首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel inhibitor of lactate transport, AR-C122982, was used to study the effect of inhibiting the monocarboxylate transporters MCT1 and MCT2 on cortical brain slice metabolism. We studied metabolism of l-[3-13C]lactate, and d-[1-13C]glucose under a range of conditions. Experiments using l-[3-13C]lactate showed that the inhibitor AR-C122982 altered exchange of lactate. Under depolarizing conditions, net flux of label from d-[1-13C]glucose was barely altered by 10 or 100 nM AR-C122982. In the presence of AMPA or glutamate there were increases in net flux of label and metabolic pool sizes. These data suggest lactate may supply compartments in the brain not usually directly accessed by glucose. In general, it would appear that movement of lactate between cell types is not essential for metabolic activity, with the heavy metabolic workloads imposed being unaffected by inhibition of MCT1 and MCT2. Further experiments investigating the mechanism of operation of AR-C122982 are necessary to corroborate this finding.  相似文献   

2.
[1-(13) C]glucose metabolism in the rat brain was investigated after intravenous infusion of the labelled substrate. Incorporation of the label into metabolites was analysed by NMR spectroscopy as a function of the infusion time: 10, 20, 30 or 60 min. Specific enrichments in purified mono- and dicarboxylic amino acids were determined from (1) H-observed/(13) C-edited and (13) C-NMR spectroscopy. The relative contribution of pyruvate carboxylase versus pyruvate dehydrogenase (PC/PDH) to amino acid labelling was evaluated from the enrichment difference between either C2 and C3 for Glu and Gln, or C4 and C3 for GABA, respectively. No contribution of pyruvate carboxylase to aspartate, glutamate or GABA labelling was evidenced. The pyruvate carboxylase contribution to glutamine labelling varied with time. PC/PDH decreased from around 80% after 10 min to less than 30% between 20 and 60 min. This was interpreted as reflecting different labelling kinetics of the two glutamine precursor glutamate pools: the astrocytic glutamate and the neuronal glutamate taken up by astrocytes through the glutamate-glutamine cycle. The results are discussed in the light of the possible occurrence of neuronal pyruvate carboxylation. The methods previously used to determine PC/PDH in brain were re-evaluated as regards their capacity to discriminate between astrocytic (via pyruvate carboxylase) and neuronal (via malic enzyme) pyruvate carboxylation.  相似文献   

3.
Dynamic nuclear polarization (DNP) is an emerging technique for increasing the sensitivity (>10,000-fold) of magnetic resonance spectroscopy and imaging (MRSI), in particularly for low-γ nuclei. DNP methodology is based on polarizing nuclear spins in an amorphous solid state at low temperature (ca. 1 K) through coupling of the nuclear spins with unpaired electron spins that are added to the sample via an organic free radical. In an amorphous solid state, the high electron spin polarization can be transferred to the nuclear spins by microwave irradiation. While this technique has been utilized in solid-state research for many years, it is only recently that dissolution methods and the required hardware have been developed to produce the high nuclear polarization provided by DNP to produce injectable hyperpolarized solutions suitable for in vivo studies. It has been applied to a number of 13C-labeled cell metabolites in biological systems and their real-time metabolic conversion has been imaged. This review focuses briefly on the DNP methodology and the significant molecules investigated to date in preclinical cancer models, in terms of their downstream metabolism in vivo or the biological processes that they can probe. In particular, conversion between hyperpolarized 13C-labeled pyruvate and lactate, catalyzed by lactate dehydrogenase, has been shown to have a number of potential applications such as diagnosis, staging tumor grade, and monitoring therapy response. Strategies for making this technique more viable to use in clinical settings have been discussed.  相似文献   

4.
This study explored the utility of1H and13C magnetic resonance spectroscopy to study a standard synaptosomally enriched fraction (P2 pellet) made from rat cerebrum. The preparations contained high concentrations of N-acetylaspartate and -aminobutyric acid and low concentrations of glutamine, indicating that they were in fact rich in neuronal cytosol. The metabolic competence of the preparation was assessed by quantitative measurements of its ability to convert [1-13C]glucose into lactate, glutamate, aspartate, and other metabolites under well oxygenated conditions in 30 minutes. The minimum mean glycolytic rate was 0.8 mM glucose/min and the flow through the tricarboxylic acid cycle was equivalent to 0.2 mM glucose/min.Abbreviations ppm parts per million (chemical shift scale) - NMR nuclear magnetic resonance - GABA -aminobutyric acid - PBS phosphate-buffered normal saline solution - TSP 3-trimethylsilylpropionate During the performance of these studies Dr. A.P. Burlina was on leave from Instituto di Clinica delle Malattie Nervose e Mentali, University of Padua, Padua, Italy.  相似文献   

5.
This study reports the novel use of nucleic acid stable isotope probing (NA-SIP) to identify metabolically active ([13C]-acetate assimilating) bacteria in freshwater biofilms. Currently, a little is known of the factors affecting the structure and activity of these complex microbial biofilm communities, although it is likely that they are influenced by riparian vegetation through attenuation of light and alteration of allochthonous inputs of carbon. NA-SIP was used to investigate the effect of varying light regimes on [13C]-acetate assimilating bacteria within laboratory biofilm microcosms. Differences in clone libraries of 16S rRNA and rRNA genes from 13C-labelled and unlabelled nucleic acids indicated differential uptake of acetate and the rapid transfer of 13C to organisms at a higher trophic level. Biofilm communities incubated in the dark changed least over time and retained a significant fraction of phototrophic organisms. Incubation under elevated light caused the greatest change in bacterial community structure. Contrary to expectation, a complete loss of chlorophyll containing organisms occurred within this treatment, challenging current thinking that elevated light promotes communities dominated by photoautotrophs in nutrient enriched environments.  相似文献   

6.
To clarify the unique characteristics of amino acid metabolism derived from glucose in the central nervous system (CNS), we injected [1-13C]glucose intraperitoneally to the rat, and extracted the free amino acids from several kinds of tissues and measured the amount of incorporation of13C derived from [1-13C]glucose into each amino acid using13C-magnetic resonance spectroscopy (NMR). In the adult rat brain, the intensities of resonances from13C-amino acids were observed in the following order: glutamate, glutamine, aspartate, -aminobutyrate (GABA) and alanine. There seemed no regional difference on this labeling pattern in the brain. However, only in the striatum and thalamus, the intensities of resonances from [2-13C]GABA were larger than that from [2,3-13C]aspartate. In the other tissues, such as heart, kidney, liver, spleen, muscle, lung and small intestine, the resonances from GABA were not detected and every intensity of resonances from13C-amino acids, except13C-alanine, was much smaller than those in the brain and spinal cord. In the serum,13C-amino acid was not detected at all. When the rats were decapitated, in the brain, the resonances from [1-13C]glucose greatly reduced and the intensities of resonances from [3-13C]lactate, [3-13C]alanine, [2, 3, 4-13C]GABA and [2-13C]glutamine became larger as compared with those in the case that the rats were sacrificed with microwave. In other tissues, the resonances from [1-13C]glucose were clearly detected even after the decapitation. In the glioma induced by nitrosoethylurea in the spinal cord, the large resonances from glutamine and alanine were observed; however, the intensities of resonances from glutamate were considerably reduced and the resonances from GABA and aspartate were not detected. These results show that the pattern of13C label incorporation into amino acids is unique in the central nervous tissues and also suggest that the metabolic compartmentalization could exist in the CNS through the metabolic trafficking between neurons and astroglia.Abbreviations NMR nuclear magnetic resonance - GABA -aminobutyrate - GFAP glial fibrillary acidic protein Special issue dedicated to Dr. Bernard W. Agranoff.  相似文献   

7.
Yan WL  Sun DY  Lin XT  Jiang YB  Sun X 《Life sciences》2006,78(8):838-843
L-[1-13C] phenylalanine breath tests (PheBTs) have been used to determine the hepatocyte functional capacity of patients. This study investigated the relationship between the PheBT parameter 13C excretion rate constant (PheBT-k) and activity of the phenylalanine metabolic rate-limiting enzyme phenylalanine hydroxylase (PAH) in rat liver. We noted that the time-course curves of 13C excretion presented as a single peak, which appeared 2 min after administration of L-[1-13C] phenylalanine (13C-Phe). 13C excretion during exhalation can be divided into a slow phase and a rapid phase. The PheBT-k in rats with carbon tetrachloride acute liver injury was.significantly lower than that of control rats. The rapid phase 13C disposition constants of the acute liver injured rats did not differ from that of the controls. The peak value of 13C abundance in the breath of the acute liver injured rats was markedly higher than that of the control group. Total liver PAH activity in the acute liver injured rats was significantly lower than that in the control group. PheBT-k was highly correlated with the total activity of liver PAH (r = 0.92, P < 0.001). The present findings indicate that PheBT results reflect PAH activity levels. The PheBT-k parameter is a sensitive index that can be used to evaluate PAH function in the liver. In addition we demonstrated that the rodent model used in this study is a valuable tool for basic research studies of the breath test.  相似文献   

8.
Jeon SH  Lee MY  Kim SJ  Joe SG  Kim GB  Kim IS  Kim NS  Hong CU  Kim SZ  Kim JS  Kang HS 《FEBS letters》2007,581(30):5929-5934
Taurine has been reported to influence bone metabolism, and its specific transport system, the taurine transporter, is expressed in osteoblasts. The mean [Mg2+]i was 0.51+/-0.01 mM in normal culture media. Taurine caused an increase in [Mg(2+)]i by 0.72+/-0.04 mM in human osteoblast (HOB) cells. This increment in [Mg2+]i was inhibited significantly by PD98059, nifedipine, lidocaine, and imipramine. Taurine was also shown to stimulate the activation of ERK 1/2. This taurine-stimulated ERK 1/2 activation was inhibited by PD98059. In the present study, taurine was shown to increase cell proliferation and generate an increase in [Mg2+]i accompanied by ERK 1/2 activation in HOB cells.  相似文献   

9.
Metabolic networks are complex, intersecting, and composed of numerous enzyme-catalyzed biochemical reactions that transfer various molecular moieties among metabolites. Thus, robust reconstruction of metabolic networks requires metabolite moieties to be tracked, which cannot be readily achieved with mass spectrometry (MS) alone. We previously developed an Ion Chromatography-ultrahigh resolution-MS1/data independent-MS2 method to track the simultaneous incorporation of the heavy isotopes 13C and 15N into the moieties of purine/pyrimidine nucleotides in mammalian cells. Ultrahigh resolution-MS1 resolves and counts multiple tracer atoms in intact metabolites, while data independent-tandem MS (MS2) determines isotopic enrichment in their moieties without concern for the numerous mass isotopologue source ions to be fragmented. Together, they enabled rigorous MS-based reconstruction of metabolic networks at specific enzyme levels. We have expanded this approach to trace the labeled atom fate of [13C6]-glucose in 3D A549 spheroids in response to the anticancer agent selenite and that of [13C5,15N2]-glutamine in 2D BEAS-2B cells in response to arsenite transformation. We deduced altered activities of specific enzymes in the Krebs cycle, pentose phosphate pathway, gluconeogenesis, and UDP-GlcNAc synthesis pathways elicited by the stressors. These metabolic details help elucidate the resistance mechanism of 3D versus 2D A549 cultures to selenite and metabolic reprogramming that can mediate the transformation of BEAS-2B cells by arsenite.  相似文献   

10.
Phosphofructokinase-1 plays a key role in the regulation of carbohydrate metabolism. Its activity can be used as an indicator of the glycolytic flux in a tissue sample. The method most commonly employed to determine phosphofructokinase-1 activity is based on oxidation of NADH by the use of aldolase, triosephosphate isomerase, and alpha-glycerophosphate dehydrogenase. This method suffers from several disadvantages, including interactions of the auxiliary enzymes with phosphofructokinase-1. Other methods that have been used also require auxiliary enzymes or are less sensitive than a coupled assay. Here, we propose a direct method to determine phosphofructokinase-1 activity, without the use of auxiliary enzymes. This method employs fructose-6-phosphate and ATP labeled with 32P in the gamma position ([gamma-32P]ATP), and leads to the formation of ADP and fructose-1,6-bisphosphate labeled with 32P ([1-32P]fructose-1,6-bisphosphate). Activated charcoal is used to adsorb unreacted [gamma-32P]ATP, and the radioactive product in the supernatant, [1-32P]fructose-1,6-bisphosphate, is analyzed on a liquid scintillation counter. The proposed method is precise and relatively inexpensive, and can be applied to determine phosphofructokinase-1 activity in cellular extracts as well as in the purified enzyme.  相似文献   

11.
Octopine dehydrogenase [N2-(d-1-carboxyethyl)-l-arginine:NAD+ oxidoreductase] (OcDH) from the adductor muscle of the great scallop Pecten maximus catalyzes the reductive condensation of l-arginine and pyruvate to octopine during escape swimming. This enzyme, which is a prototype of opine dehydrogenases (OpDHs), oxidizes glycolytically born NADH to NAD+, thus sustaining anaerobic ATP provision during short periods of strenuous muscular activity. In contrast to some other OpDHs, OcDH uses only l-arginine as the amino acid substrate. Here, we report the crystal structures of OcDH in complex with NADH and the binary complexes NADH/l-arginine and NADH/pyruvate, providing detailed information about the principles of substrate recognition, ligand binding and the reaction mechanism. OcDH binds its substrates through a combination of electrostatic forces and size selection, which guarantees that OcDH catalysis proceeds with substrate selectivity and stereoselectivity, giving rise to a second chiral center and exploiting a “molecular ruler” mechanism.  相似文献   

12.
The compartmentation of amino acid metabolism is an active and important area of brain research. 13C labeling and 13C nuclear magnetic resonance (NMR) are powerful tools for studying metabolic pathways, because information about the metabolic histories of metabolites can be determined from the appearance and position of the label in products. We have used 13C labeling and 13C NMR in order to investigate the metabolic history of gamma-aminobutyric acid (GABA) and glutamate in rat brain. [1-13C]Glucose was infused into anesthetized rats and the 13C labeling patterns in GABA and glutamate examined in brain tissue extracts obtained at various times after infusion of the label. Five minutes after infusion, most of the 13C label in glutamate appeared at the C4 position; at later times, label was also present at C2 and C3. This 13C labeling pattern occurs when [1-13C]glucose is metabolized to pyruvate by glycolysis and enters the pool of tricarboxylic acid (TCA) intermediates via pyruvate dehydrogenase. The label exchanges into glutamate from the TCA cycle pool through glutamate transaminases or dehydrogenase. After 30 min of infusion, approximately 10% of the total 13C in brain extracts appeared in GABA, primarily (greater than 80%) at the amino carbon (C4), indicating that the GABA detected is labeled through pyruvate carboxylase. The different labeling patterns observed for glutamate and GABA show that the large detectable glutamate pool does not serve as the precursor to GABA. Our NMR data support previous experiments suggesting compartmentation of metabolism in brain, and further demonstrate that GABA is formed from a pool of TCA cycle intermediates derived from an anaplerotic pathway involving pyruvate carboxylase.  相似文献   

13.
Alkaline incubation of NADH results in the formation of a very potent inhibitor of lactate dehydrogenase. High resolution mass spectroscopy along with NMR characterization clearly showed that the inhibitor is derived from attachment of a glycolic acid moiety to the 4-position of the dihydronicotinamide ring of NADH. The very potent inhibitor is competitive with respect to NADH. The inhibitor added in submicromolar concentrations to cardiomyocytes protects them from damage caused by hypoxia/reoxygenation stress. In isolated mouse hearts, addition of the inhibitor results in a substantial reduction of myocardial infarct size caused by global ischemia/reperfusion injury.  相似文献   

14.
Novak M. and Blackburn B. J. 1988. A nuclear magnetic resonance study of the d-[13C6]glucose metabolism of Mesocestoides corti tetrathyridia in the absence and presence of monensin. International Journal for Parasitology18: 1029–1033. The effect of monensin on the glucose metabolism of Mesocestoides corti tetrathyridia was studied using 1H and 13C nuclear magnetic resonance (n.m.r.) spectroscopy. Signals due to lactate, succinate, acetate and alanine were identified in the spectra of the excretory products of tetrathyridia fed d-[13C6]glucose in vitro for 120 min. Monensin, at a concentration of 10 μm, inhibited glucose uptake across the brush border of the tetrathyridia, as indicated by a higher level of labelled hexose and lower levels of metabolic end products in ionophore-containing culture medium. The possible action of monensin on the glucose transport mechanism is discussed.  相似文献   

15.
Harrison PW  Kruger NJ 《Phytochemistry》2008,69(17):2920-2927
The aim of this study was to examine whether flux through the pathways of carbohydrate oxidation is accurately reflected in the pattern of 14CO2 release from positionally labelled [14C]substrates in conventional radiolabel feeding studies. Heterotrophic cell suspension cultures of Arabidopsis thaliana were used for this work. The presence of an alkaline trap to capture metabolically generated 14CO2 had no significant effect on the ratio of 14CO2 release from specifically labelled [14C]substrates, or on the metabolism of [U-14C]glucose by the cells. Although the amount of 14CO2 captured in a conventional time-course study was only about half of that released from a sample acidified at an equivalent time point, the ratios of 14CO2 released from different positionally labelled [14C]glucose and [1-14C]gluconate were the same in untreated and acidified samples. Less than 5% of radioactivity supplied to the growth medium as [14C]bicarbonate was incorporated into acid-stable compounds, and there was no evidence for appreciable reassimilation of 14CO2 generated intracellularly during oxidation of [1-14C]gluconate by the cells. It is concluded that the ratio of label captured from specifically labelled [14C]glucose is a valid and convenient measure of the relative rates of oxidation of the different positional carbon atoms within the supplied respiratory substrate. However, it is argued that failure to compensate for the incomplete absorption of 14CO2 by an alkaline trap may distort estimates of respiration that rely on an absolute measure of the amount of 14CO2 generated by metabolism.  相似文献   

16.
Thiel R  Adam KP 《Phytochemistry》2002,59(3):269-274
The incorporation of (13)C labeled 1-deoxy-D-xylulose into the monoterpene bornyl acetate, the sesquiterpene cubebanol, and the diterpene phytol has been studied in axenic cultures of the liverwort Conocephalum conicum. Quantitative (13)C NMR spectroscopic analysis of the labeling patterns of the sesquiterpene indicated a possible degradation of 1-deoxy-D-xylulose to acetate and subsequent incorporation via the mevalonic acid pathway. In bornyl acetate, the labeling occurred only in the acetate moiety whereas the isoprene units remained unlabelled. The isoprene units of the diterpene phytol showed incorporation of intact deoxy-D-xylulose. These results indicate the involvement of both IPP biosynthetic pathways and two independently operating compartments/cell types with MEP pathway machinery. One MEP compartment is presumably the plastid where phytol is formed; the second, involved in the build-up of the isoprene part of bornyl acetate, might be located in the oil cells. The acetylation of borneol to bornyl acetate in turn occurs in a cellular compartment that is not involved in the build-up of the isoprene units of borneol.  相似文献   

17.
We present strategies for chemical shift assignments of large proteins by magic-angle spinning solid-state NMR, using the 21-kDa disulfide-bond-forming enzyme DsbA as prototype. Previous studies have demonstrated that complete de novo assignments are possible for proteins up to  ∼ 17 kDa, and partial assignments have been performed for several larger proteins. Here we show that combinations of isotopic labeling strategies, high field correlation spectroscopy, and three-dimensional (3D) and four-dimensional (4D) backbone correlation experiments yield highly confident assignments for more than 90% of backbone resonances in DsbA. Samples were prepared as nanocrystalline precipitates by a dialysis procedure, resulting in heterogeneous linewidths below 0.2 ppm. Thus, high magnetic fields, selective decoupling pulse sequences, and sparse isotopic labeling all improved spectral resolution. Assignments by amino acid type were facilitated by particular combinations of pulse sequences and isotopic labeling; for example, transferred echo double resonance experiments enhanced sensitivity for Pro and Gly residues; [2-13C]glycerol labeling clarified Val, Ile, and Leu assignments; in-phase anti-phase correlation spectra enabled interpretation of otherwise crowded Glx/Asx side-chain regions; and 3D NCACX experiments on [2-13C]glycerol samples provided unique sets of aromatic (Phe, Tyr, and Trp) correlations. Together with high-sensitivity CANCOCA 4D experiments and CANCOCX 3D experiments, unambiguous backbone walks could be performed throughout the majority of the sequence. At 189 residues, DsbA represents the largest monomeric unit for which essentially complete solid-state NMR assignments have so far been achieved. These results will facilitate studies of nanocrystalline DsbA structure and dynamics and will enable analysis of its 41-kDa covalent complex with the membrane protein DsbB, for which we demonstrate a high-resolution two-dimensional 13C-13C spectrum.  相似文献   

18.
The pancreatic lipase gene family displays various substrate selectivities for triglycerides and phospholipids. The structural basis for this difference in substrate specificity has not been definitively established. Based on a kinetic comparative study between various pancreatic lipase family members, we showed here that porcine pancreatic lipase (PPL), which was so far classified as “classical lipase”, was able to hydrolyze phosphatidylcholine (PC). Amino acid sequence alignments revealed that Val260 residue in PPL lid could be critical for the interaction with lipid substrate. Molecular dynamics was applied to investigate PC binding modes within the catalytic cavity of PPL and human pancreatic lipase (HPL), aiming to explain the difference of specificity of these enzymes towards phospholipids. Results showed that with HPL, the oxyanion hole was not able to accommodate the PC molecule, suggesting that no activity could be obtained. With PPL, the formation of a large pocket involving Val260 allowed the PC molecule to come near the catalytic residues, suggesting that it could be hydrolyzed. One more interesting finding is that human pancreatic lipase related protein 2 could hydrolyze phospholipids through its PLA1 and PLA2 activities. Overall, our study shed the light on new structural features of the phospholipase activity of pancreatic lipase family members.  相似文献   

19.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cerebral deposition of amyloid fibrils formed by the amyloid β (Aβ) peptide. Aβ has a length of 39-43 amino acid residues; the predominant Aβ isoforms are Aβ1-40 and Aβ1-42. While the majority of AD cases occur spontaneously, a subset of early-onset familial AD cases is caused by mutations in the genes encoding the Aβ precursor protein or presenilin 1/presenilin 2. Recently, a deletion of glutamic acid at position 22 within the Aβ sequence (E22Δ) was identified in Japanese patients with familial dementia, but the aggregation properties of the deletion variant of Aβ are not well understood. We investigated the aggregation characteristics and neurotoxicity of recombinantly expressed Aβ isoforms 1-40 and 1-42 with and without the E22Δ mutation. We show that the E22Δ mutation strongly accelerates the fibril formation of Aβ1-42 E22Δ compared to Aβ1-42 wild type (wt). In addition, we demonstrate that fibrils of Aβ1-40 E22Δ form a unique quaternary structure characterized by a strong tendency to form fibrillar bundles and a strongly increased thioflavin T binding capacity. Aβ1-40 E22Δ was neurotoxic in rat primary neuron cultures as compared to nontoxic Aβ1-40 wt. Aβ1-42 E22Δ was less toxic than Aβ1-42 wt, but it significantly decreased neurite outgrowth per cell in neuronal primary cultures. Because Aβ1-40 is the major Aβ form in vivo, the gain of toxic function caused by the E22 deletion may explain the development of familial AD in mutation carriers.  相似文献   

20.
Summary [2-13C]-L-lysine, [3,4-13C2]-L-lysine and [5,6-13C2]-L-lysine are prepared from simple, commercially available, highly enriched starting materials as [2-13C]-glycine, ethyl [1,2-13C2]-bromo acetate, and [1,2-13C2]-acetonitrile. The introduction of the chiral center is based on a general method starting from the bis-lactim ether of cyclo-(D-Val-Gly). The synthesis of (2R)-[5-13C]-3,6-diethoxy-2,5-dihydro-2-isopropylpyrazine is described. The availability of our method for the preparation of specifically enriched bis-lactim ethers allows the synthesis of a great variety of site specific isotopically labelled (L- and D-)-amino acids. Moreover, intermediate 4-[(2R,5S)-3,6-diethoxy-2,5-dihydro-2-isopropyl-5-pyrazinyl]butyronitrile is a valuable precursor in the synthesis of L--aminoadipic acid. The synthetic scheme in this publication makes both L-lysine and L--aminoadipic acid13C- or15N-labelled at any position, easily available. The isotopomers of lysine are obtained on a preparative scale in good yields, with 99%13C and high enantiomeric purity (>97% e.e.). Three isotopomers are characterized using various spectroscopic techniques,e.g.,1H NMR,13C NMR and Mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号