首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We commonly think of the immune system as having a memory. However, memory is always accompanied by a complementary process of oblivion. Is there immune oblivion? In this theoretical paper, I address this question and suggest that oblivion is an integral aspect of memorization. In this context, I suggest that immune memory is an orchestration of reversible and irreversible processes of biological computation through feedback loops. Drawing on the linguistic metaphor, I inquire into the implications of this idea for a better understanding of immune memory and immune deficiency among the elderly.  相似文献   

2.
The importance of high avidity CTL for the effective clearance of viral infections is now well established. Thus one would predict that the preferential activation and expansion of high avidity CTL following viral challenge and retention of these cells in the memory pool would be optimal for the immune response. However, whether this actually occurs during the immune response to viral infection is unknown. In this report I have analyzed the avidity of the CTL specific for the OVA(257-264) peptide during acute infection with a recombinant vaccinia expressing ovalbumin and in the memory population. I have found that the relative ratio of high and low avidity CTL varies over the course of an immune response. Thus CTL avidity is an important factor in the expansion and survival of CTL in vivo.  相似文献   

3.
Immunological memory responses to intracellular protozoa and extracellular helminths govern host resistance and susceptibility to reinfection. Humans and livestock living in parasitic disease endemic regions face continuous exposure from a very early age that often leads to asymptomatic chronic infection over their entire lifespan. Fundamental immunological studies suggest that the generation of T-cell memory is driven by tightly coordinated innate and adaptive cellular immune responses rapidly triggered following initial host infection. A key distinguishing feature of immune memory maintenance between the majority of parasitic diseases and most bacterial or viral diseases is long-term antigen persistence. Consequently, functional parasite immune memory is in a continuous, dynamic flux between activation and deactivation producing functional parasite killing or functional memory cell death. In this sense, T-cell immune memory can be regarded as "memory illusion." Furthermore, due to the finite capacity of memory lymphocytes to proliferate, continuous parasite antigen stimulation may exceed a threshold level at some point in the chronically infected host. This may result in suboptimal effector immune memory leading to host susceptibility to reinfection, or immune dysregulation yielding disease reactivation or immune pathology. The goal of this review is to highlight, through numerous examples, what is currently known about T-cell immune memory to parasites and to provide compelling hypotheses on the survival and maintenance of parasite "memory illusion." These novel concepts are discussed in the context of rationale parasite vaccine design strategies.  相似文献   

4.
In HIV infection there is a paucity of literature about the degree of immune dysfunction to potentially correlate and/or predict disease progression relative to CD4(+) T cells count or viral load. We assessed functional characteristics of memory T cells subsets as potential prognostic markers for changing viral loads and/or disease progression using the SHIV-infected rhesus macaque model. Relative to long-term non-progressors with low/undetectable viral loads, those with chronic plasma viremia, but clinically healthy, exhibited significantly lower numbers and functional impairment of CD4(+) T cells, but not CD8(+) T cells, in terms of IL-2 production by central memory subset in response to PMA and ionomycine (PMA+I) stimulation. Highly viremic animals showed impaired cytokine-production by all T cells subsets. These results suggest that functional impairment of CD4(+) T cells in general, and of central memory subset in particular, may be a potential indicator/predictor of chronic infection with immune dysfunction, which could be assayed relatively easily using non-specific PMA+I stimulation.  相似文献   

5.
Under optimal Ag stimulation, CTL become functional effector and memory T cells. Professional APCs (pAPC) are considered essential for the activation of CTL, due to their unique capacity to provide costimulation and present exogenous Ags through MHC class I molecules. In this study, we report a novel means by which Th lymphocytes acquire and present MHC class I determinants to naive CTL. Although previous studies have looked at T cell Ag presentation to activated T cells, this study presents the first example of Ag presentation by Th cells to naive CTL. We report that activated Th cells can function as effective pAPC for CTL. Our results show that: 1) In addition to acquisition of cell surface molecules, including MHC class I/peptide complexes, from pAPC, Th cells can acquire and present MHC class I-binding peptides through TCR-MHC class II interactions with pAPC; 2) the acquired Ag can be functionally presented to CTL; and 3) Ag presentation by Th cells induces naive CTL to proliferate and preferentially differentiate into cells that phenotypically and functionally resemble central memory T cells. These findings suggest a novel role of Th cells as pAPC for the development of memory immune responses.  相似文献   

6.
The immune system has evolved by continuously increasing its complexity to provide the host with an advantage over infectious agents. The development of immunological memory engenders long-lasting protection and lengthens the lifespan of the host. The generation of subsets of memory T cells with distinct homing and functional properties increases our defensive capabilities. However, the developmental relationship of memory T-cell subsets is a matter of debate. In this Opinion article, in light of recent developments, we suggest that it is probable that two distinct lineages comprise the memory CD8+ T-cell population generated in response to infection.  相似文献   

7.
Activated T lymphocytes are generated during an immune response. The induction of T lymphocyte proliferation is one way in which cell numbers can be controlled. However, once generated, the increased numbers of cells must be removed in order to re-establish cellular homoeostasis within the immune system. In this paper we describe how the numbers of activated T cells can be regulated by two distinct mechanisms, namely apoptosis and replicative senescence. In addition, we suggest that the regulation of cell clearance, as opposed to cell persistence, after an immune response is intimately involved in the generation of immune memory.  相似文献   

8.
4-1BB (CD137) is a member of the TNFR superfamily (TNFRSF9). T cell expression of 4-1BB is restricted to activated cells, and cross-linking has been shown to deliver a costimulatory signal. Here we have shown that treatment of tumor-bearing mice with agonistic 4-1BB-specific Abs can lead to T cell-mediated tumor rejection. In vivo mAb depletion experiments demonstrated that this rejection requires CD8(+) cells but not CD4(+) or NK cells. Both IFN-gamma- and CD40-mediated signals were also required, because no benefit was observed on treatment with 4-1BB mAb in mice in which the genes for these molecules had been knocked out. Interestingly, 4-1BB-mediated stimulation of immune responses in CD40L(-/-) mice is effective (although at a reduced level), and may suggest the existence of an alternative ligand for CD40. Additional experiments in IL-15(-/-) mice indicate that IL-15 is not required for either the generation of the primary tumor-specific immune response or the maintenance of the memory immune response. In contrast, the presence of CD4 cells during the primary immune response appears to play a significant role in the maintenance of effective antitumor memory. Finally, in mice in which the number of dendritic cells had been expanded by Fms-like tyrosine kinase3 ligand treatment, the antitumor effects of 4-1BB ligation were enhanced.  相似文献   

9.
Generally, immune system architecture varies with different environments, which presumably reflect different pathogen pressures. Specifically, populations from relatively disease-free, oceanic islands are expected to exhibit reorganized immune systems, which might be characterized by attenuated responses, given the costs of immune function. Some insular animals exhibit an 'island syndrome,' including increased susceptibility to disease, and some insular populations have declined when they failed to resist infection by introduced pathogens. I measured eight indices of immune function (haemolysis, haemagglutination, concentration of haptoglobin and concentration of five leukocyte types) in 15 phylogenetically matched pairs of bird populations from North America and from the islands of Hawaii, Bermuda and the Galápagos. Immune responses were not attenuated in insular birds, and several indices, including the concentration of plasma haptoglobin, were elevated. Thus, I find no support for the specific hypothesis that depauperate parasite communities and the costs of immune defences select for reduced immune function. Instead, I suggest that life on islands leads to an apparent reorganization of immune function, which is defined by increases in defences that are innate and inducible. These increases might signal that systems of acquired humoral immunity and immunological memory are less important or dysfunctional in island populations.  相似文献   

10.
Cytotoxic T-lymphocyte (CTL) memory to viruses has traditionally been studied in an isolated setting. However, recent experiments have indicated that the presence of antigenically heterologous challenges can result in the attrition of CTL memory. Here we use mathematical models in order to explore the consequence of these dynamics for the ability of the immune system in controlling multiple infections. Mathematical models suggest that antigen-independent persistence of CTL memory is required in order to resolve and clear an infection. This ensures strong immunological pressure at low loads when the virus population declines towards extinction. If the number of antigenic stimuli exposed to the immune system crosses a threshold, we find that immunological pressure is significantly reduced at low loads and this can prevent virus clearance and reduces overall control of viral replication. Hence, exposure to many heterologous challenges reduces the ability of CTL memory to contribute to virus control. The higher the number of infections present in the host, the higher the overall virus load and the higher the total number of memory CTLs. Beyond a given threshold, addition of new viruses to the system results in accelerated loss of virus control which eventually leads to a reduction in the overall memory CTL population. These dynamics might contribute to the progressively weaker immunity observed as a result of ageing. In this context, antigenically variable pathogens expose the immune system to many heterologous challenges within a short period of time and this could result in accelerated ageing of the immune system. These results have important implications for vaccination and treatment strategies directed against viral infections.  相似文献   

11.
Pan K 《PloS one》2011,6(8):e23910
Original antigenic sin is the phenomenon in which prior exposure to an antigen leads to a subsequent suboptimal immune response to a related antigen. Immune memory normally allows for an improved and rapid response to antigens previously seen and is the mechanism by which vaccination works. I here develop a dynamical system model of the mechanism of original antigenic sin in influenza, clarifying and explaining the detailed spin-glass treatment of original antigenic sin. The dynamical system describes the viral load, the quantities of healthy and infected epithelial cells, the concentrations of naïve and memory antibodies, and the affinities of naïve and memory antibodies. I give explicit correspondences between the microscopic variables of the spin-glass model and those of the present dynamical system model. The dynamical system model reproduces the phenomenon of original antigenic sin and describes how a competition between different types of B cells compromises the overall effect of immune response. I illustrate the competition between the naïve and the memory antibodies as a function of the antigenic distance between the initial and subsequent antigens. The suboptimal immune response caused by original antigenic sin is observed when the host is exposed to an antigen which has intermediate antigenic distance to a second antigen previously recognized by the host''s immune system.  相似文献   

12.
Both human CMV and murine CMV (MCMV) elicit large CD8 T cell responses, despite the potent effects of viral genes that interfere with the MHC class I (MHC I) pathway of Ag presentation. To investigate the impact of immune evasion on CD8 T cell priming, we infected mice with wild-type (wt) MCMV or a mutant lacking its MHC I immune evasion genes, Deltam4+m6+m152 MCMV. In acute infection, the two viruses elicited a CD8 T cell response to 26 peptide epitopes that was virtually identical in total size, kinetics, and immunodominance hierarchy. This occurred despite results demonstrating that primary DCs are susceptible to the effects of MCMV's MHC I immune evasion genes. Eight months later, responses to both wt and mutant MCMV displayed the same CD8 T cell "memory inflation" and altered immunodominance that characterize the transition to chronic MCMV infection in C57BL/6 mice. Taken together, these findings suggest either that cross-priming dominates over direct CD8 T cell priming in both acute and chronic MCMV infection, or else that the MHC I immune evasion genes of MCMV are unable to alter direct CD8 T cell priming in vivo. At 2 years postinfection, differences in CD8 T cell immunodominance emerged between individual mice, but on average there were only slight differences between wt and mutant virus infections. Overall, the data indicate that the presence or absence of MHC I immune evasion genes has remarkably little impact on the size or specificity of the MCMV-specific CD8 T cell response over an entire lifetime of infection.  相似文献   

13.
Speed MP 《Animal behaviour》2000,60(3):269-278
This review identifies four receiver psychology perspectives that are likely to be important in the design and evolution of warning signals. Three of these perspectives (phobia, learning and prey recognition) have been studied in detail, and I include a brief review of recent work. The fourth, a memory perspective, has received little attention and is developed here. A memory perspective asks, 'how might warning signals function to reduce forgetting of avoidances between encounters?'. To answer this question I review data from psychology literature that describe important features of animal long-term memory. These data suggest that components of warning signals may function to reduce forgetting (and therefore increase memorability) by (1) preventing forgetting of learnt prey discriminations; (2) jogging the memories of forgetful predators; and (3) biasing forgetting in favour of prey avoidance when the warning signal of a defended aposematic species is copied by an edible Batesian mimic. A combination of a learning and a memory perspective suggests that the features of aposematic prey that accelerate avoidance learning may also be the features that decelerate forgetting processes. If correct, this would have important implications for the comprehension of signal design. Finally, I suggest that the cryptic appearance of an edible prey may decelerate predator learning and accelerate predator forgetting, to the benefit of the prey. In terms of learning and memory, crypsis may be an antisignal. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

14.
Several observations suggest the presence of an interaction between immune and the endocrine systems. Leptin is an adipocyte-derived hormone, that belongs structurally to the long-chain helical cytokine family such as interleukin-2 (IL-2), interleukin-12 (IL-12), growth hormone (GH), and signals by a class I cytokine receptor (Ob-R). This cytokine represents an important link between fat mass on the one side and the regulation of energy balance and reproductive function on the other. Indeed, obese leptin-deficient ob/ob mice display low body temperature, hyperphagia, infertility and evidence of immune defects with lymphoid organ atrophy, mainly affecting thymic size and cellularity. Acute starvation, associated with decreased leptin levels, causes thymic atrophy and reduces the delayed type hypersensitivity (DTH) reaction to antigens in normal mice, resembling that observed in ob/ob mice. Leptin replacement reverses the immunosuppressive effects of acute starvation in mice. Leptin differentially affects the in vitro proliferation and cytokine production by naive and memory T cells, increasing IL-2 secretion and proliferation of naive T cells, while inducing IFN-g production in memory T cells with little effect on their proliferation. Presence of leptin seems to be necessary for the induction and maintenance of the pro-inflammatory Th1 immune response. These findings support the hypothesis that leptin plays a key role in linking nutritional state to the T cell function. According to this view, leptin might represent an important target for immune intervention in a variety of pathophysiological conditions.  相似文献   

15.
In tick salivary glands, several genes are induced during the feeding process, leading to the expression of new proteins. These proteins are typically secreted in tick saliva and are potentially involved in the modulation of the host immune and hemostatic responses. In a previous study, the construction and the analysis of a subtractive library led to the identification of Ixodes ricinus immunosuppressor (Iris), a novel protein, differentially expressed in I. ricinus salivary glands during the blood meal. In the present study, the data strongly suggest that this protein is secreted by tick salivary glands into the saliva. In addition, Iris is also found to modulate T lymphocyte and macrophage responsiveness by inducing a Th2 type response and by inhibiting the production of pro-inflammatory cytokines. In conclusion, these results suggest that Iris is an immunosuppressor, which might play an important role in the modulation of host immune response.  相似文献   

16.
17.
The preservation of the replicative life span of memory CD8(+) T cells is vital for long-term immune protection. Although IL-15 plays a key role in the homeostasis of memory CD8(+) T cells, it is unknown whether IL-15 regulates the replicative life span of memory CD8(+) T cells. In this study, we report an analysis of telomerase expression and telomere length in human memory phenotype CD8(+) T cells maintained by IL-15 in vitro. We demonstrate that IL-15 is capable of activating telomerase in memory CD8(+) T cells via Jak3 and PI3K signaling pathways. Furthermore, IL-15 induces a sustained level of telomerase activity over long periods of time, and in turn minimizes telomere loss in memory CD8(+) T cells after substantial cell divisions. These findings suggest that IL-15 activates stable telomerase expression and compensates telomere loss in memory phenotype CD8(+) T cells, and that telomerase may play an important role in memory CD8(+) T cell homeostasis.  相似文献   

18.
ASFV is a large DNA virus that is highly pathogenic in domestic pigs. How this virus is sensed by the innate immune system as well as why it is so virulent remains enigmatic. In this study, we show that the ASFV genome contains AT-rich regions that are recognized by the DNA-directed RNA polymerase III (Pol-III), leading to viral RNA sensor RIG-I-mediated innate immune responses. We further show that ASFV protein I267L inhibits RNA Pol-III-RIG-I-mediated innate antiviral responses. I267L interacts with the E3 ubiquitin ligase Riplet, disrupts Riplet-RIG-I interaction and impairs Riplet-mediated K63-polyubiquitination and activation of RIG-I. I267L-deficient ASFV induces higher levels of interferon-β, and displays compromised replication both in primary macrophages and pigs compared with wild-type ASFV. Furthermore, I267L-deficiency attenuates the virulence and pathogenesis of ASFV in pigs. These findings suggest that ASFV I267L is an important virulence factor by impairing innate immune responses mediated by the RNA Pol-III-RIG-I axis.  相似文献   

19.
The secondary immune response is one of the most important features of immune systems. During the secondary immune response, the immune system can eliminate the antigen, which has been encountered by the individual during the primary invasion, more rapidly and efficiently. Both T and B memory cells contribute to the secondary response. In this paper, we only concentrate on the functions of memory B cells. We explore a model describing the memory contributed by the specific long-lived clone which is maintained by continued stimulation with a small amount of antigens sequestered on the surfaces of the follicular dendritic cells (FDC). The behavior of the secondary response provided by the model can be compared with experimental observations. The model shows that memory B cells indeed play an important role in the secondary response. It is found that a single memory cell in a long-lived clone may not be long-lived. In the present note, the influences of relevant parameters on the secondary response are also explored.  相似文献   

20.
Type I IFN (IFN-I or IFN-alphabeta) plays an important role in the innate immune response against viral infection. Here we report that a potent inducer of IFN-alphabeta, polyinosinic-polycytidylic acid [poly(I:C)], led to the depletion of T cells in young, but not aged mice, and that this depletion was limited to central memory, but not effector memory, T cells. Although early activation of T cells in vivo by poly(I:C), as demonstrated by CD69, was not impaired with aging, the expression of active caspase-3 was higher in young compared with aged mice. This depletion of T cells and induction of active caspase-3 in young mice and of CD69 in both young and aged mice by poly(I:C) were blocked by anti-IFN-alphabeta Ab. Although poly(I:C) stimulated lower circulating levels of IFN-alphabeta in aged mice, administration of IFN-alphabeta after poly(I:C) did not induce depletion of T cells in aged mice. These results indicate that IFN-alphabeta plays a critical role in the depletion of T cells of young mice, and further suggest that the lower level of functional IFN-alphabeta and decreased induction of active caspase-3 in T cells of aged mice after poly(I:C) may be responsible for the increased resistance of T cells of aged mice to depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号