首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Muchimangins are benzophenone-xanthone hybrid polyketides produced by Securidaca longepedunculata. However, their biological activities have not been fully investigated, since they are minor constituents in this plant. To evaluate the possibility of muchimangins as antibacterial agent candidates, five muchimangin analogs were synthesized from 2,4,5-trimethoxydiphenyl methanol and the corresponding xanthones, by utilizing p-toluenesulfonic acid monohydrate for the Brønsted acid-catalysis. The antibacterial assays against Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, and Gram-negative bacteria, Klebsiella pneumoniae and Escherichia coli, revealed that the muchimangin analogs (±)-1,3,6,8-tetrahydroxy-4-(phenyl-(2′,4′,5′-trimethoxyphenyl)methyl)-xanthone (1), (±)-1,3,6-trihydroxy-4-(phenyl-(2′,4′,5′-trimethoxyphenyl)methyl)-xanthone (2), and (±)-1,3-dihydroxy-4-(phenyl-(2′,4′,5′-trimethoxyphenyl)methyl)-xanthone (3) showed significant activities against S. aureus, with MIC values of 10.0, 10.0, and 25.0 μM, respectively. Analogs (±)-1 and (±)-2 also exhibited antibacterial activities against B. subtilis, with MIC values of 50.0 and 12.5 μM, respectively. Furthermore, (+)-3 enhanced the antibacterial activity against S. aureus, with a MIC value of 10 μM.  相似文献   

2.
(±)-(2Z,4E)-5-(1′,2′-epoxy-2′,6′,6′-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid was metabolized by Cercospora cruenta, which has the ability to produce (+)-abscisic acid (ABA), to give (±)-(2Z,4E)-xanthoxin acid, (±)-(2Z,4E)-5′-hydroxy-1′,2′-epoxy-1′,2′-dihydro-β-ionylideneacetic acid, (±)-1′,2′-epoxy-1′,2′-dihydro-β-ionone and trace amounts of ABA.  相似文献   

3.
A new coumarin, (?)-cis-(3′R,4′R)-4′-O-angeloylkhellactone-3′-O-β-d-glucopyranoside (1) and two new chalcones, 3′-[(2E)-5-carboxy-3-methyl-2-pentenyl]-4,2′,4′-trihydroxychalcone (4) and (±)-4,2′,4′-trihydroxy-3′-{2-hydroxy-2-[tetrahydro-2-methyl-5-(1-methylethenyl)-2-furanyl]ethyl}chalcone (5) were isolated from the aerial parts of Angelica keiskei (Umbelliferae), together with six known compounds: (R)-O-isobutyroyllomatin (2), 3′-O-methylvaginol (3), (?)-jejuchalcone F (6), isoliquiritigenin (7), davidigenin (8), and (±)-liquiritigenin (9). The structures of the new compounds were determined by interpretation of their spectroscopic data including 1D and 2D NMR data. All known compounds (2, 3, and 69) were isolated as constituents of A. keiskei for the first time. To identify novel hepatocyte proliferation inducer for liver regeneration, 19 were evaluated for their cell proliferative effects using a Hep3B human hepatoma cell line. All isolates exhibited cell proliferative effects compared to untreated control (DMSO). Cytoprotective effects against oxidative stress induced by glucose oxidase were also examined on Hep3B cells and mouse fibroblast NIH3T3 cells and all compounds showed significant dose-dependent protection against oxidative stress.  相似文献   

4.
Addition of 5-bromo-2′,3′-O-isopropylidene-5′-O-trityluridine (2) in pyridine to an excess of 2-lithio-1,3-dithiane (3) in oxolane at 78° gave (6R)-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene -5′-O-trityluridine (4), (5S,6S)-5-bromo-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene-5′-O-trityluridine (5), and its (5R) isomer 6 in yields of 37, 35, and 10%, respectively. The structure of 4 was proved by Raney nickel desulphurization to (6S)-5,6-dihydro-2′,3′-O-isopropylidene-6-methyl-5′-O-trityluridine (7) and by acid hydrolysis to give D-ribose and (6R)-5,6-dihydro-6-(1,3-dithian-2-yl)uracil (9). Treatment of 4 with methyl iodide in aqueous acetone gave a 30&%; yield of (R,S)-5,6-dihydro-6-formyl-2′,3′-O-isopropylidene-5′-O-trityl-uridine (10), characterized as its semicarbazone 11. Both 5 and 6 gave 4 upon brief treatment with Raney nickel. Both 5 and 6 also gave 6-formyl-2′,3′-O-isopropylidene-5′- O-trityluridine (12) in ~41%; yield when treated with methyl iodide in aqueous acetone containin- 10%; dimethyl sulfoxide. A by-product, identified as the N-methyl derivative (13) of 12 was also formed in yields which varied with the amount of dimethyl sulfoxide used. Reduction of 12 with sodium borohydride, followed by deprotection, afforded 6-(hydroxymethyl)uridine (17), characterized by hydrolysis to the known 6-(hydroxymethyl)uracil (18). Knoevenagel condensation of a mixture of the aldehydes 12 and 13 with ethyl cyanoacetate yielded 38%; of E- (or Z-)6-[(2-cyano-2-ethoxycarbonyl)ethylidene]-2′,3′-O-isopropylidene-5′-O-trityluridine (19) and 10%; of its N-methyl derivative 20. Hydrogenation of 19 over platinum oxide in acetic anhydride followed by deprotection gave R (or S)-6-(3-amino-2-carboxypropyl)uridine (23).  相似文献   

5.
(7S,8R,7′S)-9,7′,9′-Trihydroxy-3,4-methylenedioxy-3′-methoxy [7-O-4′,8-5′] neolignan (1) and (7S,8R,7′S)-9,9′-dihydroxy-3,4-methylenedioxy-3′,7′-dimethoxy [7-O-4′,8-5′] neolignan (2), two new natural dihydrobenzofuran-type neolignans, along with 9,9′-dihydroxy-3,4-methylenedioxy-3′-methoxy [7-O-4′,8-5′] neolignan (3) and (-)-machicendiol (4), were isolated from the whole plants of Breynia fruticosa. The structures of 1 and 2, including the absolute configurations, were determined by spectroscopic methods and circular dichroism (CD) techniques. The absolute configuration of 4 was confirmed by calculations of the OR spectrum, together with OR and ECD spectra of its p-bromobenzoate ester (4a).  相似文献   

6.
The study presented herein constitutes an extensive investigation of constituents in Hydrastis canadensis L. (Ranunculaceae) leaves. It describes the isolation and identification of two previously unknown compounds, 3,4-dimethoxy-2-(methoxycarbonyl)benzoic acid (1) and 3,5,3′-trihydroxy-7,4′-dimethoxy-6,8-C-dimethyl-flavone (2), along with the known compounds (±)-chilenine (3), (2R)-5,4′-dihydroxy-6-C-methyl-7-methoxy-flavanone (4), 5,4′-dihydroxy-6,8-di-C-methyl-7-methoxy-flavanone (5), noroxyhydrastinine (6), oxyhydrastinine (7) and 4′,5′-dimethoxy-4-methyl-3′-oxo-(1,2,5,6-tetrahydro-4H-1,3-dioxolo-[4′,5′:4,5]-benzo[1,2-e]-1,2-oxazocin)-2-spiro-1′-phtalan (8). Compounds 38 have been reported from other sources, but this is the first report of their presence in H. canadensis extracts. A mass spectrometry based assay was employed to demonstrate bacterial efflux pump inhibitory activity against Staphylococcus aureus for 2, with an IC50 value of 180 ± 6 μM. This activity in addition to that of other bioactive compounds such as flavonoids and alkaloids, may explain the purported efficacy of H. canadensis for treatment of bacterial infections. Finally, this report includes high mass accuracy fragmentation spectra for all compounds investigated herein which were uploaded into the Global Natural Products Social molecular networking library and can be used to facilitate their future identification in H. canadensis or other botanicals.  相似文献   

7.
Selective de-esterification of 1′,2:4,6-di-O-isopropylidenesucrose tetra-acetate2 (1) with methanolic ammonia at ?10° gave an inseparable mixture (2+3) of the 3,4′,6′- and 3,3′,6′-triacetates and also the 4,6′-diacetate 4. When the reaction was performed at 5°, it gave 4, the 4-acetate 8, and the parent diacetal 9. These derivatives allow selective reaction at hydroxyl groups in sucrose, in particular at HO-3′ and, HO-4′, not hitherto possible. Mesylation of 4 gave the 3′,4′-dimesylate 7, which, on treatment with aqueous acetic acid followed by acetylation, afforded 3′,4′-di-O-mesylsucrose hexa-acetate (11). Treatment of 11 with sodium methoxide in methanol at 70° for 1 min gave the ribo-3′,4′-epoxide 12 as the minor, and the lyxo-3′,4′-epoxide 13 as the major, product. Selective tosylation of 4 gave the 3',4'-ditosylate 14 (3.7%), 4′-tosylate 15 (3.1%), and 3'-tosylate 16 (31%), indicating the order of reactivity HO-3′>HO-4′ in 4. De acetalation of 15 and 16 followed by acetylation gave the hepta-acetates of 4′- and 3′-O-tosylsucrose, respectively, which were converted into the respective epoxides, 13 and 12, by methanolic sodium methoxide.  相似文献   

8.
Abstract

Reaction of (±)but-3-en-1,2-diol (3) with ethyl diazoacetate afforded two cyclopropyl compounds (5) and (6). Their relative trans stereochemistry at C-2 and C-3 has been determined by high-field and computational NMR spectroscopy. (±)Trans-1-(1′,5′-dihydroxy-3′,4′-methylenyl-pent-2′-oxy)methyl]thymine (1d) or -cytosine (1b) and (±)trans-9-(1′,5′-dihydroxy-3′,4′-methylenylpent-2′-oxy)-methyl]adenine (la) or -guanine (1c) have been obtained through a regiospecific alkylation procedure and their antiviral evaluation is reported.  相似文献   

9.
Phytochemical investigation of the rhizomes of Smilax trinervula led to isolation and structure elucidation of eight lignan glycosides, including five new lignans, namely, (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4′-O-β-d-glucopyranoside (1), (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4-O-β-d- glucopyranoside (2) (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-4′, 7-epoxy-8, 5′-neolignan 9′-O-β-d-glucopyranoside (3), (7R, 8R)-4, 9, 9′-trihydroxy-3, 5-dimethoxy-7.O.4′, 8.O.3′- neolignan 9′-O-β-d-glucopyranoside (4), and (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-8, 4′-oxy-neolignan 4-O-β-d-glucopyranoside (5), along with three known compounds (6-8). Their structures were established mainly on the basis of 1D and 2D NMR spectral data, ESI–MS and comparison with the literature. Compounds 1-8 were tested in vitro for their cytotoxic activity against four human tumor cell lines (SH-SY5Y, SGC-7901, HCT-116, Lovo). Compounds 3 and 5 exhibited cytotoxic activity against Lovo cells, with IC50 value of 10.4 μM and 8.5 μM, respectively.  相似文献   

10.
Upon reacting 3′,4′-unsaturated cytosine (8 and 9) and adenine nucleosides (13 and 14) with XeF2/BF3·OEt2, the respective novel 3′,4′-difluoro-3′-deoxyribofuranosyl nucleosides (1012 and 1518) could be obtained. Formation of anti-adducts (11, 16 and 18) revealed that the fluorination involved oxonium ions as incipient intermediates. TBDMS-protected 3′,4′-unsaturated adenosine provided the β-face adducts as sole stereoisomers whereas α-face-selectivity was observed with the TBDPS-protected adenosine 14. The evaluation of the novel 3′-deoxy-3′,4′-difluororibofuranosylcytosine-(1921) and adenine nucleosides (2225) against antitumor and antiviral activities revealed that 3′,4′-difluorocordycepin (24) was found to possess anti-HCV activity. The SI of 24 was comparable to that of the anti-HCV drug ribavirin. However, sofosbuvir, FDA-approved novel anti-HCV drug, showed better SI value. Our finding revealed that the introduction of the fluoro-substituent into the 4′-position of cordycepin derivatives decreased the cytotoxicity to the host cell with retention of the antiviral activity.  相似文献   

11.
Synthetic 2′-hydroxy-3,4′,6′-trimethoxy-4-benzyloxychalcone (I) affords (±)-7,3′-di-O-methyleriodictyol (II) and 7,3′-di-O-methylluteolin (or velutin, VII) identical with natural samples. Similarly synthetic 2′-hydroxy-4,4′,6′-trimethoxy-3-benzyloxychalcone (X) gives natural (±)-7,4′-di-O-methyleriodictyol (XI) and 7,4′-di-O-methylluteolin (or pilloin, IX). However, attempts to partially etherify II with one mole of prenyl bromide to obtain the natural prenyl ether failed; only the corresponding diprenyloxychalcone (IV) was obtained.  相似文献   

12.
《Carbohydrate research》1985,138(1):55-64
1,6-Anhydro-4′,6′-O-benzylidene-maltose and -cellobiose were subjected to temporary O-protection with a tetraisopropyldisiloxane-1,3-diyl group at the 2′,3′- and the 2,3-positions, giving 1,6-anhydro-4′,6′-O-benzylidene-2′,3′-O-(tetraisopropyldisiloxane- 1,3-diyl)maltose (15) and 1,6-anhydro-4′,6′-O-benzylidene-2,3- O-(tetraisopropyldisiloxane-1,3-diyl)cellobiose (19), respectively, in 60–64% yield. These were then subjected to various types of O-protection fo the hydroxyl groups remaining. Treatment of 15 and 19 with acetic anhydride or phenyl isocyanate gave the corresponding diacetyl and dicarbamoyl derivatives in high yield. Benzylation of the maltose derivative 15 was rather difficult, but was finally achieved through a phase-transfer reaction, to give the 2,3-di-O-benzyl derivative (18) in moderate yield. In the cellobiose series, benzylation of 19 was conducted similarly, giving 22, and also by employing a modification of the conventional procedure. The silyl groups of 18 and 22 were removed by treatment with tetrabutylammonium fluoride, to afford the corresponding diols in high yield.  相似文献   

13.
Bioassay-guided fractionation of an EtOAc-soluble extract of Acanthopanax senticosus (Rupr. & Maxim.) Harms yielded two new diphenyl ethers, 3-[3′-methoxy-4′-(4″-formyl-2″,6″-dimethoxy-phenoxy)-phenyl]-propenal (1) and 3-[3′,5′-dihydroxy-4′-(4″-hydroxymethyl-3″,5″-dimethoxy-phenoxy)-phenyl]-propenal (2), along with eight other known compounds (310). The structures of these new ethers were elucidated with spectroscopic and physico-chemical analyses. All of the isolates were evaluated for their in vitro inhibitory activity against PTP1B, VHR and PP1. The new compounds (1 and 2) inhibited PTP1B with IC50 values ranging from 9.2 ± 1.4 to 12.6 ± 1.2 μM.  相似文献   

14.
Three new neolignan glucosides (13), together with four known analogs (47), have been isolated from the stems of Dendrobium aurantiacum var. denneanum. Structures of the new compounds including the absolute configurations were determined by spectroscopic and chemical methods as (−)-(8R,7′E)-4-hydroxy-3,3′,5,5′-tetramethoxy-8,4′-oxyneolign-7′-ene-9,9′-diol 4,9-bis-O-β-d-glucopyranoside (1), (−)-(8S,7′E)-4-hydroxy-3,3′,5,5′-tetramethoxy-8,4′-oxyneolign-7′-ene-9,9′-diol 4,9-bis-O-β-d-glucopyranoside (2), and (−)-(8R,7′E)-4-hydroxy-3,3′,5,5′,9′-pentamethoxy-8,4′-oxyneolign-7′-ene-9-ol 4,9-bis-O-β-d-glucopyranoside (3), respectively.  相似文献   

15.
《Phytochemistry》1986,25(10):2395-2397
Trunk wood of Iryanthera grandis contains 1(2′-hydroxy-4′,6′-dimethoxyphenyl)-3-(3″,4″-methylenedioxyphenyl)-propane and 1(2′-hydroxy-4′,6′-dimethoxyphenyl)-3-(3″-methoxy-4″-hydroxyphenyl)-propane, as well as three additional known diarylpropanes, a new flavan (±)-5,7-dimethoxy-4′-hydroxyflavan and the known (±)-7,4′-dihydroxy-3′-methoxyflavan.  相似文献   

16.
To develop potential agents for slowing the progression of Alzheimer′s disease, two pairs of new enantiomeric lignans, including a couple of rarely 8′,9′-dinor-3′,7-epoxy-8,4′-oxyneolignanes named (7S, 8S)- and (7R, 8R)-pithecellobiumin A (1a/1b) and a pair of 2′,9′-epoxy-arylnaphthalenes named (7R, 8R, 8′R)- and (7S, 8S, 8′S)-pithecellobiumin B (2a/2b) were separated by chiral high performance liquid chromatography (HPLC). Their planar structures were elucidated by spectroscopic data analyses. The absolute configurations were determined by comparing of experimental and calculated electronic circular dichroism (ECD). The inhibitory activity on Aβ aggregation of all optical pure compounds was tested by ThT assay. Interestingly, enantiomeric inhibitors 1a (62.1%) and 1b (81.6%) exhibited different degrees of anti-Aβ aggregation activity. However, 2a (65.4%) and 2b (68.4%) showed similar inhibition rate. The different inhibition profiles were explained by molecular dynamics and docking simulation studies.  相似文献   

17.
A new meroterpenoid, austalide H acid ethyl ester (1), 5-(2′,4′-dihydroxy-6′-methylphenyl)-3-methylfuran-2-carboxylic acid (2), 5-(2′-hydroxy-6′-methylphenyl)-3-methylfuran-2-carboxylic acid (3) and 5-((6′-methyl-4′-oxo-3′,4′-dihydro-2H-pyran-2′-yl)methyl)-3-methylfuran-2-carboxylic acid (4), along with six known compounds, austalides H, J, K, and P (58), questin (9) and sulochrin (10) were isolated from the lipophilic extract of the alga-derived fungi Penicillium thomii KMM 4645 and Penicillium lividum KMM 4663. The structures of the isolated compounds were determined based on spectroscopic methods. The austalides showed significant inhibitory activity against endo-1,3-β-d-Glucanase from a crystalline stalk of the marine mollusk Pseudocardium sachalinensis.  相似文献   

18.
Phytochemical study of the ethanol extract of the twigs of Eriosema robustum, a Cameroonian medicinal plant resulted to the isolation of two new flavones, 2′,3′,5′,5,7-pentahydroxy-3,4′-dimethoxyflavone (1) and 2′,3,5′,5,7-pentahydroxy-4′-methoxyflavone (2), along with five known compounds: 6-prenylpinocembrin (3), 1-O-heptatriacontanoyl glycerol (4), β-sitosterol (5), stigmasterol (6) and 3-O-β-d-glucopyranoside of sitosterol (7). The structure of the isolated compounds were elucidated on the basis of their NMR, UV and MS data, and by comparison with those reported in the literature. The ethanol crude extract, fractions and some isolated compounds (14) were evaluated for their radical scavenging capacity using 2,2-diphenyl-1-picryhydrazyl (DPPH). The crude extract, fraction II, the new compounds namely robusflavones A (1) and B (2) exhibited significant antioxidant activity.  相似文献   

19.
New oxazolinyl derivatives of [17(20)E]-pregna-5,17(20)-diene: 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,5′-dihydro-1′,3′-oxazole 1 and 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,4′-dimethyl-4′,5′-dihydro-1′,3′-oxazole 2 were evaluated as potential CYP17A1 inhibitors in comparison with 17-(pyridin-3-yl)androsta-5,16-dien-3β-ol 3 (abiraterone). Differential absorption spectra of human recombinant CYP17A1 in the presence of compound 1 (λmax = 422 nm, λmin = 386 nm) and compound 2 (λmax = 416 nm) indicated significant differences in enzyme/inhibitors complexes. CYP17A1 activity was measured using electrochemical methods. Inhibitory activity of compound 1 was comparable with abiraterone 3 (IC50 = 0.9 ± 0.1 μM, and IC50 = 1.3 ± 0.1 μM, for compounds 1 and 3, respectively), while compound 2 was found to be weaker inhibitor (IC50 = 13 ± 1 μM). Docking of aforementioned compounds to CYP17A1 revealed that steroid fragments of compound 1 and abiraterone 3 occupied close positions; oxazoline cycle of compound 1 was coordinated with heme iron similarly to pyridine cycle of abiraterone 3. Configuration of substituents at 17(20) double bond in preferred docked position corresponded to Z-isomers of compounds 1 and 2. Presence of 4′-substituents in oxazoline ring of compound 2 prevents coordination of oxazoline nitrogen with heme iron and worsens its docking score in comparison with compound 1. These data indicate that oxazolinyl derivative of [17(20)E]-pregna-5,17(20)-diene 1 (rather than 4′,4′-dimethyl derivative 2) may be considered as potential CYP17A1 inhibitor and template for development of new compounds affecting growth and proliferation of prostate cancer cells.  相似文献   

20.
Candida antarctica lipase B (CAL-B)-catalysed regioselective deacetylation of 2′,3′,5′-tri-O-acetyl-1-β-d-arabinofuranosyluracil (1) and 2′,3′,5′-tri-O-acetyl-9-β-d-arabinofuranosyladenine (2) was studied. The choice of the reaction medium allowed the regioselective formation of products bearing different degree of acetylation: in isopropanol, CAL-B catalysed the formation of the corresponding 2′-O-acetylated arabinonucleosides, while hydrolyses afforded the 2′,3′-di-O-acetylated products. In particular, the procedure herein described allows a simple and efficient preparation of the reported vidarabine prodrug 2′,3′-di-O-acetyl-9-β-d-arabinofuranosyladenine, avoiding the utilisation of protective groups. Moreover, to achieve full deacetylation of the assayed substrates, a set of commercial hydrolases and fungal keratinases from Doratomyces microsporus (DMK) and Paecilomyces marquandii (PMK) were tested. While only PMK and DMK catalysed the quantitative complete deacetylation of 1, DMK accomplished full deacetylation of 2 in shorter time than the other assayed enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号