首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The postnatal ontogenetic patterns and processes that underlie species differences in African ape adult mandibular morphology are not well understood and there is ongoing debate about whether African ape faces and mandibles develop via divergent or parallel trajectories of shape change. Using three-dimensional (3D) morphometric data, we first tested when in postnatal development differences in mandibular shape are initially evident between sister species Pan troglodytes and P. paniscus. Next, we tested whether each species has a distinct and non-parallel trajectory of mandibular development. Mandibles sampled across a broad developmental range of wildshot bonobos (n = 44) and chimpanzees (n = 59) were radiographed and aged from their dental development. We then collected 3D landmark surface data from all the mandibles. A geometric morphometric analysis of size-corrected 3D data found that bonobos and chimpanzees had parallel and linear ontogenetic trajectories of mandibular shape change. In contrast, mandibular shape was statistically different between P. paniscus and P. troglodytes as early as infancy, suggesting that species shape differences are already established near or before birth. A linear and stable trajectory of shape change suggests that mandibular ontogeny in these apes is unimpacted by non-linear variation in tooth developmental timing.  相似文献   

2.
Fumana is a diverse genus of the Cistaceae family, consisting of 21 currently accepted species. In this study, nuclear (ITS) and plastid (matK, trnT‐L) molecular markers were used to reconstruct the phylogeny and to estimate divergence times, including 19 species of Fumana. Phylogenetic analyses (Bayesian Inference, Maximum Parsimony and Maximum Likelihood) confirmed the monophyly of Fumana and did not support the infrageneric divisions previously established. The results support four main clades that group species that differ in vegetative and reproductive characters. Given the impossibility to define morphological characters common to all species within the clades, our proposal is to reject infrageneric divisions. Molecular dating and ancestral area analyses provide evidence for a Miocene diversification of the genus in the north‐western Mediterranean. Ancestral state reconstructions revealed ancestral character states for some traits related to xeric and arid habitats, suggesting a preadaptation to the Mediterranean climate.  相似文献   

3.
Infections with human parvoviruses B19 and recently discovered human bocaviruses (HBoVs) are widespread, while PARV4 infections are transmitted parenterally and prevalent specifically in injecting drug users and hemophiliacs. To investigate the exposure and circulation of parvoviruses related to B19 virus, PARV4, and HBoV in nonhuman primates, plasma samples collected from 73 Cameroonian wild-caught chimpanzees and gorillas and 91 Old World monkey (OWM) species were screened for antibodies to recombinant B19 virus, PARV4, and HBoV VP2 antigens by enzyme-linked immunosorbent assay (ELISA). Moderate to high frequencies of seroreactivity to PARV4 (63% and 18% in chimpanzees and gorillas, respectively), HBoV (73% and 36%), and B19 virus (8% and 27%) were recorded for apes, while OWMs were uniformly negative (for PARV4 and B19 virus) or infrequently reactive (3% for HBoV). For genetic characterization, plasma samples and 54 fecal samples from chimpanzees and gorillas collected from Cameroonian forest floors were screened by PCR with primers conserved within Erythrovirus, Bocavirus, and PARV4 genera. Two plasma samples (chimpanzee and baboon) were positive for PARV4, while four fecal samples were positive for HBoV-like viruses. The chimpanzee PARV4 variant showed 18% and 15% nucleotide sequence divergence in NS and VP1/2, respectively, from human variants (9% and 7% amino acid, respectively), while the baboon variant was substantially more divergent, mirroring host phylogeny. Ape HBoV variants showed complex sequence relationships with human viruses, comprising separate divergent homologues of HBoV1 and the recombinant HBoV3 species in chimpanzees and a novel recombinant species in gorillas. This study provides the first evidence for widespread circulation of parvoviruses in primates and enables future investigations of their epidemiology, host specificity, and (co)evolutionary histories.Autonomous parvoviruses known to infect humans comprise parvovirus B19 (18) and the recently discovered PARV4 (22) and human bocavirus (HBoV) (3). Members of the family Parvoviridae are genetically and biologically diverse and are classified into several genera or groups, showing marked differences in host range, pathology, and tissue/cellular tropisms (18). Human parvovirus B19, a member of the Erythrovirus genus, is transmitted primarily by the respiratory route but causes systemic infections. Erythroid progenitor cells are specifically targeted through expression of globoside P antigen, which acts as the B19 virus receptor for entry (5). In common with infections by most parvoviruses, B19 virus infections are acute; a period of intense viremia is followed by seroconversion for antibody to B19 virus and lifelong immunity from reinfection (29). Despite the clearance of viremia and seroconversion for antibody, lifelong persistence of viral DNA in tissues has been shown to occur (12, 20, 26, 28, 43, 58). Three genotypes of B19 virus have been described, differing in nucleotide sequence by approximately 13 to 14% (7, 21, 41, 53); genotypes 1 and 2 have been found in Europe, the United States, and other Western countries, while genotype 3 is restricted to sub-Saharan Africa and South America (7, 47, 49). B19 virus widely circulates in human populations worldwide; in Western countries, several studies have documented increasing frequencies of B19 virus seropositivity with age, rising to approximately 60 to 70% by adulthood (15, 39, 48, 61).Another human parvovirus, PARV4, shows markedly different epidemiology and transmission routes. It was originally detected in plasma from an individual with an “acute infection syndrome” resembling that of primary human immunodeficiency virus (HIV) infection (22). While this clinical presentation has not been observed again, infection with PARV4 is known to be widespread specifically in individuals with a history of parenteral exposure (injecting drug users [IDUs], hemophiliacs, polytransfused individuals), with a strikingly higher incidence in those infected with HIV-1 (13, 14, 30, 35, 54). These observations suggest that PARV4 is primarily transmitted though parenteral routes in Western countries (54, 56). In common with infection with the better-characterized human parvovirus B19, infection with PARV4 is associated with a period of acute viremia, followed by seroconversion for antibody and long-term persistence of viral DNA sequences in lymphoid and other tissue (33, 37, 52). Circulating variants of PARV4 have been classified into three distinct genotypes exhibiting approximately 8% nucleotide sequence divergence from each other. Genotypes 1 and 2 circulate in Western countries, while genotype 3 has to date been recorded only in sub-Saharan Africa (45, 55).The third human parvovirus, HBoV (3), shows a number of epidemiological and clinical attributes different from those of both B19 virus and PARV4. HBoV was originally found in the respiratory tract of young children and has been the subject of intense investigation as a potential cause of human respiratory disease (reviewed in references 1, 51, and 62). Although it is frequently detected by PCR in the nasopharynx of viremic individuals with primary infections with lower respiratory tract disease, other coinfecting respiratory viruses are frequently detected (19). HBoV additionally shows long-term, low-level carriage in the respiratory tract after primary infection, which further complicates PCR-based etiological studies (2, 38) and warrants the use of other diagnostic strategies, such as serology (30, 32, 59). In contrast to the rather minimal genetic diversity of B19 virus and PARV4 genotypes, bocaviruses infecting humans are now known to comprise three to four major genetic variants (termed types or species 1 to 4) (23, 24). HBoV1 and HBoV2 show 22%, 33%, and 20% amino acid sequence divergence from each other in the encoded viral nonstructural (NS), NP-1, and structural VP1/VP2 proteins, respectively, the latter potentially leading to antigenic diversity and some loss of antigenic cross-reactivity. A third type/species of HBoV is a chimeric form with a nonstructural gene region (NS, NP1) most similar to HBoV1, a recombination breakpoint in the intergenic region between NP1 and VP1, and structural genes related to those of HBoV2 (4, 23). Current data suggest that only HBoV1 is capable of infecting the respiratory tract; most published large-scale screening studies have failed to detect HBoV2 (or HBoV3) in respiratory samples (10, 11, 60), while all three types/species are detectable in fecal samples, indicating the existence of an alternative or additional site of virus replication (23). Despite extensive inquiry, the exact role of HBoV1 in respiratory disease remains unclear, as is the proposed etiological role of HBoV2 (and possibly HBoV3) in gastroenteritis (4, 11, 23, 50). Very recently, a fourth species/type, HBoV4, has been detected in fecal samples; genetically it also shows evidence for past recombination, with NS and NP1 region sequences grouping with HBoV2, while VP1/VP2 is more closely related to HBoV3 (23).We have little understanding of the past epidemiology, evolution, and origins of human parvoviruses. For both B19 virus and PARV4, evidence has been obtained for a temporal succession of genotypes over time (37, 43); in Europe, B19 virus genotype 1 largely replaced type 2 in the 1960 and 1970s (43), while current data indicate that a similar replacement of PARV4 genotypes occurred within the last 20 years (37). The highly restricted sequence diversity of currently circulating variants of PARV4 and B19 virus and of HBoV1 variants supports the hypothesis of a relatively recent emergence and spread of these viruses in human populations (36, 42, 64).The existence and evolution of parvoviruses on a much longer time scale is suggested by the observations that members of the Erythrovirus and Parvovirus genera both contain viruses that are highly host species specific and that the molecular phylogenies of both genera are largely congruent with those of their hosts (34). This has led to the hypothesis of long-term coevolution of parvoviruses with their host over the 90 million years of mammalian evolution and perhaps beyond. Among erythroviruses, simian homologues of B19 virus have been found in cynomolgus monkeys (44) and rhesus and pig-tailed macaques (16) and more genetically distant viruses have been characterized in chipmunks and cows (9, 63). Divergent homologues of PARV4 in pigs and cows have been described (31), while the bovine and canine parvoviruses distantly related to HBoV are the originally described members of the Bocavirus genus. However, the process of virus-host codivergence is known to be punctuated by occasional cross-species transmissions, including the well-documented spread of feline parvovirus to dogs (46). Based on serological evidence, the possible transmission of simian erythroviruses to animal handlers has been proposed (6).To gain further insights into the origins and evolution of human parvoviruses, we have performed large-scale serological and PCR-based screening of nonhuman primates (chimpanzees and gorillas) and of several species of Old World monkeys (OWMs) for evidence of infection with parvoviruses that are antigenically related to the human B19, PARV4, and HBoV viruses. By PCR, we have sought to genetically characterize homologues of the three autonomous human parvoviruses in apes and Old World monkey species and to analyze their evolutionary relationship to human and other mammalian homologues of these viruses.  相似文献   

4.
Foraging gorillas and chimpanzees employ skilful bimanual techniques to process food plants, and there are wild populations in which 10–20% of individuals have severe hand injuries. We examined the feeding skills of one injured gorilla and two injured chimpanzees, while they dealt with plants for which intact peers employ complex techniques. Feeding efficiency was only slightly compromised in the disabled subjects, and none of them had acquired novel techniques specific to their remaining capacity. Instead, all three subjects used techniques like those of able-bodied individuals, though when several optional methods were available, their balance of preference was different. They adapted the techniques to their disabilities by the flexible substitution of a range of alternative means to achieve each step of the process, including unusual grips, use of one hand instead of two or vice versa, and use of the mouth or a foot. Compensation was at the level of detailed execution rather than overall technique and depended on transferring motor organization to novel effector organs. Our findings have implications for theories of the acquisition of complex manual skills in great apes and for the flexibility of great ape mental skills.  相似文献   

5.
6.
Time-scales of viral evolution and emergence have been studied widely, but are often poorly understood. Molecular analyses of viral evolutionary time-scales generally rely on estimates of rates of nucleotide substitution, which vary by several orders of magnitude depending on the timeframe of measurement. We analysed data from all major groups of viruses and found a strong negative relationship between estimates of nucleotide substitution rate and evolutionary timescale. Strikingly, this relationship was upheld both within and among diverse groups of viruses. A detailed case study of primate lentiviruses revealed that the combined effects of sequence saturation and purifying selection can explain this time-dependent pattern of rate variation. Therefore, our analyses show that studies of evolutionary time-scales in viruses require a reconsideration of substitution rates as a dynamic, rather than as a static, feature of molecular evolution. Improved modelling of viral evolutionary rates has the potential to change our understanding of virus origins.  相似文献   

7.
The conservation of gorillas (Gorilla spp.) and chimpanzees (Pan troglodytes) depends upon knowledge of their densities and distribution throughout their ranges. However, information about ape populations in swamp forests is scarce. Here we build on current knowledge of ape populations by conducting line transect surveys of nests throughout a reserve dominated by swamp forest: the Lac Télé Community Reserve in northern Congo. We estimated gorilla and chimpanzee densities, distributions across habitats, and seasonal changes in abundance. Gorilla density was 2.9 gorillas km–2, but densities varied by habitat (0.3–5.4 gorillas km–2) with highest densities in swamp forest and terra firma mixed forest. Average chimpanzee density is 0.7 chimpanzees km–2 (0.1–1.3 chimpanzees km–2), with highest densities in swamp forest. Habitat was the best predictor of ape nest abundance, as neither the number of human indices nor the distance from the nearest village predicted nest abundance. We recorded significantly greater numbers of apes in terra firma forest during the high-water season than the low-water season, indicating that many gorillas and chimpanzees are at times concentrated in terra firma forest amid a matrix of swamp forest. Seasonally high numbers of apes on terra firma forest islands easily accessible to local people may expose them to substantial hunting pressure. Conversely, the nearly impenetrable nature of swamp forests and their low value for logging makes them promising sites for the conservation of apes.  相似文献   

8.
Via a field study of chimpanzees (Pan troglodytes schweinfurthii) and gorillas (Gorilla gorilla beringei) in Bwindi Impenetrable National Park, Uganda, we found that their diets are seasonally similar, but diverge during lean seasons. Bwindi chimpanzees fed heavily on fruits of Ficus sp., which were largely ignored by the gorillas. Bwindi gorilla diet was overall more folivorous than chimpanzee diet, but was markedly more frugivorous than that of gorillas in the nearby Virunga Volcanoes. During 4 mo of the year Bwindi gorilla diet included more food species than that of the chimpanzees. Three factors in particular—seasonal consumption of fibrous foods by gorillas, interspecific differences in preferred fruit species, and meat consumption by chimpanzees—contributed to dietary divergence between the two species. When feeding on fruits, gorillas ate Myrianthus holstii more frequently than chimpanzees did, while chimpanzees included more figs in their annual diet. Chimpanzee diet included meat of duikers and monkeys; gorilla frequently consumed decaying wood.  相似文献   

9.
Phylogenetic estimation of evolutionary timescales has become routine in biology, forming the basis of a wide range of evolutionary and ecological studies. However, there are various sources of bias that can affect these estimates. We investigated whether tree imbalance, a property that is commonly observed in phylogenetic trees, can lead to reduced accuracy or precision of phylogenetic timescale estimates. We analysed simulated data sets with calibrations at internal nodes and at the tips, taking into consideration different calibration schemes and levels of tree imbalance. We also investigated the effect of tree imbalance on two empirical data sets: mitogenomes from primates and serial samples of the African swine fever virus. In analyses calibrated using dated, heterochronous tips, we found that tree imbalance had a detrimental impact on precision and produced a bias in which the overall timescale was underestimated. A pronounced effect was observed in analyses with shallow calibrations. The greatest decreases in accuracy usually occurred in the age estimates for medium and deep nodes of the tree. In contrast, analyses calibrated at internal nodes did not display a reduction in estimation accuracy or precision due to tree imbalance. Our results suggest that molecular‐clock analyses can be improved by increasing taxon sampling, with the specific aims of including deeper calibrations, breaking up long branches and reducing tree imbalance.  相似文献   

10.
11.
We report prevalences and eggs/protozoa per g (EPG; PPG) of helminths and protozoa in gorillas, chimpanzees, agile mangabeys, indigenous Ba'Aka and Bantu, and western researchers at a remote field site in the Central African Republic. We examined fecal samples for eggs, larvae, proglottids, cysts, amoeba, trophozoites, and flagellates. For helminths, strongylates were most prevalent, infecting 82–94% of nonhuman primates (NH) and 30–93% of human (H) groups, followed by ascaroids (14–88% NH; 0–15% H), and threadworms (0–22% NH; 0–29% H). For protozoa, Entamoeba histolytica (2–100% NH; 33–52% H) and trichomonads (11–88% NH; 0–54% H) were most prevalent. Among gorilla samples (n = 156) there were significant age/sex differences in EPG/PPG for strongylates, threadworms, Entamoeba histolytica, and trichomonads, with infants exhibiting the highest mean EPG/PPG for all parasites except trichomonads. Between group analyses revealed that the Ba'Aka had significantly higher mean EPG of strongylates, ascaroids and threadworms than all other primate groups, except the mangabeys. For Entamoeba histolytica, E. coli, Balantidium coli, and Iodamoeba butschlii, the agile mangabeys had significantly higher mean PPG than other groups; for trichomonads, the chimpanzees, and mangabeys had the highest mean PPG. Relative to other African ape sites, the gorillas and chimpanzees at Mondika appear to have high prevalences of intestinal parasites. This may be the result of the high proportion of swamp and seasonally flooded areas, which provide optimal viability for parasite eggs and ova. At Mondika, the significantly higher parasite levels of Ba'Aka probably result from more traditional methods of hygiene and lack of available medical treatment. All workers at research sites should be monitored and treated to minimize cross-transmission between humans and local fauna.  相似文献   

12.
Penciclovir is a potent antiherpesvirus agent which is highly selective due to its phosphorylation only in virus infected cells. Phosphorylation of one of the hydroxymethyl groups of penciclovir (PCV) creates a chiral centre leading to the possible formation of (R)- and (S)-enantiomers. The absolute configuration and stereospecificity of the PCV-phosphates produced in cells infected with herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2), as well as by HSV-1-encoded thymidine kinase, were determined using isotopically chiral [4′-13C]PCV precursors and 13C NMR spectroscopy of the isolated metabolites. The absolute configuration of penciclovir-triphosphate (PCV-TP) produced in HSV-1-infected cells was shown to be S with an enantiomeric purity of greater than 95%. However, in contrast to HSV-1-infected cells in which none of the (R) enantiomer was detected, about 10% of (R)-PCV-TP was produced in HSV-2-infected cells. Phosphorylation of PCV by HSV-1-encoded thymidine kinase was found to give 75% (S)- and 25% (R)-PCV-monophosphate. The proportion of the (S)-isomer appears to be amplified in the subsequent phosphorylations leading to the triphosphate. © 1993 Wiley-Liss, Inc.  相似文献   

13.
We recorded 310 fresh chimpanzee night nests at 72 nest sites to determine their choice of tree and site for nesting vis-à-vis the effects of sympatric gorillas. Chimpanzees did not use trees for nesting according to their abundance, but instead tended to nest in fruit trees that they used as food sources. Nesting patterns of chimpanzees may vary with nesting group size, the type of vegetation, and fruit species eaten or not eaten by gorillas. When chimpanzees lodged as a small group in the secondary forest, they nested more frequently in trees bearing ripe fruits eaten only by themselves than in those with fruit eaten also by gorillas. When they lodged as a large group in the primary forest, they nested more frequently in trees bearing ripe fruits eaten by both apes. Nest group size is positively correlated with the availability of preferred ripe fruits in secondary forest. These findings not only reflect the larger foraging groups at the larger fruiting trees but also suggest that chimpanzees may have tended to occupy fruiting trees effectively by nesting in them and by forming large nest groups when the fruits attracted gorillas. Competition over fruits between gorillas and chimpanzees, due to their low productivity in the montane forest of Kahuzi, may have promoted the chimpanzee tactics.  相似文献   

14.
In a continuation of our study of dietary differentiation among frugivorous primates with simple stomachs, we present the first comparison of differences in dietary macronutrient content between chimpanzees and cercopithecine monkeys. Previously we have shown that chimpanzee and monkey diets differ markedly in plant part and species content. We now examine whether this diet diversity is reflected in markedly different dietary macronutrient levels or the different feeding strategies yield the same macronutrient levels in their diets. For each primate group we calculated the total weighted mean dietary content of 4 macronutrients: crude lipid (lipid), crude protein (CP), water-soluble carbohydrates (WSC), and total nonstructural carbohydrates (TNC). We also calculated 4 fiber fractions: neutral-detergent fiber (NDF), which includes the subfractions hemicellulose (HC), cellulose (Cs), and sulfuric acid lignin (Ls). The HC and Cs are potentially fermentable fibers and would contribute to the energy provided by plant food, depending on the hind gut fermenting capacity of the individual primate species. The chimpanzee diet contained higher levels of WSC and TNC because during times of fruit abundance the chimpanzees took special advantage of ripe fruit, while the monkeys did not. The monkey diets contained higher levels of CP because the monkeys consumed a constant amount of leaf throughout the year. All four primate species consumed diets with similar NDF levels. However, the chimpanzees also took advantage of periods of ripe fruit abundance to decrease their Ls levels and to increase their HC levels. Conversely, the monkey diets maintained constant levels of the different fiber fractions thoughout the year. Nevertheless, despite these differences, the diets of the 4 frugivores were surprisingly similar, considering the substantial differences in body size. We conclude that the chimpanzee diet is of higher quality, particularly of lower fiber content, than expected on the basis of their body size.  相似文献   

15.
It is plausible that specialized ecological interactions constrain geographic ranges. We address this question in neotropical bees, Centris and Epicharis, that collect oils from flowers of Calceolariaceae, Iridaceae, Krameriaceae, Malpighiaceae, Plantaginaceae, or Solanaceae, with different species exploiting between one and five of these families, which either have epithelial oil glands or hair fields. We plotted the level of oil‐host specialization on a clock‐dated phylogeny for 22 of the 35 species of Epicharis and 72 of the 230 species of Centris (genera that are not sister genera) and calculated geographic ranges (km2) for 23 bee species based on collection data from museum specimens. Of the oil‐offering plants, the Malpighiaceae date to the Upper Cretaceous, whereas the other five families are progressively younger. The stem and crown groups of the two bee genera date to the Cretaceous, Eocene, and Oligocene. Shifts between oil hosts from different families are common in Centris, but absent in Epicharis, and the direction is from flowers with epithelial oil glands to flowers with oil hairs, canalized by bees’ oil‐collecting apparatuses, suitable for piercing epithelia or mopping oil from hair fields. With the current data, a link between host specialization and geographic range size could not be detected.  相似文献   

16.
《Cell host & microbe》2022,30(8):1112-1123.e3
  1. Download : Download high-res image (169KB)
  2. Download : Download full-size image
  相似文献   

17.
Diploblastic eumetazoans of the phylum Cnidaria originated during the Neoproterozoic Era, possibly during the Cryogenian Period. The oldest known fossil cnidarians occur in strata of Ediacaran age and consist of polypoid forms that were either nonbiomineralizing or weakly so. The oldest possible anthozoans, including the genus Ramitubus, may be related to tabulate corals and occur in the Doushantuo Lagerstätte (upper Doushantuo Formation, South China), the age of which is poorly constrained (approximately 585 Ma?). Conulariid scyphozoans may first appear as early as 635–577 Ma (Lantian Formation, South China). A definite conulariid, most similar to Palaeozoic species assigned to the genus Paraconularia, occurs in association with the possible scyphozoan, Corumbella werneri, in the latest Ediacaran (c. 543 Ma) Tamengo Formation of Brazil. Basal Cambrian (c. 540 Ma) phosphorites in the upper Kuanchuanpu Formation (South China) yield solitary polyps of the oldest probable anthozoan (Eolympia pediculata), which appears to have been a stem hexacorallian. This same formation contains fossils interpreted by some authors as pentaradial cubozoan polyps; however, both the oldest known cubozoans and the oldest hydrozoans, all medusae, may actually occur in the Cambrian (Series 3, c. 505 Ma) Marjum Formation (Utah, USA). Although these recently published palaeontological data tend to corroborate the hypothesis that Cnidaria has a relatively deep Neoproterozoic history, the timing of major internal branching events remains poorly constrained, with, for example, the results of some molecular clock analyses indicating that the two cnidarian subphyla (Anthozoaria and Medusozoa) may have originated as many as one billion years ago. Further progress towards elucidating the evolution and early fossil record of cnidarians may accrue from: (1) an intensive search for phosphatized soft parts in possible anthozoans from the Ediacaran Doushantuo Formation; (2) an expanded search for Ediacaran conulariids; and (3) additional detailed analyses of the taphonomy and preservation of Ediacaran and Cambrian cnidarians, including possible pentaradial cubozoan polyps from the Fortunian upper Kuanchuanpu Formation.  相似文献   

18.
Molecular sequences rarely evolve at a constant rate. Yet, even in instances where a clock can be assumed or approximated for a particular set of sequences, fossils or clear patterns of vicariance are rarely available to calibrate the clock. Thus, obtaining absolute timing for diversification of natural lineages can prove difficult. Unfortunately, without absolute time we cannot develop a complete understanding of important evolutionary processes, including adaptive radiations and key innovations. In the present study, the coding sequence of the nuclear gene, glyceraldehyde 3-phosphate dehydrogenase (gpd), extracted from the paleotropical moss, Mitthyridium, was found to exhibit clocklike behavior and used to reconstruct the history of 80 distinct molecular lineages that cover the full geographic range of Mitthyridium. Two separate clades endemic to two geographically distinct oceanic archipelagos were revealed by this phylogenetic analysis. This allowed the use of island age (as derived from potassium-argon dating) as a maximum age of origin of each monophyletic group, providing two independent time anchors for the clock found in gpd, the final piece needed to study absolute time. Based on results from both maximum age calibrations, which separately yielded highly consistent estimates, the ancestor of this moss group arose approximately 8 million years ago, and then diversified at the rapid rate of 0.56 +/- 0.004 new lineages per million years. Such a rate is on par with the highest diversification rates reported in the literature including rapidly radiating insular groups like the Hawaiian silversword alliance, a classic example of an adaptive radiation. Using independent sources of data, it was found that neither the age nor diversification estimates were affected by the use of molecular lineages rather than species as the operational taxonomic units. Identifying the cause for this rapid diversification requires further testing, but it appears to be related to a general shift in reproductive strategy from sexual to asexual, which may be a key innovation for this young group.  相似文献   

19.
20.
A striking example of plant/pollinator trait matching is found between Andean species of Passiflora with 6–14-cm-long nectar tubes and the sword-billed hummingbird, Ensifera ensifera, with up to 11-cm-long bills. Because of the position of their anthers and stigmas, and self-incompatibility, these passionflower species depend on E. ensifera for pollination. Field observations show that the bird and plant distribution match completely and that scarcity of Ensifera results in reduced passionflower seed set. We here use nuclear and plastid DNA sequences to investigate how often and when these mutualisms evolved and under which conditions, if ever, they were lost. The phylogeny includes 26 (70%) of the 37 extremely long-tubed species, 13 (68%) of the 19 species with tubes too short for Ensifera and four of the seven bat-pollinated species for a total of 43 (69%) of all species in Passiflora supersection Tacsonia (plus 11 outgroups). We time-calibrated the phylogeny to infer the speed of any pollinator switching. Results show that Tacsonia is monophyletic and that its stem group dates to 10.7 Ma, matching the divergence at 11.6 Ma of E. ensifera from its short-billed sister species. Whether pollination by short-billed hummingbirds or by Ensifera is the ancestral condition cannot be securely inferred, but extremely long-tubed flowers exclusively pollinated by Ensifera evolved early during the radiation of the Tacsonia clade. There is also evidence of several losses of Ensifera dependence, involving shifts to bat pollination and shorter billed birds. Besides being extremely asymmetric—a single bird species coevolving with a speciose plant clade—the Ensifera/Passiflora system is a prime example of a specialized pollinator not driving plant speciation, but instead being the precondition for the maintenance of isolated populations (through reliable seed set) that then underwent allopatric speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号