首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work investigated the growth of Kluyveromyces marxianus NRRL Y-7571 in solid-state fermentation in a medium composed of sugarcane bagasse, molasses, corn steep liquor and soybean meal within a packed-bed bioreactor. Seven experimental runs were carried out to evaluate the effects of flow rate and inlet air temperature on the following microbial rates: cell mass production, total reducing sugar and oxygen consumption, carbon dioxide and ethanol production, metabolic heat and water generation. A mathematical model based on an artificial neural network was developed to predict the above-mentioned microbial rates as a function of the fermentation time, initial total reducing sugar concentration, inlet and outlet air temperatures. The results showed that the microbial rates were temperature dependent for the range 27–50°C. The proposed model efficiently predicted the microbial rates, indicating that the neural network approach could be used to simulate the microbial growth in SSF.  相似文献   

2.
In this work the growth of Gibberella fujikuroi and gibberellic acid (GA3) production were studied using coffee husk and cassava bagasse as substrates in a packed-bed column bioreactor connected to a gas chromatograph for exit gas analysis. With the respirometric data, a logarithmic correlation between accumulated CO2 and biomass production was determined, and the kinetics of the fungal growth was compared for estimated and experimental data. The solid medium consisted of coffee husk (pretreated with alkali solution), mixed with cassava bagasse (7:3 dry weight basis), with a substrate initial pH of 5.2 and moisture of 77%. Cultivation was carried out in glass columns, which were packed with preinoculated substrate and with forced aeration of 0.24 L of air/[h (g of substrate)] for the first 3 days, and 0.72 L of air/[h (g of substrate)] for the remaining period. The maximum specific growth rate (microm) obtained was 0.052 h(-1) (between 24 and 48 h of fermentation). A production of 0.925 g of GA3/kg of substrate was achieved after 6 days of fermentation.  相似文献   

3.
Tannin acyl hydrolase, also known as tannase, is an enzyme with important applications in the food, feed, pharmaceutical, and chemical industries. However, despite a growing interest in the catalytic properties of tannase, its practical use is very limited owing to high production costs. Several studies have already demonstrated the advantages of solid-state fermentation (SSF) for the production of fungal tannase, yet the optimal conditions for enzyme production strongly depend on the microbial strain utilized. Therefore, the aim of this study was to improve the tannase production by a locally isolated A. niger strain in an SSF system. The SSF was carried out in packed-bed bioreactors using polyurethane foam as an inert support impregnated with defined culture media. The process parameters influencing the enzyme production were identified using a Plackett–Burman design, where the substrate concentration, initial pH, and incubation temperature were determined as the most significant. These parameters were then further optimized using a Box-Behnken design. The maximum tannase production was obtained with a high tannic acid concentration (50 g/l), relatively low incubation temperature (30°C), and unique low initial pH (4.0). The statistical strategy aided in increasing the enzyme activity nearly 1.97-fold, from 4,030 to 7,955 U/l. Consequently, these findings can lead to the development of a fermentation system that is able to produce large amounts of tannase in economical, compact, and scalable reactors.  相似文献   

4.
Bioprocess and Biosystems Engineering - Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this...  相似文献   

5.
Gibberellic acid production in liquid fermentation was compared with production of this compound in solid-state fermentation systems using cassava flour, sugar cane bagasse and low density polyurethane. Gibberella fujikuroi produced 23 mg of gibberellin/ml in 120h of liquid fermentation. Solid-state fermentation on bagasse showed excellent growth but presented gibberellin extraction problems. Very low production and growth was observed in solid-state fermentation with low density polyurethane as an inert support. Solid-state fermentation on cassava flour showed high production (250 mg/kg of dry solid medium) in a very short time (36h).  相似文献   

6.
Continuous propionic acid fermentations of lactate by Propionibacterium acidipropionici were studied in spiral wound fibrous bed bioreactors. Cells were imobilized by natural attachment to fiber surfaces and entrapment in the void volume within the fibrous matrix. A high cell density of approximately 37 g/L was attained in the reactor and the reactor productivity was approximately 4 times higher than that from a conventional batch fermentation. The bioreactor was able to operate continuously for 4 months without encountering any clogging, degeneration, or contamination problems. Also, the reactor could accept low-nutrient and low-pH feed without sacrificing much in reactor productivity. This new type of immobilized cell bioreactor is scalable and thus is suitable for industrial production of propionate. (c) 1992 John Wiley & Sons, Inc.  相似文献   

7.
Palm kernel cake (PKC), is an agro-industrial residue created in the palm oil industry, and large quantities of PKC are produced in Malaysia. Sustainable development of the palm oil industry in Malaysia demands an economical technology for the environmentally friendly utilization of PKC in industrial utility systems. This research was carried out to evaluate the use of PKC in the production of cellulase by the cultivation of Aspergillus niger FTCC 5003 in a laboratory packed-bed bioreactor for seven days. A central composite design was used to perform eighteen trials of solid substrate fermentation under selected conditions of incubation temperature, initial moisture content of substrate, and airflow rate. Experimental results showed that a cellulase yield of 244.53 U/g of dry PKC was obtained when 100 g of PKC was hydrolyzed at an incubation temperature of 32.5°C, an initial moisture level of 60%, and an aeration rate of 1.5 L/min/g PKC. An empirical second-order polynomial model was adjusted to the experimental data to evaluate the effects of the studied operating variables on cellulase production. The statistical model revealed that the quadratic term for initial moisture content had a significant effect on the production of cellulase (P < 0.01). The regression model also indicated that the quadratic terms for incubation temperature and interaction effects between initial moisture content and aeration rate significantly influenced cellulase production (P < 0.05). The empirical model determined that the optimum conditions for cellulase production were an incubation temperature of 31.0°C, an initial moisture content of 59.0% and an airflow rate of 1.55 L/min/g PKC.  相似文献   

8.
A dynamic two-dimensional mathematical model was developed to simulate the heat transfer in solid state fermentation of rice bran inoculated with Aspergillus niger. Two bioreactors of 47 mm diameter and 300 mm height were used. Forced aeration conditions were simulated and saturated air with 60 ml/g h flow at 30°C and a bed porosity equal to 0.3 were determined as being the optimum operating conditions for the used packed-bed bioreactor. © Rapid Science Ltd. 1998  相似文献   

9.
《Process Biochemistry》2007,42(2):224-234
For any given large-scale solid substrate fermentation (SSF) bioreactor, to assess how well a control system will work in practice requires the most realistic model possible. This model needs to account fully for complicated dynamic reactor behaviour and, in addition, has to include a specific noise model that is capable of reproducing the disturbances observed in SSF bioreactor measurements. In this work, noisy data collected historically from SSF pilot scale fermentations was used to develop such a model. Applying standard signal processing techniques, each measured variable was separated into deterministic and noise signals. Deterministic signals were used to calibrate a previously developed phenomenological model of the bioreactor. Noise signals were used to construct a realistic noise model for each measured variable in turn. Finally, the two models were combined to attain simulations that compared well with real measurements. This integrated model will provide realistic simulations that will prove useful in the design of effective control systems for intermittently mixed SSF bioreactors.  相似文献   

10.
Zymotis bioreactors for solid-state fermentation (SSF) are packed-bed bioreactors with internal cooling plates. This design has potential to overcome the problem of heat removal, which is one of the main challenges in SSF. In ordinary packed-bed bioreactors, which lack internal plates, large axial temperature gradients arise, leading to poor microbial growth in the end of the bed near the air outlet. The Zymotis design is suitable for SSF processes in which the substrate bed must be maintained static, but little is known about how to design and operate Zymotis bioreactors. We use a two-dimensional heat transfer model, describing the growth of Aspergillus niger on a starchy substrate, to provide guidelines for the optimum design and operation of Zymotis bioreactors. As for ordinary packed-beds, the superficial velocity of the process air is a key variable. However, the Zymotis design introduces other important variables, namely, the spacing between the internal cooling plates and the temperature of the cooling water. High productivities can be achieved at large scale, but only if small spacings between the cooling plates are used, and if the cooling water temperature is varied during the fermentation in response to bed temperatures.  相似文献   

11.
Rhizopus oryzae NBRC 4697 was selected from among promising candidates as a biocatalyst for biodiesel production. This microorganism was immobilized on to polyurethane foam coated with activated carbon for reuse, and, for biodiesel production. Vacuum drying of the immobilized cells was found to be more efficient than natural or freeze-drying processes. Although the immobilized cells were severely inhibited by a molar ratio of methanol to soybean oil in excess of 2.0, stepwise methanol addition (3 aliquots at 24-h feeding intervals) significantly prevented methanol inhibition. A packed-bed bioreactor (PBB) containing the immobilized whole cell biocatalyst was then operated under circulating batch mode. Stepwise methanol feeding was used to mitigate methanol inhibition of the immobilized cells in the PBB. An increase in the feeding rate (circulating rate) of the reaction mixture barely affected biodiesel production, while an increase in the packing volume of the immobilized cells enhanced biodiesel production noticeably. Finally, repeated circulating batch operation of the PBB was carried out for five consecutive rounds without a noticeable decrease in the performance of the PBB for the three rounds.  相似文献   

12.
This study was aimed at developing a process of solid state fermentation (SSF) with the fungi Pleurotus ostreatus and Trametes versicolor on apple processing residues for wastewater decolorization. Both fungi were able to colonize apple residues without any addition of nutrients, material support or water. P. ostreatus produced the highest levels of laccases (up to 9 U g−1 of dry matter) and xylanases (up to 80 U g−1 of dry matter). A repeated batch decolorization experiment was set up with apple residues colonized by P. ostreatus, achieving 50% decolorization and 100% detoxification after 24 h, and, adding fresh wastewater every 24 h, a constant decolorization of 50% was measured for at least 1 month. A continuous decolorization experiment was set up by a packed-bed reactor based on colonized apple residues achieving a performance of 100 mg dye L−1 day−1 at a retention time of 50 h.  相似文献   

13.
Aims:  To investigate the ability of the citric acid-producing strain Aspergillus niger ATCC 9142 to utilize the ethanol fermentation co-product corn distillers dried grains with solubles for citric acid production following various treatments.
Methods and Results:  The ability of A. niger ATCC 9142 to produce citric acid and biomass on the grains was examined using an enzyme assay and a gravimetric method, respectively. Fungal citric acid production after 240 h was higher on untreated grains than on autoclaved grains or acid-hydrolysed grains. Fungal biomass production was enhanced after autoclaving and acid-hydrolysis of the grains. Phosphate supplementation to the grains slightly stimulated citric acid production while methanol addition decreased its synthesis. Using the phosphate-supplemented grains, the optimal incubation temperature, initial moisture content of the grains and the length of fermentation time for ATCC 9142 citric acid production were determined to be 25°C, 82% and 240 h, respectively.
Conclusions:  A. niger ATCC 9142 synthesized citric acid on corn distillers dried grains with solubles. The phosphate-treated grains increased citric acid production by the strain.
Significance and Impact of the Study:  The ethanol fermentation co-product corn distillers dried grains with solubles could be useful commercially as a substrate for A. niger citric acid production.  相似文献   

14.
The purpose of the present study is to critically analyze the recent literature covering the production of inulinase enzyme from various sources by solid-state fermentation and discuss various approaches to increase its production in solid-state fermentation, purification, and its properties. The review deals with the solid-state fermentative production of inulinase production. Inulinases have many applications in industries, such as for the production of ultra-high fructose syrup, biofuels, lactic acid, citric acid, and single-cell oil. Solid-state fermentation (SSF) is more economic, requires smaller vessels, lowers water intake, reduces wastewater treatments, higher product yield, lesser chance of bacterial contamination, and lowers energy consumption. Furthermore, the crude products obtained from SSF can be directly used as the source of enzyme for biotransformation. Although many reports are available on a wide range of microbes which produces inulinases by SSF, it is important to isolate novel microbes for its production. Also, extensive research is going on to exploit unexplored sources for SSF. Higher yield of inulinases can be achieved by bioreactor modeling and proper monitoring of physical and chemical parameters in SSF.  相似文献   

15.
Aims:  This study aims to maximize the yield of gamma-linolenic acid by a filamentous fungus, Mucor rouxii , using low cost production by solid-state fermentation.
Methods and Results:  We optimized substrate types and culture conditions including inoculum size and temperature. The optimal growth of M. rouxii was found in the cultures inoculated with 5 × 105 spores g−1 substrate. The fungal cells grew well on rice bran and soy bean meal, whereas a lower biomass was found in the cultures grown on polished rice, broken rice and spent malt grain. The GLA content was highly accumulated in rice bran ferment and its maximal content of about 6 g kg−1 fermented mass was observed in the 5th-day culture grown at 30°C. However, the GLA content in the rice bran ferment was not enhanced by low temperature.
Conclusions:  The GLA production of M. rouxii could be enhanced by optimizing the agricultural by-product substrates and culture condition.
Significance and Impact of the Study:  Low cost GLA production process was achieved, and fermented product containing GLA can be incorporated into feed additives without further oil extraction to alternate the expensive plant oils.  相似文献   

16.
A method, based on the use of wheat bran particles dyed with Rhodamine-WT as tracer particles, was developed to characterize mixing in a 200 l rotating drum bioreactor used for solid state fermentation. The extraction process contributes a 15% relative error in determining Rhodamine concentrations. Extraction efficiency is not affected by autoclaving of the bran and there is no inter-particle transfer of dye during the mixing of bran within the drum. For an unbaffled drum rotated at 5 rpm the axial dispersion coefficient is 9.15 cm2 min–1.  相似文献   

17.
A continuously mixed, aseptic paddle mixer was used successfully for solid-state fermentation (SSF) with Aspergillus oryzae on whole wheat kernels. Continuous mixing improved temperature control and prevented inhomogeneities in the bed. Respiration rates found in this system were comparable to those in small, isothermal, unmixed beds, which showed that continuous mixing did not cause serious damage to the fungus or the wheat kernels. Continuous mixing improves heat transport to the bioreactor wall, which reduces the need for evaporative cooling and thus may help to prevent the desiccation problems that hamper large-scale SSF. However, scale-up calculations for the paddle mixer indicated that wall cooling becomes insufficient at the 2-m(3) scale for a rapidly growing fungus like Aspergillus oryzae. Consequently, evaporative cooling will remain important in large-scale mixed systems. Experiments showed that water addition will be necessary when evaporative cooling is applied in order to maintain a sufficiently high water activity of the solid substrate. Mixing is necessary to ensure homogeneous water addition in SSF. Automated process control might be achieved using the enthalpy balance. The enthalpy balance for the case of evaporative cooling in the paddle mixer was validated. This work shows that continuous mixing provides promising possibilities for simultaneous control of temperature and moisture content in solid-state fermentation on a large scale.  相似文献   

18.
A solvent-free system to produce octyl hydroxyphenylpropionate (OHPP) from p-hydroxyphenylpropionic acid (HPPA) and octanol using immobilized lipase (Novozym® 435) as a catalyst in an ultrasound-assisted packed-bed bioreactor was investigated. Response-surface methodology (RSM) and a three-level-three-factor Box-Behnken design were employed to evaluate the effects of reaction temperature (x 1), flow rate (x 2) and ultrasonic power (x 3) on the percentage of molar production of OHPP. The results indicate that the reaction temperature and flow rate were the most important variables in optimizing the production of OHPP. Based on a ridge max analysis, the optimum conditions for OHPP synthesis were predicted to consist of a reaction temperature of 65°C, a flow rate of 0.05 ml/min and an ultrasonic power of 1.74 W/cm2 with a yield of 99.25%. A reaction was performed under these optimal conditions, and a yield of 99.33 ± 0.1% was obtained.  相似文献   

19.
A novel patented solid-state bioreactor (251 L) with honeycomb loading device was designed and its performance was tested. First, this apparatus gave a 66.87 % of calculated loading coefficient (volume ratio), which was almost twofold compared with conventional fermenters. Next, considering the crucial effect of heat transfer on bed loading and microbial growth, the performance was validated by temperature variance during fermentation and spore viability of Bacillus cereus DM423. Air pressure pulsation or external water jacket was used to control temperature; the maximal temperature variation was 7.7 versus 19.8 °C, respectively during fermentation. The difference was mainly due to the continuous gas phase characterized by solid-state fermentation (SSF). The average living spores of (1.50 ± 0.07) × 1011 cfu/g at 40 h obtained from the device was higher than (0.70 ± 0.03) × 1011 cfu/g from flask at 48 h. The results indicated that this new loading bioreactor with air pressure pulsation could be a good prospect for industrialization of SSF employing bacterial cultures.  相似文献   

20.
A low-cost lipase preparation is required for enzymatic biodiesel synthesis. One possibility is to produce the lipase in solid-state fermentation (SSF) and then add the fermented solids (FS) directly to the reaction medium for biodiesel synthesis. In the current work, we scaled up the production of FS containing the lipases of Rhizopus microsporus. Initial experiments in flasks led to a low-cost medium containing wheat bran and sugarcane bagasse (50:50 w/w, dry basis), supplemented only with urea. We used this medium to scale-up production of FS, from 10 g in a laboratory column bioreactor to 15 kg in a pilot packed-bed bioreactor. This is the largest scale yet reported for lipase production in SSF. During scale-up, the hydrolytic activity of the FS decreased 57%: from 265 U g−1 at 18 h in the laboratory bioreactor to 113 U g−1 at 20 h in the pilot bioreactor. However, the esterification activity decreased by only 14%: from 12.1 U g−1 to 10.4 U g−1. When the FS produced in the laboratory and pilot bioreactors were dried and added directly to a solvent-free reaction medium to catalyze the esterification of oleic acid with ethanol, both gave the same ester content, 69% in 48 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号