首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Neμ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc ‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.  相似文献   

2.
    
Accounting for historical demographic features, such as the strength and timing of gene flow and divergence times between closely related lineages, is vital for many inferences in evolutionary biology. Approximate Bayesian computation (ABC) is one method commonly used to estimate demographic parameters. However, the DNA sequences used as input for this method, often microsatellites or RADseq loci, usually represent a small fraction of the genome. Whole genome sequencing (WGS) data, on the other hand, have been used less often with ABC, and questions remain about the potential benefit of, and how to best implement, this type of data; we used pseudo‐observed data sets to explore such questions. Specifically, we addressed the potential improvements in parameter estimation accuracy that could be associated with WGS data in multiple contexts; namely, we quantified the effects of (a) more data, (b) haplotype‐based summary statistics, and (c) locus length. Compared with a hypothetical RADseq data set with 2.5 Mbp of data, using a 1 Gbp data set consisting of 100 Kbp sequences led to substantial gains in the accuracy of parameter estimates, which was mostly due to haplotype statistics and increased data. We also quantified the effects of including (a) locus‐specific recombination rates, and (b) background selection information in ABC analyses. Importantly, assuming uniform recombination or ignoring background selection had a negative effect on accuracy in many cases. Software and results from this method validation study should be useful for future demographic history analyses.  相似文献   

3.
    
Both paleoclimatic change and anthropogenic habitat destruction can have adverse effects on species demography and, in turn, could lead a species towards being endangered and rare. Understanding the relative importance of these natural and anthropogenic factors driving species endangerment and rarity is thus crucial for effective conservation planning but remains elusive. Here, we examine the phylogeography and demographic history of an endangered conifer species in China, Torreya jackii Chun, and assess the relative importance of natural and anthropogenic factors that might have put the species in its endangered state. We collected tissue samples from all the 13 extant wild populations, and analyzed the genetic variation using eight nuclear microsatellites and four chloroplast and one mitochondrial DNA fragments. We found low genetic and nucleotide diversities, which could explain the absence of spatial and phylogeographic structure. Using a hierarchical approximate Bayesian computation technique, we identified the demographic scenario that best fits the genetic data and found that effective population size was low at least 200 000 years ago but expanded after the last glacial maximum (LGM). The paleoclimatic niche model revealed a profound effect of precipitation on the distribution of T. jackii and predicted that the current distribution areas were suitable during the LGM. Despite the post-LGM expansion, the best-supported scenario showed a dramatic population collapse during the past 300 years, when anthropogenic disturbances also increased dramatically. Overall, our study sheds light on how historical factors and human impacts jointly threaten the persistence of a species, and these aspects should be duly considered in species conservation planning.  相似文献   

4.
    
Next-generation sequencing of pooled samples (Pool-seq) is a popular method to assess genome-wide diversity patterns in natural and experimental populations. However, Pool-seq is associated with specific sources of noise, such as unequal individual contributions. Consequently, using Pool-seq for the reconstruction of evolutionary history has remained underexplored. Here we describe a novel Approximate Bayesian Computation (ABC) method to infer demographic history, explicitly modelling Pool-seq sources of error. By jointly modelling Pool-seq data, demographic history and the effects of selection due to barrier loci, we obtain estimates of demographic history parameters accounting for technical errors associated with Pool-seq. Our ABC approach is computationally efficient as it relies on simulating subsets of loci (rather than the whole-genome) and on using relative summary statistics and relative model parameters. Our simulation study results indicate Pool-seq data allows distinction between general scenarios of ecotype formation (single versus parallel origin) and to infer relevant demographic parameters (e.g. effective sizes and split times). We exemplify the application of our method to Pool-seq data from the rocky-shore gastropod Littorina saxatilis, sampled on a narrow geographical scale at two Swedish locations where two ecotypes (Wave and Crab) are found. Our model choice and parameter estimates show that ecotypes formed before colonization of the two locations (i.e. single origin) and are maintained despite gene flow. These results indicate that demographic modelling and inference can be successful based on pool-sequencing using ABC, contributing to the development of suitable null models that allow for a better understanding of the genetic basis of divergent adaptation.  相似文献   

5.
    
The Kingman coalescent and its developments are often considered among the most important advances in population genetics of the last decades. Demographic inference based on coalescent theory has been used to reconstruct the population dynamics and evolutionary history of several species, including Mycobacterium tuberculosis (MTB), an important human pathogen causing tuberculosis. One key assumption of the Kingman coalescent is that the number of descendants of different individuals does not vary strongly, and violating this assumption could lead to severe biases caused by model misspecification. Individual lineages of MTB are expected to vary strongly in reproductive success because 1) MTB is potentially under constant selection due to the pressure of the host immune system and of antibiotic treatment, 2) MTB undergoes repeated population bottlenecks when it transmits from one host to the next, and 3) some hosts show much higher transmission rates compared with the average (superspreaders).Here, we used an approximate Bayesian computation approach to test whether multiple-merger coalescents (MMC), a class of models that allow for large variation in reproductive success among lineages, are more appropriate models to study MTB populations. We considered 11 publicly available whole-genome sequence data sets sampled from local MTB populations and outbreaks and found that MMC had a better fit compared with the Kingman coalescent for 10 of the 11 data sets. These results indicate that the null model for analyzing MTB outbreaks should be reassessed and that past findings based on the Kingman coalescent need to be revisited.  相似文献   

6.
    
Approximate Bayesian computation (ABC) is widely used to infer demographic history of populations and species using DNA markers. Genomic markers can now be developed for nonmodel species using reduced representation library (RRL) sequencing methods that select a fraction of the genome using targeted sequence capture or restriction enzymes (genotyping‐by‐sequencing, GBS). We explored the influence of marker number and length, knowledge of gametic phase, and tradeoffs between sample size and sequencing depth on the quality of demographic inferences performed with ABC. We focused on two‐population models of recent spatial expansion with varying numbers of unknown parameters. Performing ABC on simulated data sets with known parameter values, we found that the timing of a recent spatial expansion event could be precisely estimated in a three‐parameter model. Taking into account uncertainty in parameters such as initial population size and migration rate collectively decreased the precision of inferences dramatically. Phasing haplotypes did not improve results, regardless of sequence length. Numerous short sequences were as valuable as fewer, longer sequences, and performed best when a large sample size was sequenced at low individual depth, even when sequencing errors were added. ABC results were similar to results obtained with an alternative method based on the site frequency spectrum (SFS) when performed with unphased GBS‐type markers. We conclude that unphased GBS‐type data sets can be sufficient to precisely infer simple demographic models, and discuss possible improvements for the use of ABC with genomic data.  相似文献   

7.
    
Model‐based analyses are common in phylogeographic inference because they parameterize processes such as population division, gene flow and expansion that are of interest to biologists. Approximate Bayesian computation is a model‐based approach that can be customized to any empirical system and used to calculate the relative posterior probability of several models, provided that suitable models can be identified for comparison. The question of how to identify suitable models is explored using data from Plethodon idahoensis, a salamander that inhabits the North American inland northwest temperate rainforest. First, we conduct an ABC analysis using five models suggested by previous research, calculate the relative posterior probabilities and find that a simple model of population isolation has the best fit to the data (PP = 0.70). In contrast to this subjective choice of models to include in the analysis, we also specify models in a more objective manner by simulating prior distributions for 143 models that included panmixia, population isolation, change in effective population size, migration and range expansion. We then identify a smaller subset of models for comparison by generating an expectation of the highest posterior probability that a false model is likely to achieve due to chance and calculate the relative posterior probabilities of only those models that exceed this expected level. A model that parameterized divergence with population expansion and gene flow in one direction offered the best fit to the P. idahoensis data (in contrast to an isolation‐only model from the first analysis). Our investigation demonstrates that the determination of which models to include in ABC model choice experiments is a vital component of model‐based phylogeographic analysis.  相似文献   

8.
The Tasmanian devil (Sarcophilus harrisii) was widespread in Australia during the Late Pleistocene but is now endemic to the island of Tasmania. Low genetic diversity combined with the spread of devil facial tumour disease have raised concerns for the species’ long-term survival. Here, we investigate the origin of low genetic diversity by inferring the species'' demographic history using temporal sampling with summary statistics, full-likelihood and approximate Bayesian computation methods. Our results show extensive population declines across Tasmania correlating with environmental changes around the last glacial maximum and following unstable climate related to increased ‘El Niño–Southern Oscillation’ activity.  相似文献   

9.
The choice of summary statistics is a crucial step in approximate Bayesian computation (ABC). Since statistics are often not sufficient, this choice involves a trade-off between loss of information and reduction of dimensionality. The latter may increase the efficiency of ABC. Here, we propose an approach for choosing summary statistics based on boosting, a technique from the machine-learning literature. We consider different types of boosting and compare them to partial least-squares regression as an alternative. To mitigate the lack of sufficiency, we also propose an approach for choosing summary statistics locally, in the putative neighborhood of the true parameter value. We study a demographic model motivated by the reintroduction of Alpine ibex (Capra ibex) into the Swiss Alps. The parameters of interest are the mean and standard deviation across microsatellites of the scaled ancestral mutation rate (θanc = 4Neu) and the proportion of males obtaining access to matings per breeding season (ω). By simulation, we assess the properties of the posterior distribution obtained with the various methods. According to our criteria, ABC with summary statistics chosen locally via boosting with the L2-loss performs best. Applying that method to the ibex data, we estimate θ^anc1.288 and find that most of the variation across loci of the ancestral mutation rate u is between 7.7 × 10−4 and 3.5 × 10−3 per locus per generation. The proportion of males with access to matings is estimated as ω^0.21, which is in good agreement with recent independent estimates.  相似文献   

10.
    
We used mitochondrial DNA (mtDNA) gene sequences and nuclear microsatellite loci to investigate the extent and outcome of hybridization between the Black-billed Gull Chroicocephalus bulleri and the Red-billed Gull Chroicocephalus novaehollandiae scopulinus in New Zealand. Six of 26 sampled Black-billed Gulls possessed mtDNA typical of Red-billed Gulls, but allele frequencies at six polymorphic microsatellites provided little evidence of mixed ancestry expected in very recent hybrids. None of the Red-billed Gulls sampled from different colonies possessed Black-billed Gull mtDNA expected in the reciprocal cross, suggesting that hybridization in the two species typically occurs between female Red-billed Gulls and Black-billed Gull males. The lack of any hybrid signal in the nuclear loci indicates that there has been extensive backcrossing with Black-billed Gulls, effectively diluting the Red-billed Gull nuclear DNA contribution. Divergence of Red-billed Gulls and Black-billed Gulls occurred approximately 250 000 years ago, indicating that unsorted ancestral polymorphism is an unlikely alternative to hybridization. Comparing demographic models within an approximate Bayesian computation (ABC) framework, we confirm that the observed patterns cannot result from incomplete lineage sorting. Using an ABC random forest approach, we determined that the most likely model explaining the data is a recent introgression scenario, whereby unidirectional gene flow is re-established following a period of strict isolation. The ability of Black-billed and Red-billed Gulls to successfully interbreed shows that despite significant differentiation (FST > 0.3), there has been insufficient time for the two species to develop complete reproductive isolation. The apparent one-way transfer of Red-billed Gull mtDNA into Black-billed Gulls and extensive backcrossing argues against cytoplasmic–nuclear genome incompatibilities between the two species. We hypothesize that the specific mate recognition system cued on colours of soft parts normally functions to prevent hybridization, but that it can break down under demographic conditions where there is a shortage of available mates and a surplus of females in the Red-billed Gull population. The high incidence of introgression in Black-billed Gulls conflicts with field observations that interbreeding is extremely rare.  相似文献   

11.
    
The imprint left by niche evolution on the variation of biological diversity across spatial and environmental gradients is still debated among ecologists. Furthermore, understanding to what extent dispersal limitation may reinforce or blur such imprint is still a gap in the ecological knowledge. In this article we introduce a simulation approach coupled to approximate Bayesian computation (ABC) that parameterizes both the adaptation rate of species' niche positions over the evolution of a monophyletic lineage and the intensity of dispersal limitation associated with the variation of species alpha diversity among assemblages distributed across spatial and environmental gradients. The analytical tool was implemented in the R package 'mcfly' (www.r-project.org). We evaluated the statistical performance of the analytical framework using simulated datasets, which confirmed the suitability of the analysis to estimate adaptation rate parameter but showed to be less precise in relation to the dispersal limitation parameter. Also, we found that increased dispersal limitation levels improved the parameterization of the adaptation rate of species' niche positions in simulated datasets. Further, we evaluated the role played by niche evolution and dispersal limitation on species alpha diversity variation of Phyllostomidae bats across the Neotropics. The framework proposed here shed light on the links between niche evolution, dispersal limitation and gradients of biological diversity, and thereby improved our understanding of evolutionary imprints on current biological diversity patterns.  相似文献   

12.
K Zeng 《Heredity》2013,110(4):363-371
There is increasing evidence that background selection, the effects of the elimination of recurring deleterious mutations by natural selection on variability at linked sites, may be a major factor shaping genome-wide patterns of genetic diversity. To accurately quantify the importance of background selection, it is vital to have computationally efficient models that include essential biological features. To this end, a structured coalescent procedure is used to construct a model of background selection that takes into account the effects of recombination, recent changes in population size and variation in selection coefficients against deleterious mutations across sites. Furthermore, this model allows a flexible organization of selected and neutral sites in the region concerned, and has the ability to generate sequence variability at both selected and neutral sites, allowing the correlation between these two types of sites to be studied. The accuracy of the model is verified by checking against the results of forward simulations. These simulations also reveal several patterns of diversity that are in qualitative agreement with observations reported in recent studies of DNA sequence polymorphisms. These results suggest that the model should be useful for data analysis.  相似文献   

13.
    
Defining the target population based on predictive biomarkers plays an important role during clinical development. After establishing a relationship between a biomarker candidate and response to treatment in exploratory phases, a subsequent confirmatory trial ideally involves only subjects with high potential of benefiting from the new compound. In order to identify those subjects in case of a continuous biomarker, a cut-off is needed. Usually, a cut-off is chosen that resulted in a subgroup with a large observed treatment effect in an exploratory trial. However, such a data-driven selection may lead to overoptimistic expectations for the subsequent confirmatory trial. Treatment effect estimates, probability of success, and posterior probabilities are useful measures for deciding whether or not to conduct a confirmatory trial enrolling the biomarker-defined population. These measures need to be adjusted for selection bias. We extend previously introduced Approximate Bayesian Computation techniques for adjustment of subgroup selection bias to a time-to-event setting with cut-off selection. Challenges in this setting are that treatment effects become time-dependent and that subsets are defined by the biomarker distribution. Simulation studies show that the proposed method provides adjusted statistical measures which are superior to naïve Maximum Likelihood estimators as well as simple shrinkage estimators.  相似文献   

14.
    
Understanding how assemblages of species responded to past climate change is a central goal of comparative phylogeography and comparative population genomics, an endeavour that has increasing potential to integrate with community ecology. New sequencing technology now provides the potential to perform complex demographic inference at unprecedented resolution across assemblages of nonmodel species. To this end, we introduce the aggregate site frequency spectrum (aSFS), an expansion of the site frequency spectrum to use single nucleotide polymorphism (SNP) data sets collected from multiple, co‐distributed species for assemblage‐level demographic inference. We describe how the aSFS is constructed over an arbitrary number of independent population samples and then demonstrate how the aSFS can differentiate various multispecies demographic histories under a wide range of sampling configurations while allowing effective population sizes and expansion magnitudes to vary independently. We subsequently couple the aSFS with a hierarchical approximate Bayesian computation (hABC) framework to estimate degree of temporal synchronicity in expansion times across taxa, including an empirical demonstration with a data set consisting of five populations of the threespine stickleback (Gasterosteus aculeatus). Corroborating what is generally understood about the recent postglacial origins of these populations, the joint aSFS/hABC analysis strongly suggests that the stickleback data are most consistent with synchronous expansion after the Last Glacial Maximum (posterior probability = 0.99). The aSFS will have general application for multilevel statistical frameworks to test models involving assemblages and/or communities, and as large‐scale SNP data from nonmodel species become routine, the aSFS expands the potential for powerful next‐generation comparative population genomic inference.  相似文献   

15.
A key issue in evolutionary biology is an improved understanding of the genetic mechanisms by which species adapt to various environments. Using DNA sequence data, it is possible to quantify the number of adaptive and deleterious mutations, and the distribution of fitness effects of new mutations (its mean and variance) by simultaneously taking into account the demography of a given species. We investigated how selection functions at eight housekeeping genes of four closely related, outcrossing species of wild tomatoes that are native to diverse environments in western South America (Solanum arcanum, S. chilense, S. habrochaites and S. peruvianum). We found little evidence for adaptive mutations but pervasive evidence for strong purifying selection in coding regions of the four species. In contrast, the strength of purifying selection seems to vary among the four species in non-coding (NC) regions (introns). Using F(ST)-based measures of fixation in subdivided populations, we suggest that weak purifying selection has affected the NC regions of S. habrochaites, S. chilense and S. peruvianum. In contrast, NC regions in S. arcanum show a distribution of fitness effects with mutations being either nearly neutral or very strongly deleterious. These results suggest that closely related species with similar genetic backgrounds but experiencing contrasting environments differ in the variance of deleterious fitness effects.  相似文献   

16.
In the present study we evaluate the population structure and potential colonization routes of the silverside Chirostoma humboldtianum through approximate Bayesian computations. Six microsatellite loci were amplified in a total of 288 individuals from six different locations covering the complete geographic distribution of the species. Additionally, two mitochondrial DNA markers, a D loop control region and cytochrome b were amplified in a subset of 107 individuals. The results found with microsatellites allow recovering well-structured populations that have experienced a drastic reduction in the effective population size. On the other hand, mtDNA sequences showed a moderate phylogeographic structure with shared haplotypes between geographic localities and signalsof a slight increase in the effective population size. Finally, the approximate Bayesian computation analysis performed with both datasets suggested a west-to-east colonization route for the species in Central Mexico.  相似文献   

17.
18.
The present distribution of freshwater fish in the Alpine region has been strongly affected by colonization events occurring after the last glacial maximum (LGM), some 20 000 years ago. We use here a spatially explicit simulation framework to model and better understand their colonization dynamics in the Swiss Rhine basin. This approach is applied to the European bullhead ( Cottus gobio ), which is an ideal model organism to study fish past demographic processes since it has not been managed by humans. The molecular diversity of eight sampled populations is simulated and compared to observed data at six microsatellite loci under an approximate Bayesian computation framework to estimate the parameters of the colonization process. Our demographic estimates fit well with current knowledge about the biology of this species, but they suggest that the Swiss Rhine basin was colonized very recently, after the Younger Dryas some 6600 years ago. We discuss the implication of this result, as well as the strengths and limits of the spatially explicit approach coupled to the approximate Bayesian computation framework.  相似文献   

19.
    
Although the grey seal Halichoerus grypus is one of the most familiar and intensively studied of all pinniped species, its global population structure remains to be elucidated. Little is also known about how the species as a whole may have historically responded to climate‐driven changes in habitat availability and anthropogenic exploitation. We therefore analysed samples from over 1500 individuals collected from 22 colonies spanning the Western and Eastern Atlantic and the Baltic Sea regions, represented by 350 bp of the mitochondrial hypervariable region and up to nine microsatellites. Strong population structure was observed at both types of marker, and highly asymmetrical patterns of gene flow were also inferred, with the Orkney Islands being identified as a source of emigrants to other areas in the Eastern Atlantic. The Baltic and Eastern Atlantic regions were estimated to have diverged a little over 10 000 years ago, consistent with the last proposed isolation of the Baltic Sea. Approximate Bayesian computation also identified genetic signals consistent with postglacial population expansion across much of the species range, suggesting that grey seals are highly responsive to changes in habitat availability.  相似文献   

20.
Spatial and environmental heterogeneity are major factors in structuring species distributions in alpine landscapes. These landscapes have also been affected by glacial advances and retreats, causing alpine taxa to undergo range shifts and demographic changes. These nonequilibrium population dynamics have the potential to obscure the effects of environmental factors on the distribution of genetic variation. Here, we investigate how demographic change and environmental factors influence genetic variation in the alpine butterfly Colias behrii. Data from 14 microsatellite loci provide evidence of bottlenecks in all population samples. We test several alternative models of demography using approximate Bayesian computation (ABC), with the results favouring a model in which a recent bottleneck precedes rapid population growth. Applying independent calibrations to microsatellite loci and a nuclear gene, we estimate that this bottleneck affected both northern and southern populations 531–281 years ago, coinciding with a period of global cooling. Using regression approaches, we attempt to separate the effects of population structure, geographical distance and landscape on patterns of population genetic differentiation. Only 40% of the variation in FST is explained by these models, with geographical distance and least‐cost distance among meadow patches selected as the best predictors. Various measures of genetic diversity within populations are also decoupled from estimates of local abundance and habitat patch characteristics. Our results demonstrate that demographic change can have a disproportionate influence on genetic diversity in alpine species, contrasting with other studies that suggest landscape features control contemporary demographic processes in high‐elevation environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号