首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential use of n-dodecane as an oxygen vector for enhancement of Crypthecodinium cohnii growth and docosahexaenoic acid (DHA) production was studied. The volumetric fraction of oxygen vector influenced the gas–liquid volumetric mass transfer coefficient k L a positively. The k L a increased almost linearly with the increase of volumetric fraction of n-dodecane up to 1%. The stirring rate showed a higher influence on the k L a than the aeration rate. The effects of this hydrocarbon on C. cohnii growth and DHA production were then investigated. A control batch fermentation without n-dodecane addition (CF) and a batch fermentation where n-dodecane 1% (v/v) was added (DF) were carried out simultaneously under the same experimental conditions. It was found that, before 86.7 h of fermentation, the biomass concentration, the specific growth rate, the DHA, and total fatty acids (TFA) production were higher in the CF. After this fermentation time, the biomass concentration, the DHA and TFA production were higher in the DF. The highest DHA content of biomass (6.14%), DHA percentage of TFA (51%), and DHA production volumetric rate r DHA (9.75 mg l−1 h−1) were obtained at the end of the fermentation with n-dodecane (135.2 h). The dissolved oxygen tension (DOT) was always higher in the DF, indicating a better oxygen transfer due to the oxygen vector presence. However, since the other C. cohnii unsaturated fatty acids percentages did not increase with the oxygen availability increase due to the n-dodecane presence, a desaturase oxygen-dependent mechanism involved in the C. cohnii DHA biosynthesis was not considered to explain the DHA production increase. A selective extraction through the n-dodecane was suggested.  相似文献   

2.
3.
The effects of aliphatic hydrocarbons (n-hexadecane andn-dodecane) on the volumetric oxygen mass transfer coefficient (k L a) were studied in flat alveolar airlift reactor and continuous stirred tank reactors (CSTRs). In the flat alveolar airlift reactor, high aeration rates (>2 vvm) were required in order to obtain efficient organic-aqueous phase dispersion and reliablek L a measurements. Addition of 1% (v/v)n-hexadecane orn-dodecane increased thek l a 1.55-and 1.33-fold, respectively, compared to the control (superficial velocity: 25.8×10−3 m/s, sparger orifice diameter: 0.5 mm). Analysis of the gas-liquid interfacial areaa and the liquid film mass transfer coefficientk L suggests that the observedk L a increase was a function of the media's liquid film mass transfer. Addition of 1% (v/v)n-hexadecane orn-dodecane to analogous setups using CSTRs led to ak L a increase by a factor of 1.68 and 1.36, respectively (superficial velocity: 2.1×10−3 m/s, stirring rate: 250 rpm). These results propose that low-concentration addition of oxygen-vectors to aerobic microbial cultures has additional benefit relative to incubation in purely aqueous media.  相似文献   

4.
A rapid and internally consistent technique has been developed to measure the volumetric oxygen transfer coefficient, kLa, in fermentation systems. The method consists of tracing the dissolved O2 concentration of the fermentation broth during a short interruption of the aeration. The O2 concentration trace thus obtained can be analyzed to determine the values of kLa. Additional experiments on prolonged O2 starvation, carried out to find the limitation of the technique, suggest that O2 uptake rate will vary if a prolonged (2–10 min.) O2 starvation occurs.  相似文献   

5.
Oxygen supply and light irradiation exhibited significant influence on the production of anthocyanin (red pigments) by suspended cultures of Perilla frutescens cells in a 2.6-l aerated and agitated bioreactor with a six-flat-bladed turbine. When the initial volumetric oxygen transfer coefficient (kLa) value was below 10 h−1 and light was not irradiated, the anthocyanin production was never over 0.6 g/l. By modification of a gas sparger, the oxygen supply capability of the bioreactor was remarkably improved, and 1.65 g/l of anthocyanin was obtained at an enhanced kLa value of 15.4 h−1. Moreover, it was found that anthocyanin accumulation at a 0.2 vvm aeration rate was higher than that at 0.1 or 0.4 vvm in the modified bioreactor, with the other cultivation conditions kept the same. Light irradiation also significantly increased anthocyanin accumulation in the stirred reactor at a low kLa value, i.e. 9.9 h−1. However, a combination of irradiation with a higher oxygen supply reduced the production of anthocyanin in the bioreactor.  相似文献   

6.
The previous works on simulated broths are continued and developed for Propionibacterium shermanii broths. The obtained results indicated the considerable increase of k L a in presence of n-dodecane as oxygen-vector and the existence of a certain value of hydrocarbon concentration that corresponds to the maximum mass transfer rate of oxygen. The magnitude of the positive effect of the oxygen-vector strongly depends on operational conditions of the bioreactor, on broth characteristics and on P. shermanii concentration.  相似文献   

7.
Results of pilot plant studies using an external-loop airlift bioreactor (170 l fermentation volume, liquid height-to-riser diameter: 27, loop-to-tower cross-section-area: 0.1225) have proven the relative merits of such a system in the bacitracin biosynthesis produced by the Bacillus licheniformis submerged aerobic cultivation. The results were compared to those obtained in a pilot-scale stirred-tank bioreactor with the same values of kLa. Excepting the aeration rate of 0.2 vvm, the fermentation process performed at 0.5 vvm and 1/0 vvm, respectively, unfolded similarly in the two fermentation devices with respect to the cell mass production, substrate utilization and bacitracin production during the fermentation process. In the riser section of the airlift bioreactor, the dissolved oxygen levels were higher, while in the downcomer section they were lower than those realized in the stirred tank bioreactor. Power requirements of the airlift fermenter were by 17–64% lower than those for a mechanically agitated system, depending on the aeration rates, which led to an important energy saving. Moreover, the lack of mechanical devices in the airlift system provides safety and a more gentle environment for the cultivation of microorganisms.  相似文献   

8.
The calculation and scale-up of fermentation processes need kLa as one of the most important engineering data. There are two methods to determine kLa depending on power input, aeration rate and the properties of the fermentation broth: static with a balance between air supply and exit, dynamic gassing out with following the changes of dissolved oxygen concentration during periods of air off and a following air on. Within early intervals of fermentation time the data from both methods agree well, while for later time intervals the dynamic method always gives much lower values for kLa than static. The only explanations for this phenomenon are quick changes in the oxygen metabolism or an enzymatic storage of oxygen. For both gassing out and saturation period it is possible to calculate the same absolute amounts of this additional oxygen.  相似文献   

9.
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses; therefore, the knowledge of the volumetric mass transfer coefficient (kLa) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the kLa values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium, in the absence of biomass. Aeration and agitation were selected as the independent variables using a 22 full factorial design. Both variables showed statistically significant effects on kLa, and the highest values of this parameter in both media for simple fermentation (241 s−1) and extractive fermentation with ATPS (70.3 s−1) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The kLa values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N3D2) and superficial gas velocity (Vs) determined in distilled water (α = 0.39 and β = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (α = 0.38 and β = 0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (α = 0.50 and β = 1.0). A reasonable agreement was found between the experimental data of kLa for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions.  相似文献   

10.
The production of acetaldehyde, a flavoring agent in food, by Zymomonas mobilis was carried out in batch culture. The volatilization rate constant (kv) of acetaldehyde and the initial volumetric oxygen transfer coefficient (kLa0) in an Erlenmeyer flask with a cotton-plug (cotton-flask) and an aerated-flask with a forced-air system (aerated-flask) were measured. The culture environment in the aerated-flask was found to be very different from that in the cotton-flask. Cell growth in a cotton-flask was strongly inhibited, making practical acetaldehyde production in cotton-flask very difficult. On the other hand, acetaldehyde production in the aerated-flask increased while the fermentation time decreased with increases in the air flow rate. The kv value of acetaldehyde in a jar fermentor was affected mainly by air flow rate. By considering both the oxygen transfer rate and the ventilation effect on the culture, it was possible to scale-up from the aerated-flask to a jar fermentor. In the jar fermentor, production of acetaldehyde and growth inhibition by acetaldehyde were affected mainly by the kLa0 and kv, values, respectively. The overall production of acetaldehyde in the jar fermentor under the optimum kLa0 and kv conditions was 6.64 g/l (Yp/s: 0.27), which was about 1.5 times higher than the maximum concentration obtained in the aerated-flask.  相似文献   

11.
《Process Biochemistry》2004,39(11):1433-1439
Rice straw hemicellulosic hydrolysate containing a high xylose concentration was used as fermentation medium to evaluate the kinetic behavior of Candida guilliermondii yeast (FTI 20037) during the bioconversion of xylose into xylitol. Assays were conducted first with detoxified and non-detoxified (raw) hydrolysates and semi-synthetic medium in agitated flasks, and second with detoxified hydrolysate in a stirred-tank bioreactor at a given oxygen transfer rate. The results for the agitated flasks showed that in detoxified hydrolysate the xylose-to-xylitol bioconversion by the yeast was as effective as in synthetic medium and 47% higher than in raw hydrolysate. In the stirred-tank bioreactor, the kinetic behavior of the yeast in detoxified hydrolysate was slower, resulting in smaller values of fermentative parameters, probably due to unsuitability of the oxygen transfer rate employed (KLa=22 h−1).  相似文献   

12.
A modified dynamic method is introduced to determine the oxygen transfer coefficient, KL a, in aerobic fermentation systems which are not mechanically agitated. The dissolved oxygen concentration is measured continuously following a step down or a step up in aeration rate. The response curve is analyzed to obtain the value of KLa Experiments were carried out at several different air flow rates using mixed culture in concurrent tower fermentors with motionless mixers. The effect of sieve trays and Koch motionless mixers on oxygen transfer was investigated using a 3 in. diameter column. The values of KL aobtained at the bottom of each column were found to be higher than those obtained at the top. Comparison of the results showed that the values ofKL a were higher when the Koch mixers were used than when the sieve trays were employed. The oxygen uptake rate by the organisms rX, is also calculated by using the KL a values obtained. They compare favorably withthe experimentally measured values.  相似文献   

13.
14.
Production of lipopeptides fengycin and surfactin in rotating discs bioreactor was studied. The effects of rotation velocity and the addition of agitators between the discs on volumetric oxygen transfer coefficient k L a were firstly studied in model media. Then the production of lipopeptides was also studied at different agitation conditions in the modified bioreactor (with agitators). The effect of agitation on dissolved oxygen, on submerged and immobilized biomass, on lipopeptide concentrations and yields and on the selectivity of the bioreaction was elucidated and discussed. The proposed modified rotating discs bioreactor allowed to obtain high fengycin concentrations (up to 787 mg L?1), but also better selectivity of the bioreaction towards fengycin (up to 88 %) and better yields of fengycin per glucose (up to 62.9 mg g?1), lipopeptides per glucose (up to 71.5 mg g?1), fengycin per biomass (up to 309 mg g?1) and lipopeptides per biomass (up to 396 mg g?1) than those reported in the literature. Highest fengycin production and selectivity were obtained at agitation velocity of 30 min?1. The proposed non-foaming fermentation process could contribute to the scale-up of lipopeptide fermentors and promote the industrial production of fengycin. The proposed bioreactor and bioprocess could be very useful also for the production of other molecules using bioprocesses requiring bubbleless oxygen supply.  相似文献   

15.
Fermentations of Xanthomonas campestris, NRRL B-1459, were carried out in a bubble column fermentor (BCF) and in a stirred tank fermentor (STF) to allow comparison of representative variables measured during the microbial growth and the gum production. The microbial growth phase was described by a logistic rate equation where maximum cell concentration was provided by nitrogenous compounds balance. The average value of the maximum specific growth rate was higher in the bubble column (μ M =0.5 h?1) than in the stirred reactor (μ M =0.4 h?1). The upper values of xanthan yield (Y g-x =0.65 kg xanthan/kg glucose; Y O 2?x xanthan/kg oxygen) and specific production rate (q x =0.26 kg xanthan/kg biomass · h) were measured when the oxygen transfer coefficient was kept up above 80 h?1 in the STF fermentor. In the bubble column the fermentation achieved in the same culture medium lasts two times longer than in the stirred aerated tank; this was attributed to the low value of the oxygen transfer coefficient (K L a =20 h?1) at the beginning of the gum synthesis phase. The results obtained in the stirred tank were the basis to estimate the optimal biomass concentration which enables to achieve a culture in non-limiting oxygen transfer conditions. Nevertheless, the transfer characteristics were more homogeneous in the bubble column than in the stirred tank where dead stagnant zones were observed. This is of primary importance when establishing fermentation kinetics models.  相似文献   

16.
Oxygen mass transfer was studied in conventional, bead mill and baffled roller bioreactors. Using central composite rotational design, impacts of size, rotation speed and working volume on the oxygen mass transfer were evaluated. Baffled roller bioreactor outperformed its conventional and bead mill counterparts, with the highest k L a obtained in these configurations being 0.58, 0.19, 0.41 min?1, respectively. Performances of the bead mill and baffled roller bioreactor were only comparable when a high bead loading (40 %) was applied. Regardless of configuration increase in rotation speed and decrease in working volume improved the oxygen mass transfer rate. Increase in size led to enhanced mass transfer and higher k L a in baffled roller bioreactor (0.49 min?1 for 2.2 L and 1.31 min?1 for 55 L bioreactors). Finally, the experimentally determined k L a in the baffled roller bioreactors of different sizes fit reasonably well to an empirical correlation describing the k L a in terms of dimensionless numbers.  相似文献   

17.
By means of improved feedback control kLa measurements become possible at a precision and reproducibility that now allow a closer look at the influences of power input and aeration rate on the oxygen mass transfer. These measurements are performed online during running fermentations without a notable impact on the biochemical conversion processes. A closer inspection of the mass transfer during cultivations showed that at least the number of impellers influences mass transfer and mixing: On the laboratory scale, two hollow blade impellers clearly showed a larger kLa than the usually employed three impeller versions when operated at the same agitation power and aeration rate. Hollow blade impellers are preferable under most operational conditions because of their perfect gas handling capacity. Mixing time studies showed that these two impeller systems are also preferable with respect to mixing. Furthermore the widths of the baffle bars depict a significant influence on the kLa. All this clearly supports the fact that it is not only the integral power density that finally determines kLa.  相似文献   

18.
This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (μmax) augmented from 0.17 to 0.22 h−1 and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (kLa) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D50) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.  相似文献   

19.
The impact of mass transfer on productivity can become a crucial aspect in the fermentative production of bulk chemicals. For highly aerobic bioprocesses the oxygen transfer rate (OTR) and productivity are coupled. The achievable space time yields can often be correlated to the mass transfer performance of the respective bioreactor. The oxygen mass transfer capability of a jet aerated loop reactor is discussed in terms of the volumetric oxygen mass transfer coefficient kLa [h?1] and the energetic oxygen transfer efficiency E [kgO2 kW?1 h?1]. The jet aerated loop reactor (JLR) is compared to the frequently deployed aerated stirred tank reactor. In jet aerated reactors high local power densities in the mixing zone allow higher mass transfer rates, compared to aerated stirred tank reactors. When both reactors are operated at identical volumetric power input and aeration rates, local kLa values up to 1.5 times higher are possible with the JLR. High dispersion efficiencies in the JLR can be maintained even if the nozzle is supplied with pressurized gas. For increased oxygen demands (above 120 mmol L?1 h?1) improved energetic oxygen transfer efficiencies of up to 100 % were found for a JLR compared to an aerated stirred tank reactor operating with Rushton turbines.  相似文献   

20.
The production of Cephalosporin-C (CPC) a secondary metabolite, using a mold Acremonium chrysogenum was studied in a lab scale Internal loop air lift reactor. Cephalosporin-C production process is a highly aerobic fermentation process. Volumetric gas–liquid mass transfer coefficient (kLa) and viscosity (η) were evaluated, during the growth and production phases of the microbial physiology. An attempt has been made to correlate the broth viscosity, η and volumetric oxygen transfer coefficient, kLa during the Cephalosporin-C production in an air lift reactor. The impact of biomass concentration and mycelial morphology on broth viscosity has been also evaluated. The broth exhibits a typical non-Newtonian fermentation broth. Rheology parameters like consistency index and fluidity index are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号