp encodes an F-box protein and the implications of this for the operation of self-incompatibility are discussed.  相似文献   

10.
高等植物的倾向受精是一个非常吸引人的研究课题,目前对其机理还不清楚.要想探索高等植物倾向受精现象,前提之一是要分离出一定数量的两个精细胞群体作为分子生物学研究方法的材料.以前的研究表明,烟草(Nicotiana tabacum L.)花粉管中的两个精细胞体积差异明显.这种异型性的精细胞可能与倾向受精有关.烟草是二胞型花粉,生殖细胞只在体内生长的花粉管中才分裂形成两个精细胞.用体内/体外技术培养出花粉管后,爆破花粉管即可释放出花粉管内含物,其中包括两个精细胞.用微量酶液可使两个精细胞分开.然后用显微操作器可挑选出两个大小不同、数量上千的精细胞群体.这种单一纯化的精细胞群体为用分子生物学方法区分两个精细胞的DNA和蛋白质差异打下基础.本研究是高等植物的第二例、二胞花粉植物中的第一例分离两个特定精细胞群体的尝试,为构建烟草两个精细胞的cDNA文库创造了条件.  相似文献   

11.
Steel factor (SLF, also called KIT-ligand, mast cell growth factor, or stem cell factor) acting through the tyrosine kinase receptor KIT is thought to be indispensable for the early phase of melanocyte development both in vivo and in vitro . In the present study, Kit-independent precursor cells were generated in mice expressing exogenous SLF in their skin keratinocytes and were detected as pigmented spots after administration of Kit function-blocking antibody. We successfully purified these precursor or stem cells as Kit+CD45 cells by flow cytometry. The purified cells showed normal but delayed differentiation into mature melanocytes, indicating the immature nature of Kit-independent precursors. The Kit-independent interfollicular population generated in SLF transgenic mice was suggested to be the counterpart of the follicular melanocyte stem cell based on the Kit-independent nature for their survival.  相似文献   

12.
Abstract: Polyclonal antibodies were raised to synthetic peptides having amino acid sequences corresponding with the N- or C-terminal part of the γ-aminobutyric acidA (GABAA) receptor α5-subunit. These anti-peptide α5(2–10) or anti-peptide α5(427–433) antibodies reacted specifically with GABAA receptors purified from the brains of 5–10-day-old rats in an enzyme-linked immunosorbent assay and were able to dose-dependently immunoprecipitate up to 6.3 or 13.1% of the GABAA receptors present in the incubation, respectively. In immunoblots, each of these antibodies reacted with the same two protein bands with apparent molecular mass of 53 or 57 kDa. After exhaustive treatment of purified GABAA receptors with N -Glycanase, each of these antibodies identified two proteins with apparent molecular masses of 46 and 48 kDa. Additional treatment of GABAA receptors with neuraminidase and O -Glycanase resulted in an apparently single protein with molecular mass of 47 kDa, which again was identified by both the anti-peptide α5(2–10) and the anti-peptide α5(427–433) antibody. These results indicate the existence of at least two different α5-sub-units of the GABAA receptor that differ in their carbohydrate content. In contrast to other α- or β-subunits of GABAA receptors so far investigated, at least one of these two α5-subunits contains O-linked carbohydrates.  相似文献   

13.
Abstract: In order to understand the etiology of Type AB GM2 gangliosidosis, we have purified and characterized the activator protein (GM2 activator) specific for the enzymic hydrolysis of GM2 ganglioside from normal human brain. The purified activator from human brain moved as one major protein band in various electrophoretic systems. We have also prepared the antiserum against this activator. The levels and the nature of GM2 activator and β-hexosaminidase A were examined in the brains of five cases of GM2. gangliosidosis—one Type B, two Type O, and two Type AB. We found that the levels of GM2 activator in both Type B and Type O cases were markedly elevated, and that the two Type AB cases were the results of different causes. One case had a defective β hexosaminidase A and an elevated level of GM2 activator. Although this defective β-hexosaminidase A could hydrolyze synthetic substrates, it was inactive in the cleavage of natural glycosphingolipids in the presence of the GM2 activator. It could, however, hydrolyze asialo-GM2 and GbOse4Cer in the presence of sodium taurodeoxycholate. The other case had normal β-hexosaminidase A, but had a very low level of GM2 activator when analyzed by in vitro assay, suggesting the deficiency of this activator. By immunoelectrophoresis, this case was found to be completely devoid of the protein that cross-reacts with the antiserum against the GM2 activator.  相似文献   

14.
Calcium signals are critical for the regulation of polarized growth in many eukaryotic cells, including pollen tubes and neurons. In plants, the regulatory pathways that code and decode Ca2+ signals are poorly understood. In Arabidopsis thaliana, genetic evidence presented here indicates that pollen tube tip growth involves the redundant activity of two Ca2+-dependent protein kinases (CPKs), isoforms CPK17 and -34. Both isoforms appear to target to the plasma membrane, as shown by imaging of CPK17–yellow fluorescent protein (YFP) and CPK34–YFP in growing pollen tubes. Segregation analyses from two independent sets of T-DNA insertion mutants indicate that a double disruption of CPK17 and -34 results in an approximately 350-fold reduction in pollen transmission efficiency. The near sterile phenotype of homozygous double mutants could be rescued through pollen expression of a CPK34–YFP fusion. In contrast, a transgene rescue was blocked by mutations engineered to disrupt the Ca2+-activation mechanism of CPK34 (CPK34–YFP–E465A,E500A), providing in vivo evidence linking Ca2+ activation to a biological function of a CPK. While double mutant pollen tubes displayed normal morphology, relative growth rates for the most rapidly growing tubes were reduced by more than three-fold compared with wild type. In addition, while most mutant tubes appeared to grow far enough to reach ovules, the vast majority (>90%) still failed to locate and fertilize ovules. Together, these results provide genetic evidence that CPKs are essential to pollen fitness, and support a mechanistic model in which CPK17 and -34 transduce Ca2+ signals to increase the rate of pollen tube tip growth and facilitate a response to tropism cues.  相似文献   

15.
. This paper reports results of two-dimensional gel electrophoresis analysis of pollen coat and pollen protoplast proteins of self-incompatible and self-fertile Secale cereale as well as pollen collected from Festuca pratensis populations and selected self-sterile plants. Washing pollen 10 times in isotonic buffer showed that the first and second fractions contained the majority of the pollen coat proteins. Results of protein analysis are discussed against the background of pollen wall ultrastructure. A fraction of peptides found in the pollen coat were also present in the protein patterns of protoplasts; however, numerous pollen coat peptides were not detected in the protoplast and vice versa. The self-incompatible S. cereale had 23 pollen coat peptides and 46 from protoplasts that differed in molecular weight (MW) and isoelectric point (IP) in comparison to those of pollen coat and protoplasts of self-fertile S. cereale. Similarly, self-sterile F. pratensis had 60 pollen coat peptides and 11 protoplast peptides different from those of the self-sterile/self-fertile F. pratensis. The pollen coat fraction of the self-incompatible S. cereale and the self-sterile plants of F. pratensis had three peptides with very similar MW and IP, whereas in their protoplasts two peptides with similar MW and IP were found. The possible relationship between pollen ultrastructural organisation and rate of protein elution is discussed.  相似文献   

16.
Abstract: Myelin membrane prepared from mouse sciatic nerve possesses both kinase and substrates to incorporate [32P]PO43− from [γ-32P]ATP into protein constituents. Among these, P0 glycoprotein is the major phosphorylated species. To identify the phosphorylated sites, P0 protein was in vitro phosphorylated, purified, and cleaved by CNBr. Two 32P-phosphopeptides were isolated by HPLC. The exact localization of the sequences around the phosphorylated sites was determined. The comparison with rat P0 sequence revealed, besides a Lys172 to Arg substitution, that in the first peptide, two serine residues (Ser176 and Ser181) were phosphorylated, Ser176 appearing to be modified subsequently to Ser181. In the second peptide, Ser197, Ser199, and Ser204 were phosphorylated. All these serines are clustered in the C-terminal region of P0 protein. This in vitro study served as the basis for the identification of the in vivo phosphorylation sites of the C terminal region of P0. We found that, in vivo, Ser181 and Ser176 are not phosphorylated, whereas Ser197, Ser199, Ser204, Ser208, and Ser214 are modified to various extents. Our results strongly suggest that the phosphorylation of these serine residues alters the secondary structure of this domain. Such a structural perturbation could play an important role in myelin compaction at the dense line level.  相似文献   

17.
A resin mixture containing Araldite M, 15 ml; Epon 812, 25 ml; dodecenyl succinic anhydride, 55 ml; and dibutyl phthlate, 2 ml, was found to be the optimal embedding resin for both fresh and acetylated pollen exines. Diamond knives greatly facilitated sectioning. Exine fine structure, and stratification patterns in fresh pollen were most clearly revealed by section staining of glutaraldehyde-fixed (2 hr), OsO4-stained (2 hr) specimens. Acetylated exines (acetic anhydride-H2SO4 9:1; 100 C, 5 min) did not require additional treatment prior to embedding, but section staining of exines so treated greatly enhanced stain differentiation of exine subunits. Successfully used section stains included Reynold's lead hydroxide, Millonig's lead citrate and aqueous KMnO4. Additional procedures were tried but were found to have serious disadvantages, e. g. exines treated with KMnO4 before embedding shattered badly during sectioning.  相似文献   

18.
The self-incompatibility (SI) response in Papaver rhoeas involves a Ca2+-based signalling pathway, which mediates the SI-specific inhibition of incompatible pollen. We have previously reported the identification of p26.1, a pollen protein whose phosphorylation was increased specifically as a consequence of the SI response. We have investigated whether further specific protein phosphorylation events are induced in P. rhoeas pollen. Here we report the identification of an additional pollen protein, p68, which also responds to S proteins by an increase in its phosphorylation state. This phosphorylation event occurs in living pollen tubes grown in vitro , and can be observed specifically when pollen is challenged with biologically active S proteins that are incompatible with the S alleles carried by the pollen and not when pollen was challenged with compatible S proteins. The timing of the increase in phosphorylation of p68 is temporally later than that of p26.1, occurring between 240 sec and 400 sec after challenge. This suggests that its phosphorylation is downstream of p26.1 in the SI signalling pathway(s). Surprisingly, the kinases responsible for the phosphorylation of p68 are not Ca2+-dependent. This, and the later timing of the p68 response, suggests that a 'second wave' of Ca2+-independent signalling may follow the initial Ca2+-dependent SI signalling. This indicates that the SI signalling pathway(s) in pollen may be quite complex.  相似文献   

19.
The technique we describe here is a modification of that used by Hough et al. (1985), combined with “semivitro” pollen tube observations. With the semivitro technique, pollen tubes grow from the cut ends of pollinated styles (Brewbaker and Majumder 1961). Pollen of Nicotiana alata was presoaked for 15 min in simplified medium (Brewbaker and Kwack 1963) (10% sucrose, 300 ppm Ca(NO3)2, 100 ppm H3BO3 with the addition of 0.5 mg/ml of Hoechst 33258 stain from Serva Biochemicals, Heidelberg, Control H, purchased June 1983). (For germination of Nicotiana alata pollen in vitro, we use this same solution, except with 12% sucrose). After this prestaining, the pollen suspension was centrifuged for 5 min at 1200 × g, the pellet resuspended in control Brewbaker medium (i.e., no stain), recentrifuged and used to pollinate detached pistils. The pistils were then incubated at 25 C in a water-saturated atmosphere for 20 hr. At this time, the styles were cut just ahead of the front of the growing pollen tubes (Mulcahy and Mulcahy 1985) and the cut stylar ends each dipped in fresh control Brewbaker medium. Twelve to 24 hours later, tubes growing out of the cut styles were viewed by fluorescence microscopy (exciter filter, BG 12 + KV 418, beam splitter, 500 nm, and barrier filter OG 515). A distinct green fluorescence was seen in the generative and vegetative nuclei (Fig. 1).  相似文献   

20.
Among 30 plant species examined, the PPi-phosphofructokinase (EC 2.7.1.90) was found in leaves of 21 plants. Some of the plants exhibit no activity of ATP-dependent phosphofructokinase but display only activity of PPi-phosphofructokinase. A partly purified preparation of PPi-phosphofructokinase with specific activity of 8.4 Hmol (mg protein)−1 min−1 was obtained from Sanseviera trifasciata leaves. The enzyme is restricted to the cytoplasm, it exhibits pronounced substrate specifity, requires Mg2+ ions, is inhibited by AMP, PEP, methylenediphosphonate and stabilized by mercaptoethanol. At pH 7.8 with 1.5 m M MgCl2 the following KM values were observed: pyrophosphate, 0.58 m M ; fructose 6-phosphate, 0.8 m M . The KM values for substrates of reverse reaction (pH 7.3; 2 m M MgCl2) are of the same order of magnitude: 0.83 m M for fructose 1,6-diphosphate, and 0.14 m M for orthophosphate. The molecular weight of the studied enzyme is about 125 000 dalton as estimated by gel filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号