首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Qfhi.nau-4B is a major quantitative trait locus (QTL) against Fusarium graminearum infection identified in the Fusarium head blight-resistant germplasm Wangshuibai. To fine map this QTL, a recombinant inbred line (RIL) population of 530 lines derived from Nanda2419 × Wangshuibai and the BC3F2 population derived from the cross of a Qfhi.nau-4B near isogenic line (NIL) with susceptible cultivar Mianyang 99-323 as the recurrent parent were screened for recombinants occurred between microsatellite markers Xbarc20 and Xwmc349 that flank Qfhi.nau-4B. A total of 95 recombinants were obtained, including 45 RIL recombinants obtained through reverse-selection of Qfhi.nau-5A and 50 NIL recombinants from the BC3F2 population. Genotyping these recombinant lines with 22 markers mapping to the Xbarc20 and Xwmc349 interval revealed fourteen genotypes of the RIL recombinants as well as of the NIL recombinants. Two-year field evaluation of their resistance to Fusarium infection showed that these lines could be clearly classified into two groups according to percentage of infected spikes. The more resistant class had over 60% less infection than the susceptible class and were common to have Wangshuibai chromatin in the 1.7-cM interval flanked by Xhbg226 and Xgwm149. None of the susceptible recombinants had this Wangshuibai chromatin. Qfhi.nau-4B was thus confined between Xhbg226 and Xgwm149 and named Fhb4. The interval harboring Fhb4 was mapped to 4BL5-0.86–1.00 bin using Chinese Spring deletion lines, a region with about 5.7 times higher recombination rate than the genome average. This study established the basis for map-based cloning of Fhb4.  相似文献   

2.
Qfhi.nau-5A is a major quantitative trait locus (QTL) against Fusarium graminearum infection in the resistant wheat germplasm Wangshuibai. Genetic analysis using BC(3)F(2) and BC(4)F(2) populations, derived from selfing two near-isogenic lines (NIL) heterozygous at Qfhi.nau-5A that were developed, respectively, with Mianyang 99-323 and PH691 as the recurrent parent, showed that Qfhi.nau-5A inherited like a single dominant gene. This QTL was thus designated as Fhb5. To fine map it, these two backcross populations and a recombinant inbred line (RIL) population derived from Nanda2419?×?Wangshuibai were screened for recombinants occurring between its two flanking markers Xbarc56 and Xbarc100. Nineteen NIL recombinants were identified from the two backcross populations and nine from the RIL population. In the RIL recombinant selection process, selection against Fhb4 present in the RIL population was incorporated. Genotyping these recombinant lines with ten markers mapping to the Xbarc56-Xbarc100 interval revealed four types of Mianyang 99-323-derived NIL recombinants, three types of PH691-derived NIL recombinants, and four types of RIL recombinants. In different field trials, the percentage of infected spikes of these lines displayed a distinct two-peak distribution. The more resistant class had over 55% less infection than the susceptible class. Common to these resistant genotypes, the 0.3-cM interval flanked by Xgwm304 and Xgwm415 or one of these two loci was derived from Wangshuibai, while none of the susceptible recombinants had Wangshuibai chromatin in this interval. This interval harboring Fhb5 was mapped to the pericentromeric C-5AS3-0.75 bin through deletion bin mapping. The precise localization of Fhb5 will facilitate its utilization in marker-assisted wheat breeding programs.  相似文献   

3.
The spike characteristics length, spikelet density and fertile floret number are related yield components and are important in cereal improvement. QSpl.nau-2D is a major quantitative trait locus controlling spike length (SPL) detected in the recombinant inbred line population developed by crossing wheat (Triticum aestivum) cultivars Nanda2419 with Wangshuibai. In this study, to validate its genetic effect and determine its precise location, QSpl.nau-2D’s near-isogenic line (NIL) was developed using Mianyang99-323 as the recurrent parent through marker-assisted selection. Field trials showed that the NIL not only had significantly longer spikes on average than the recurrent parent but also had significantly higher grain weight, but did not differ in spikelet number and kernel number per spike. In the F2 population derived from a cross of the NIL with Mianyang99-323, QSpl.nau-2D functioned like a single gene and conditioned the SPL in a partially dominant manner, and was thus designated as HL1 (for head length). To precisely map HL1, 89 recombinants, consisting of 11 genotypes, were identified in the NIL-derived F2 population of 674 plants by using markers in the Xwmc25Xgpw4080 interval. Phenotyping these lines showed that the introduction of a 0.9-cM interval flanked by Xcfd53 and DG371 in Nanda2419 resulted in longer spikes and a higher grain weight in the NIL. The availability of markers closely linked to HL1 could facilitate its use in breeding programs.  相似文献   

4.

Key message

A novel high-tillering dwarf mutant in common wheat Wangshuibai was characterized and mapped to facilitate breeding for plant height and tiller and the future cloning of the causal gene.

Abstract

Tiller number and plant height are two major agronomic traits in cereal crops affecting plant architecture and grain yield. NAUH167, a mutant of common wheat landrace Wangshuibai induced by ethylmethyl sulfide (EMS) treatment, exhibits higher tiller number and reduced plant height. Microscope observation showed that the dwarf phenotype was attributed to the decrease in the number of cells and their length. The same as the wild type, the mutant was sensitive to exogenous gibberellins. Genetic analysis showed that the high-tillering number and dwarf phenotype were related and controlled by a partial recessive gene. Using a RIL2:6 population derived from the cross NAUH167/Sumai3, a molecular marker-based genetic map was constructed. The map consisted of 283 loci, spanning a total length of 1007.98 cM with an average markers interval of 3.56 cM. By composite interval mapping, a stable major QTL designated QHt.nau-2D controlling both traits, was mapped to the short arm of chromosome 2D flanked by markers Xcfd11 and Xgpw361. To further map the QHt.nau-2D loci, another population consisted of 180 F2 progeny from a cross 2011I-78/NAUH167 was constructed. Finally, QHt.nau-2D was located within a genetic region of 0.8 cM between markers QHT239 and QHT187 covering a predicted physical distance of 6.77 Mb. This research laid the foundation for map-based cloning of QHt.nau-2D and would facilitate the characterization of plant height and tiller number in wheat.
  相似文献   

5.
Fusarium head blight or scab resistance in wheat is a complex quantitative trait affected greatly by environments. Therefore, the quantitative trait loci (QTL) for scab resistance found in mapping projects require validation to be effectively utilized in breeding programs. In this study, by employing both forward and background selections with the help of molecular markers, near-isogenic lines (NILs) for scab resistance QTLs Qfh.nau-2B, Qfhs.nau-3B, Qfhi.nau-4B and Qfhi.nau-5A, three of which originating in scab resistance germplasm Wangshuibai, were developed with the elite line Miangyang 99-323 as the recurrent parent. During the process of backcross, selection was based solely on marker genotypes of the target regions, and on recipient genome recovery rate in BC2F1 and BC3F1. All the identified BC3F1 plants with the target QTL regions have more than 94% recipient genome composition (RGC), and out of four to five of them a plant with over 97% RGC were obtained in each backcross combination. Compared with Mianyang 99-323, the Qfhs.nau-3B NIL showed much better resistance to disease spread within spikes, the Qfhi.nau-4B and Qfhi.nau-5A NILs showed much better resistance to initial infection, and the Qfh.nau-2B NIL showed improvement in both types of resistance. These results were consistent with findings in the previous QTL mapping studies. Morphologically and agronomically these NILs were similar to Mianyang 99-323 except that Qfhi.nau-4B NIL was taller and had a longer spike, and Qfhi.nau-5A NIL had narrower leaves. These results demonstrated the feasibility of marker-assisted utilization of scab resistance QTLs.  相似文献   

6.

Key message

The QTL Fhb1 was successfully introgressed and validated in three durum wheat populations. The novel germplasm and the QTL detected will support improvement of Fusarium resistance in durum wheat.

Abstract

Durum wheat (Triticum durum Desf.) is particularly susceptible to Fusarium head blight (FHB) and breeding for resistance is hampered by limited genetic variation within this species. To date, resistant sources are mainly available in a few wild relative tetraploid wheat accessions. In this study, the effect of the well-known hexaploid wheat (Triticum aestivum L.) quantitative trait locus (QTL) Fhb1 was assessed for the first time in durum wheat. Three F7-RIL mapping populations of about 100 lines were developed from crosses between the durum wheat experimental line DBC-480, which carries an Fhb1 introgression from Sumai-3, and the European T. durum cultivars Karur, Durobonus and SZD1029K. The RILs were evaluated in field experiments for FHB resistance in three seasons using spray inoculation and genotyped with SSR as well as genotyping-by-sequencing markers. QTL associated with FHB resistance were identified on chromosome arms 2BL, 3BS, 4AL, 4BS, 5AL and 6AS at which the resistant parent DBC-480 contributed the positive alleles. The QTL on 3BS was detected in all three populations centered at the Fhb1 interval. The Rht-B1 locus governing plant height was found to have a strong effect in modulating FHB severity in all populations. The negative effect of the semi-dwarf allele Rht-B1b on FHB resistance was compensated by combining with Fhb1 and additional resistance QTL. The successful deployment of Fhb1 in T. durum was further substantiated by assessing type 2 resistance in one population. The efficient introgression of Fhb1 represents a significant step forward for enhancing FHB resistance in durum wheat.
  相似文献   

7.
Breeding for fusarium head blight (FHB) resistance of wheat is a continuous challenge for plant breeders. Resistance to FHB is a quantitative trait, governed by several to many genes and modulated by environmental conditions. The presented study was undertaken to assess the effect on improving FHB resistance and on possible unwanted side effects (‘linkage drag’) of two resistance QTL, namely Fhb1 and Qfhs.ifa-5A, from the spring wheat line CM-82036 when transferred by marker-assisted backcrossing into several European winter wheat lines. To achieve these goals, we developed and evaluated fifteen backcross-two–derived families based on nine European winter wheat varieties as recipients and the FHB resistant variety CM-82036 as resistance donor. The QTL Qfhs.ifa-5A had a relatively small impact on increasing FHB resistance. On average lines with Fhb1 plus Qfhs.ifa-5A combined were only slightly more resistant compared to lines with Fhb1 alone. The obtained results suggest that the effect of the spring wheat–derived QTL on improving FHB resistance increases in the order Qfhs.ifa-5A < Fhb1 ≤ Qfhs.ifa-5A plus Fhb1 combined. The genetic background of the recipient line had a large impact on the resistance level of the obtained lines. No systematic negative effect of the spring wheat–derived QTL on grain yield, thousand grain weight, hectoliter weight and protein content was found. The use of spring wheat–derived FHB resistance QTL for breeding high yielding cultivars with improved FHB resistance appears therefore highly promising.  相似文献   

8.

Background

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, substantially reduces wheat grain yield and quality worldwide. Proteins play important roles in defense against the fungal infection. This study characterized differentially expressed proteins between near-isogenic lines (NILs) contrasting in alleles of Fhb1, a major FHB resistance gene in wheat, to identify proteins underlining FHB resistance of Fhb1.

Methods

The two-dimensional protein profiles were compared between the Fusarium-inoculated spikes of the two NILs collected 72 h after inoculation. The protein profiles of mock- and Fusarium-inoculated Fhb1+NIL were also compared to identify pathogen-responsive proteins.

Results

Eight proteins were either induced or upregulated in inoculated Fhb1+NIL when compared with mock-inoculated Fhb1+NIL; nine proteins were either induced or upregulated in the Fusarium-inoculated Fhb1+NIL when compared with Fusarium-inoculated Fhb1NIL. Proteins that were differentially expressed in the Fhb1+NIL, not in the Fhb1NIL, after Fusarium inoculation included wheat proteins for defending fungal penetration, photosynthesis, energy metabolism, and detoxification.

Conclusions

Coordinated expression of the identified proteins resulted in FHB resistance in Fhb1+NIL. The results provide insight into the pathway of Fhb1-mediated FHB resistance.  相似文献   

9.
Breeding for resistance to Fusarium head blight (FHB) in durum wheat continues to be hindered by the lack of effective resistance sources. Only limited information is available on resistance QTL for FHB in tetraploid wheat. In this study, resistance to FHB of a Triticum dicoccum line in the background of three Austrian T. durum cultivars was genetically characterized. Three populations of BC1F4-derived RILs were developed from crosses between the resistant donor line T. dicoccum-161 and the Austrian T. durum recipient varieties DS-131621, Floradur and Helidur. About 130 BC1F4-derived lines per population were evaluated for FHB response using artificial spray inoculation in four field experiments during two seasons. Lines were genetically fingerprinted using SSR and AFLP markers. Genomic regions on chromosomes 3B, 4B, 6A, 6B and 7B were significantly associated with FHB severity. FHB resistance QTL on 6B and 7B were identified in two populations and a resistance QTL on 4B appeared in three populations. The alleles that enhanced FHB resistance were derived from the T. dicoccum parent, except for the QTL on chromosome 3B. All QTL except the QTL on 6A mapped to genomic regions where QTL for FHB have previously been reported in hexaploid wheat. QTL on 3B and 6B coincided with Fhb1 and Fhb2, respectively. This implies that tetraploid and hexaploid wheat share common genomic regions associated with FHB resistance. QTL for FHB resistance on 4B co-located with a major QTL for plant height and mapped at the position of the Rht-B1 gene, while QTL on 7B overlapped with QTL for flowering time.  相似文献   

10.
Understanding the genetics underlying yield formation of wheat is important for increasing wheat yield potential in breeding programs. Nanda2419 was a widely used cultivar for wheat production and breeding in China. In this study, we evaluated yield components and a few yield-related traits of a recombinant inbred line (RIL) population created by crossing Nanda2419 with the indigenous cultivar Wangshuibai in three to four trials at different geographical locations. Negative and positive correlations were found among some of these evaluated traits. Five traits had over 50 % trial-wide broad sense heritability. Using a framework marker map of the genome constructed with this population, quantitative trait loci (QTL) were identified for all traits, and epistatic loci were identified for seven of them. Our results confirmed some of the previously reported QTLs in wheat and identified several new ones, including QSn.nau-6D for effective tillers, QGn.nau-4B.2 for kernel number, QGw.nau-4D for kernel weight, QPh.nau-4B.2 and QPh.nau-4A for plant height, and QFlw.nau-5A.1 for flag leaf width. In the investigated population, Nanda2419 contributed all QTLs associated with higher kernel weight, higher leaf chlorophyll content, and a major QTL associated with wider flag leaf. Seven chromosome regions were related to more than one trait. Four QTL clusters contributed positively to breeding goal-based trait improvement through the Nanda2419 alleles and were detected in trials set in different ecological regions. The findings of this study are relevant to the molecular improvement of wheat yield and to the goal of screening cultivars for better breeding parents.  相似文献   

11.
A previous study provided an in-depth understanding of molecular population genetics of European and Asian wheat gene pools using a sequenced 3.1-Mb contig (ctg954) on chromosome 3BS. This region is believed to carry the Fhb1 gene for response to Fusarium head blight. In this study, 266 wheat accessions were evaluated in three environments for Type II FHB response based on the single floret inoculation method. Hierarchical clustering (UPGMA) based on a Manhattan dissimilarity matrix divided the accessions into eight groups according to five FHB-related traits which have a high correlation between them; Group VIII comprised six accessions with FHB response levels similar to variety Sumai 3. Based on the compressed mixed linear model (MLM), association analysis between five FHB-related traits and 42 molecular markers along the 3.1-Mb region revealed 12 significant association signals at a threshold of P<0.05. The highest proportion of phenotypic variation (6.2%) in number of diseased spikelets (NDS) occurred at locus cfb6059, and the physical distance was about 2.9 Kb between umn10 and this marker. Haplotype block (HapB) analysis using a sliding window LD of 5 markers, detected six HapBs in the 3.1-Mb region at r2>0.1 and P<0.001 between random closely linked markers. F-tests among Haps with frequencies >0.05 within each HapB at r2>0.1 and P<0.001 showed significant differences between the Hap carried by FHB resistant resources, such as Sumai 3 and Wangshuibai, and susceptible genotypes in HapB3 and HapB6. These results suggest that Fhb1 is located within HapB6, with the possibility that another gene is located at or near HapB3. SSR markers and Haps detected in this study will be helpful in further understanding the genetic basis of FHB resistance, and provide useful information for marker-assisted selection of Fhb1 in wheat breeding.  相似文献   

12.

Key message

The major QTL for FHB resistance from hexaploid wheat line PI 277012 was successfully introgressed into durum wheat and minor FHB resistance QTL were detected in local durum wheat cultivars. A combination of these QTL will enhance FHB resistance of durum wheat.

Abstract

Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of durum wheat. To combat the disease, great efforts have been devoted to introgress FHB resistance from its related tetraploid and hexaploid wheat species into adapted durum cultivars. However, most of the quantitative trait loci (QTL) for FHB resistance existing in the introgression lines are not well characterized or validated. In this study, we aimed to identify and map FHB resistance QTL in a population consisting of 205 recombinant inbred lines from the cross between Joppa (a durum wheat cultivar) and 10Ae564 (a durum wheat introgression line with FHB resistance derived from the hexaploid wheat line PI 277012). One QTL (Qfhb.ndwp-2A) from Joppa and two QTL (Qfhb.ndwp-5A and Qfhb.ndwp-7A) from 10Ae564 were identified through phenotyping of the mapping population for FHB severity and DON content in greenhouse and field and genotyping with 90K wheat Infinium iSelect SNP arrays. Qfhb.ndwp-2A explained 14, 15, and 9% of the phenotypic variation, respectively, for FHB severity in two greenhouse experiments and for mean DON content across the two greenhouse environments. Qfhb.ndwp-5A explained 19, 10, and 7% of phenotypic variation, respectively, for FHB severity in one greenhouse experiment, mean FHB severity across two field experiments, and mean DON content across the two greenhouse experiments. Qfhb.ndwp-7A was only detected for FHB severity in the two greenhouse experiments, explaining 9 and 11% of the phenotypic variation, respectively. This study confirms the existence of minor QTL in North Dakota durum cultivars and the successful transfer of the major QTL from PI 277012 into durum wheat.
  相似文献   

13.

Key message

Functional markers were developed based on the critical sequence deletion of TaHRC in the Fhb1 region and validated to be diagnostic in a worldwide wheat collection.

Abstract

Wheat Fusarium head blight (FHB) is a devastating disease in wheat and barley worldwide. Growing FHB-resistant cultivars is an effective strategy to minimize FHB damage in wheat production. Fhb1 is a quantitative trait locus for FHB resistance with the largest effect on disease severity identified to date. With this study, we developed diagnostic DNA markers for Fhb1 by comparing the genomic sequences in Fhb1 region between near-isogenic lines contrasting in Fhb1 alleles and phenotypic effects of the markers. Two markers were developed based on a deletion mutation in an gene encoding a putative histidine-rich calcium-binding protein (TaHRC) and validated in different types of populations. Haplotype or sequence analyses of the two markers in the three sets of diversity panels demonstrated that they are diagnostic for Fhb1, and superior to all previously used markers in selection accuracy. They also have the advantages of low cost, easy assay, and are suitable for breeding programs with either high- or low-throughput marker laboratories.
  相似文献   

14.
Resistance of wheat to diseases such as fusarium head blight (FHB) and leaf rust is more effective and durable when resistance genes are stacked. This study investigated whether pairs of disease resistance genes will become fixed at higher frequencies in subsequent generations when placed in the hemizygous condition using telocentric chromosomes. Three pairs of telocentric chromosomes were tested for their male and female transmission to predict the fixation rate of hemizygous chromosome arms using reciprocal testcrosses. Hemizygous arm transmission was about 50% through ovules and about 75% through pollen because of pollen certation. To test if a corresponding increase in disease resistance could be observed in populations utilizing telocentric chromosomes, three resistance gene pairs were analyzed separately in three populations. These pairs were Lr16/Lr34 and Lr22a/Lr52 for resistance to leaf rust and Fhb1/Qfhs.ifa-5A for FHB resistance. Each of these gene combinations was involved in a crossing and selection scheme that identified F1 plants that were either dihybrid or double monotelodisomic (DMTD). For each resistance gene combination F3 families were produced for phenotypic testing. The Lr16/Lr34 and Lr22a/Lr52 F3 populations both showed a sharp increase in leaf rust resistance among families derived from DMTD F1 plants compared to those from dihybrid F1 plants. A smaller increased resistance was found in the FHB population. The increased frequency of resistance was attributed to pollen certation and zygotic selection against the ditelosomic and double ditelosomic conditions. We conclude that telocentric chromosomes are a viable breeding tool to fix gene stacks.  相似文献   

15.
Fusarium head blight (FHB) is a destructive wheat disease of global importance. Resistance breeding depends heavily on the Fhb1 gene. The CIMMYT line Shanghai-3/Catbird (SHA3/CBRD) is a promising source without this gene. A recombinant inbred line (RIL) population from the cross of SHA3/CBRD with the German spring wheat cv. Naxos was evaluated for FHB resistance and related traits in field trials using spray and spawn inoculation in Norway and point inoculation in China. After spray and spawn inoculation, FHB severities were negatively correlated with both anther extrusion (AE) and plant height (PH). The QTL analysis showed that the Rht-B1b dwarfing allele co-localized with a QTL for low AE and increased susceptibility after spawn and spray inoculation. In general, SHA3/CBRD contributed most of the favorable alleles for resistance to severity after spray and spawn inoculation, while Naxos contributed more favorable alleles for reduction in FDK and DON content and resistance to severity after point inoculation. SHA3/CBRD contributed a major resistance QTL close to the centromere on 2DLc affecting FHB severity and DON after all inoculation methods. This QTL was also associated with AE and PH, with high AE and tall alleles contributed by SHA3/CBRD. Several QTL for AE and PH were detected, and low AE or reduced PH was always associated with increased susceptibility after spawn and spray inoculation. Most of the other minor FHB resistance QTL from SHA3/CBRD were associated with AE or PH, while the QTL from Naxos were mostly not. After point inoculation, no other QTL for FHB traits was associated with AE or PH, except the 2DLc QTL which was common across all inoculation methods. Marker-assisted selection based on the 2DLc QTL from SHA3/CBRD combined with phenotypic selection for AE is recommended for resistance breeding based on this valuable source of resistance.  相似文献   

16.
Fusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is key to facilitate the introgression of different FHB resistance genes into adapted wheat. The objective of this project was to study the FHB resistance QTL on chromosome 6B, quantify the phenotypic variation, and qualitatively map the resistance gene as a Mendelian factor. The FHB resistant parent BW278 (AC Domain*2/Sumai 3) was used as the source of the resistance allele. A large recombinant inbred line (RIL) mapping population was developed from the cross BW278/AC Foremost. The population segregated for three known FHB resistance QTL located on chromosomes 3BSc, 5A, and 6B. Molecular markers on chromosome 6B (WMC104, WMC397, GWM219), 5A (GWM154, GWM304, WMC415), and 3BS (WMC78, GWM566, WMC527) were amplified on approximately 1,440 F2:7 RILs. The marker information was used to select 89 RILs that were fixed homozygous susceptible for the 3BSc and 5A FHB QTLs and were recombinant in the 6B interval. Disease response was evaluated on 89 RILs and parental checks in the greenhouse and field nurseries. Dual floret injection (DFI) was used in greenhouse trials to evaluate disease severity (DS). Macroconidial spray inoculations were used in field nurseries conducted at two locations in southern Manitoba (Carman and Glenlea) over two years 2003 and 2004, to evaluate disease incidence, disease severity, visual rating index, and Fusarium-damaged kernels. The phenotypic distribution for all five-disease infection measurements was bimodal, with lines resembling either the resistant or susceptible checks and parents. All of the four field traits for FHB resistance mapped qualitatively to a coincident position on chromosome 6BS, flanked by GWM133 and GWM644, and is named Fhb2. The greenhouse-DS trait mapped 2 cM distal to Fhb2. Qualitative mapping of Fhb2 in wheat provides tightly linked markers that can reduce linkage drag associated with marker assisted selection of Fhb2 and aid the pyramiding of different resistance loci for wheat improvement.  相似文献   

17.
A Chinese Spring-Sumai 3 chromosome 7A disomic substitution line (CS-Sumai 3-7ADSL) was reported to have a high level of Fusarium head blight (FHB) resistance for symptom spread within a spike (Type II) and low deoxynivalenol accumulation in infected kernels (Type III), but a quantitative trait locus (QTL) on chromosome 7A has never been identified from this source. To characterize QTL on chromosome 7A, we developed 191 7A chromosome recombinant inbred lines (7ACRIL) from a cross between Chinese Spring and CS-Sumai 3-7ADSL and evaluated both types of resistance in three greenhouse experiments. Two major QTL with Sumai 3 origin, conditioning both Type II and III resistance, were mapped in the short arm of chromosomes 3B (3BS) and near the centromere of chromosome 7A (7AC). The 3BS QTL corresponds to previously reported Fhb1 from Sumai 3, whereas 7AC QTL, designated as Fhb7AC, is a novel QTL identified from CS-Sumai 3-7ADSL in this study. Fhb7AC explains 22% phenotypic variation for Type II and 24% for Type III resistance. Marker Xwmc17 is the closest marker to Fhb7AC for both types of resistance. Fhb1 and Fhb7AC were additive, and together explained 56% variation for Type II and 41% for Type III resistance and resulted in 66% reduction in FHB severity and 84% reduction in deoxynivalenol (DON) content. Haplotype analysis of Sumai 3 parents revealed that Fhb7AC originated from Funo, an Italian cultivar. Fhb7AC has the potential to be used in improving wheat cultivars for both types of resistance.  相似文献   

18.

Background

Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established.

Methods

Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol.

Results

3 μM 4-O-methylhonokiol is shown here to potentiate responses of the α1β2γ2 GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect.

Conclusion

The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol.

General significance

The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine.  相似文献   

19.
Fusarium head blight (FHB) is a destructive disease that reduces wheat grain yield and quality. To date, the quantitative trait locus on 3BS (Fhb1) from Sumai 3 has shown the largest effect on FHB resistance. Single nucleotide polymorphism (SNP) is the most common form of genetic variation and is suitable for high-throughput marker-assisted selection (MAS). We analyzed SNPs derived from 23 wheat expressed sequence tags (ESTs) that previously mapped near Fhb1 on chromosome 3BS. Using 71 Ning 7840/Clark BC7F7 recombinant inbred lines and the single-base extension method, we mapped seven SNP markers between Xgwm533 and Xgwm493, flanking markers for Fhb1. Five of the SNPs explained 45–54% of the phenotypic variation for FHB resistance. Haplotype analysis of 63 wheat accessions from eight countries based on SNPs in EST sequences, simple sequence repeats, and sequence tagged sites in the Fhb1 region identified four major groups: (1) US-Clark, (2) Asian, (3) US-Ernie, and (4) Chinese Spring. The Asian group consisted of Chinese and Japanese accessions that carry Fhb1 and could be differentiated from other groups by marker Xsnp3BS-11. All Sumai 3-related accessions formed a subgroup within the Asian group and could be sorted out by Xsnp3BS-8. The SNP markers identified in this study should be useful for MAS of Fhb1 and fine mapping to facilitate cloning of the Fhb1 resistance gene.  相似文献   

20.
A major quantitative trait locus (QTL), Qfhs.ndsu-3BS, for resistance to Fusarium head blight (FHB) in wheat has been identified and verified by several research groups. The objectives of this study were to construct a fine genetic map of this QTL region and to examine microcolinearity in the QTL region among wheat, rice, and barley. Two simple sequence repeat (SSR) markers (Xgwm533 and Xgwm493) flanking this QTL were used to screen for recombinants in a population of 3,156 plants derived from a single F7 plant heterozygous for the Qfhs.ndsu-3BS region. A total of 382 recombinants were identified, and they were genotyped with two more SSR markers and eight sequence-tagged site (STS) markers. A fine genetic map of the Qfhs.ndsu-3BS region was constructed and spanned 6.3 cM. Based on replicated evaluations of homozygous recombinant lines for Type II FHB resistance, Qfhs.ndsu-3BS, redesignated as Fhb1, was placed into a 1.2-cM marker interval flanked by STS3B-189 and STS3B-206. Primers of STS markers were designed from wheat expressed sequence tags homologous to each of six barley genes expected to be located near this QTL region. A comparison of the wheat fine genetic map and physical maps of rice and barley revealed inversions and insertions/deletions. This suggests a complex microcolinearity among wheat, rice, and barley in this QTL region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号