首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The lipase-catalyzed acylglycerol synthesis with fatty acids of different chain length is studied. Measured ester mole fractions at equilibrium are compared with calculated mole fractions. For these calculations the computer program TREP (Two-phase Reaction Equilibrium Prediction) is used. This program is based on the UNIFAC group contribution method and is developed for nondilute two-phase reaction systems.With one set of equilibrium constants, namely 1.3, 0.8, and 0.6 for monoester, diester, and triester synthesis, respectively, the equilibrium position of the reaction between glycerol and all saturated fatty acids with a chain length from 6 to 18 and oleic acid (cis-9-octadecenoic acid) can be calculated. Deviations, expressed as the ratio between calculated and measured ester mole fractions, usually were between 0.7 and 1.2. In the presence of solvents, the deviations of the monoester mole fractions were higher and rose up to 3. Without addition of a solvent, the ester mole fractions at equilibrium are dependent on the fatty acid chain length. With the short-chain hexanoic acid, the monoester mole fraction is the highest ester mole fraction, while for the long-chain oleic acid, the diester mole fraction is the highest one. The ester mole fractions become independent on the chain length of the fatty acid with a solvent added in a sufficient high concentration. Both reactions, with saturated and unsaturated C(18) fatty acids, lead to the same equilibrium position. The program TREP is found to make good predictions of the equilibrium amounts of ester and fatty acid. However, systematic deviations arise between measured and calculated amounts of water and glycerol in the organic phase. The calculated water and glycerol amounts are always lower than the measured ones. These deviations seem to be highest in nonpolar media and are probably due to deficiencies in the UNIFAC calculation method. Some preliminary experiments show the effect of the choice of solvent on the reaction rates. In polar solvents, the monoester production rate is enhances by a factor of 1.5 as compared to the reaction rate in a system without solvent. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
The main strategy developed to shift the equilibrium state of a hydrolase-catalyzed hydrolysis/synthesis reaction consists in reducing water activity by addition of organic solvents in the reaction medium. We have used several mixtures of water and 1,4-butanediol, ranging from pure water to pure 1,4-butanediol, to study the hydrolysis/synthesis reaction of the N-Cbz-L-tryptophanyl-glycineamide dipeptide, catalyzed by alpha-chymotrypsin. In the presence of 1,4-butanediol, alpha-chymotrypsin also catalyzed the esterification reaction between this diol and N-Cbz-L-tryptophan; this ester hydrolysis/synthesis reaction has thus also been examined. The dipeptide and ester equilibrium concentrations increase when the water content of the reaction medium is decreased. Using our experimental data, we have determined the equilibrium constants of the hydrolysis/synthesis equilibria involving the nonionized forms of the protected amino acids, the estimated values of which are Ksp = 8 10(5) for the dipeptide and Kse = 78 for the ester respectively. They are true thermodynamic equilibrium constants, each related to a single, well-defined reaction equilibrium and with water activity being taken into account. If an organic solvent is added to the reaction medium these equilibria can be shifted towards synthesis by decreasing the water activity but also by modifying the ionization/neutralization equilibrium constant of the ionizable groups. These two effects depend both on the water content and on the nature of the organic solvent used, and, in particular, on its dielectric constant. Because of the importance of this parameter in our study, we discuss using it as an indicator to select an appropriate organic solvent to perform an enzyme-catalyzed synthesis.  相似文献   

3.
Octyl oleate is a useful organic compound with several applications in cosmetic, lubricant and pharmaceutical industry. At first, the enzymatic synthesis of n-octyl oleate by direct lipase-catalysed esterification of oleic acid and 1-octanol was investigated in a stirred batch reactor in solvent-free system. A systematic screening and optimisation of the reaction parameters were performed to gain insight into the kinetics mechanism. Particularly, enzyme concentration, reaction temperature, stirrer speed, water content, substrates concentration and molar ratio were optimised with respect to the final product concentration and reaction rate. The kinetics mechanism of the reaction was investigated. Finally, a comparison of the experimental results obtained in a solvent free-system with those using two different solvents, supercritical carbon dioxide (SC-CO2) and n-hexane, was proposed. It resulted that in SC-CO2 higher concentration of the desired product was attained, requiring lower enzyme concentrations to achieve comparable conversion of free fatty acid into fatty acid ester.  相似文献   

4.
This paper focuses on enzymatic esterifications in non-conventional media (organic solvents, ionic liquids, and solvent-free systems) with reference to the water removal. Different types of water removal techniques are reviewed with a special emphasis on pervaporation. Pervaporation is a separation process in which liquid is transported through a selective membrane with simultaneous evaporation of permeates. In an integrated process where pervaporation is coupled with a bioreactor where esterification is performed, selective removal of water or other esterification products can be achieved. In this manner benefit can be doubled, due to the equilibrium shift and possible pure product recovery. Available literature on esterifications coupled with pervaporation is presented in detail. Reviewed examples are divided according to the type of reaction media.  相似文献   

5.
Enzymatic hydrolysis conducted in a medium composed of solely substrate is considered to resolve racemic ketoprofen esters. In a system composed of two components, the pure liquid substrate (organic phase) and water (aqueous phase), hydrolysis products can be efficiently removed from the reaction mixtures. Accordingly, in this study we designed a solvent-free two-phase system for the enantioselective enzymatic hydrolysis of ketoprofen esters. In order to further optimize this system, the influences of various factors, such as the pH of the aqueous phase, temperature, enzyme content, and the alcohol chain length of esters, were examined on conversion and enantiomeric excess. 1N NaHCO3 was identified as the most efficient aqueous phase for the extraction of ketoprofen. Changes in the amount of enzyme did not significantly affect the maximum conversion or the enantiomeric excess. On the other hand, ketoprofen esters with shorter alcohol chains displayed higher initial reaction rates and conversions in solventless media. In the case of ketoprofen propyl ester, for example, the productivity of the solvent-free two-phase system was about 10–100 times higher than that obtained to date for ketoprofen esterification with alcohols in organic solvents. The enantioselectivities obtained in solvent-free media were similar to those obtained for the enantioselective esterification of ketoprofen in organic solvents.  相似文献   

6.
The bovine trypsin-catalyzed synthesis of N-alpha-benzoyl-DL-arginine esters from N-benzoyl-DL-arginine were studied in various organic solvents. Trypsin was immobilized to polyvinyl alcohol (PVA) by adsorption from its aqueous solutions. Immobilized enzyme showed higher catalytic activities than free enzyme for amino acid esterification in ethanol. The yield of ester is strongly dependent upon the PVA/trypsin ratio and water content in the reaction medium. The rate and equilibrium constant of the ester formation reaction are also dependent on water content.  相似文献   

7.
Enzymatic reactions in non-aqueous media have been shown to be effective in carrying out chemical transformation where the reactants are insoluble in water or water is a byproduct limiting conversion. Ionic liquids, liquid organic salts with infinitesimal vapor pressure, are potentially useful alternatives to organic solvents. It is known that the thermodynamic water activity is an important variable affecting the activity of enzymes in non-aqueous solvents. This study investigated the influence of water activity on the esterification of geraniol with acetic acid in ionic liquid [bmim]PF6 catalyzed by immobilized Candida antarctica lipase B. The conversion of geraniol in [bmim]PF6 was significant although the reaction rate was slower than in organic solvents. The profile of initial reaction rate-water activity was determined experimentally, and differed from the data reported for other non-aqueous solvents. A maximum in the initial reaction rate was found at aw = 0.6. The pseudo reaction equilibrium constant, Kx, was measured experimentally for the reaction. The average value of Kx in [bmim]PF6 was 12, 20-fold lower than the value reported for the same system in hexane.  相似文献   

8.
Ascorbyl fatty acid esters act both as antioxidants and surfactants. These esters are obtained by acylation of vitamin C using different acyl donors in presence of chemical catalysts or lipases. Lipases have been used for this reaction as they show high regioselectivity and can be used under mild reaction conditions. Insolubility of hydrophilic ascorbic acid in non-polar solvents is the major obstacle during ascorbic acid esters synthesis. Different strategies have been invoked to address this problem viz. use of polar organic solvents, ionic liquids, and solid-phase condensation. Furthermore, to improve the yield of ascorbyl fatty acid esters, reactions were performed by (1) controlling water content in the reaction medium, (2) using vacuum to remove formed volatile side product, and (3) employing activated acyl donors (methyl, ethyl or vinyl esters of fatty acids). This mini-review offers a brief overview on lipase-catalyzed syntheses of vitamin C esters and their biotechnological applications. Also, wherever possible, technical viability, scope, and limitations of different methods are discussed.  相似文献   

9.
A discussion of the influence of organic solvents on pKa values is presented. Enthalpy and entropy of ionization in organic solvents are compared with aqueous systems. The impact of the solvent on the ionization constants is interpreted based on the free energy of transfer applied to all particles involved in the ionization reaction of acids and bases, and the concept of the 'medium effect' on these species. The limitation of Born's approach (which takes into account only electrostatic effects on the ionization equilibrium) is demonstrated and the importance of solute-solvent interactions on the change of the pKa values emphasized.  相似文献   

10.
The thermodynamics of the lipase-catalyzed esterification of glycerol with n-octanoic acid have been investigated with acetonitrile, benzene, and toluene as solvents and in the neat reaction mixture (no organic solvent added). This esterification reaction leads to five products: 1-monooctanoyl glycerol, 2-monooctanoyl glycerol, 1,2-dioctanoyl glycerol, 1,3-dioctanoyl glycerol and 1,2,3-trioctanoyl glycerol. This, in turn leads to a total of 12 reactions. Values of the equilibrium constants for these reactions have been measured (HPLC, GC, and LC/MS) at 37°C in the above mentioned media. The equilibrium constants range from 0.9 to 20.7, 0.20 to 8.0, 0.23 to 10.0, and 0.57 to 2.2 in acetonitrile, benzene, toluene, and neat media, respectively. Relative standard molar Gibbs free energies of formation ΔfGm0 of 1-monooctanoyl glycerol, 2-monooctanoyl glycerol, 1,2-dioctanoyl glycerol, 1,3-dioctanoyl glycerol and 1,2,3-trioctanoyl glycerol in the organic solvents and in the neat reaction mixture have been calculated and used to compactly summarize the thermodynamics of these reactions. The results show an approximate correlation with the permittivities of the solvents.  相似文献   

11.
The effect of organic solvents on the equilibrium position of lipase-catalyzed esterification of glycerol and decanoic acid has been investigated. The reaction is carried out in an aqueous-organic two-phase system. In polar solvents, high mole fractions of monoacylglycerol and low mole fractions of triacylglycerol and measured, while in nonpolar solvents, the measured differences in the mole fractions of monodi-, and triacylglycerols are less. There is a good correlation between the ester mole fractions at equilibrium and the log P of the solvent (partition coefficient in n-octanolwater), however, only if the group of tertiary alcohols is excluded. In the plot of the easter mole fractions as a function of the logarithm of hte solubility of water in the organic solvent, the tertiary alcohols can be included; however, in this case other deviations appear.For the prediction of the effect of organic solvents on the ester mole fractions at reaction equilibrium in nondilute reaction systems with a water activity below 1, the program TREP (Two-phase Reaction Equilibrium Prediction) is developed, which is based on the UNIFAC group contribution method. With this model the equilibrium data are essentially predicted from basic thermodynamic data. The required equilibrium constants are estimated from experiments without an organic solvent in the reaction medium. The mole fractions calculated by TREP show the same trends as the experimentally measured mole fractions; however, some variation is observed in the absolute values. These deviations may be due to inaccuracies in the UNIFAC group contribution method. TREP is found to be a correct method to predict within some limits the ester mole fractions at equilibrium for all mixtures of solvents, substrates, and products. The production of monoester can be enhanced in reaction system with a sufficient high concentration of a polar solvent. In experiments with a triglymeto-decanoic acid ratio of 5, almost no di-and triesters can be detected at equilibrium. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
The enzymatic selective acylations of carbohydrates in ionic liquids were explored in both organic solvents and ionic liquids to see any significant differences in terms of reactivity and regioselectivity between two different classes of reaction media. Monoprotected glycosides (methyl-6-O-trityl-glucosides and galactosides) were chosen as the substrates with Candida rugosa lipase as an acylation enzyme. Two organic solvents, THF and chloroform, and two ionic liquids, [BMIM]+PF6 ([BMIM]+ = 1-butyl-3-methylimidazolium) and [MOEMIM]+PF6 ([MOEMIM]+ = 1-methoxyethyl-3-methylimidazolium), were employed as reaction media. The enzymatic reactions were performed in the presence of vinyl acetate at room temperature. It was observed that the reactions in ionic liquids took place more rapidly and more selectively than those in conventional organic solvents.  相似文献   

13.
Four different ionic liquids, based on dialkylimidazolium cations associated with perfluorinated and bis(trifluoromethyl)sulfonyl amide anions were used as reaction media for butyl butyrate synthesis catalyzed by free Candida antarctica lipase B at 2% (v/v) water content and 50 °C. Lipase had enhanced synthetic activity in all ionic liquids in comparison with two organic solvents (hexane, and 1-butanol), the enhanced activity being related to the increase in polarity of ionic liquids. The continuous operation of lipase with all the assayed ionic liquids showed over-stabilization of the enzyme. The reuse of free lipase in 1-butyl-3-methylimidazolium hexafluorophosphate in continuous operation cycles showed a half-life time 2300 times greater than that observed when the enzyme was incubated in the absence of substrate (3.2 h), and a selectivity higher than 90%.  相似文献   

14.
The PST-01 protease is a metalloprotease that has zinc ion at the active center and is very stable in the presence of water-soluble organic solvents. The reaction rates and the equilibrium yields of the aspartame precursor N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (Cbz-Asp-Phe-OMe) synthesis from N-carbobenzoxy-L-aspartic acid (Cbz-Asp) and L-phenylalanine methyl ester (Phe-OMe) in the presence of water-soluble organic solvents were investigated under various conditions. Higher reaction rate and yield of Cbz-Asp-Phe-OMe were attained by the PST-01 protease when 30 mM Cbz-Asp and 500 mM Phe-OMe were used. The maximum reaction rate was obtained pH 8.0 and 37 degrees C. In the presence of dimethylsulfoxide (DMSO), glycerol, methanol, and ethylene glycol, higher reaction rates were obtained. The equilibrium yield was the highest in the presence of DMSO. The equilibrium yield of Cbz-Asp-Phe-OMe using the PST-01 protease attained 83% in the presence of 50% (v/v) DMSO.  相似文献   

15.
糖脂修饰的脂肪酶在有机溶剂中催化酯化反应   总被引:8,自引:0,他引:8  
本文研究了不同糖脂化合物修饰的脂肪酶在有机溶剂中催化长碳链脂肪酸和脂肪醇的酯化反应,不同的脂肪酶经糖脂修饰后,催化活性均有不同程度的提高。在4种糖脂和6种脂肪酶中,以蔗糖酯SE-7修饰脂肪酶CES活性最高,本文还对pH、溶剂和温度等对修饰脂肪酶生的影响进行了研究。  相似文献   

16.
A new approach in biotechnological processes is to use enzymes modified with polyethylene glycol which has both hydrophilic and hydrophobic properties. The modified enzymes are soluble in organic solvents such as benzene, toluene and chlorinated hydrocarbons and exhibit high enzymic activities in these organic solvents. Modified hydrolytic enzymes catalysed the reverse reaction of hydrolysis in organic solvents: formation of acid—amide bonds by modified chymotrypsin, and ester synthesis and ester exchange reactions by modified lipase. Modified catalase and modified peroxidase efficiently catalyse their respective reactions in organic solvents. The results of this research indicate great potential for applications in the fields of biotechnology and enzymology.  相似文献   

17.
Ionic liquids, also called molten salts, are mixtures of cations and anions that melt below 100°C. Typical ionic liquids are dialkylimidazolium cations with weakly coordinating anions such as (MeOSO3) or (PF6). Advanced ionic liquids such as choline citrate have biodegradable, less expensive, and less toxic anions and cations. Deep eutectic solvents are also included in the advanced ionic liquids. Deep eutectic solvents are mixtures of salts such as choline chloride and uncharged hydrogen bond donors such as urea, oxalic acid, or glycerol. For example, a mixture of choline chloride and urea in 1:2 molar ratio liquefies to form a deep eutectic solvent. Their properties are similar to those of ionic liquids. Water-miscible ionic liquids as cosolvents with water enhance the solubility of substrates or products. Although traditional water-miscible organic solvents also enhance solubility, they often inactivate enzymes, while ionic liquids do not. The enhanced solubility of substrates can increase the rate of reaction and often increases the regioor enantioselectivity. Ionic liquids can also be solvents for non-aqueous reactions. In these cases, they are especially suited to dissolve polar substrates. Polar organic solvent alternatives inactivate enzymes, but ionic liquids do not even when they have similar polarities. Besides their solubility properties, ionic liquids and deep eutectic solvents may be greener than organic solvents because ionic liquids are nonvolatile, and can be made from nontoxic components. This review covers selected examples of enzyme catalyzed reaction in ionic liquids that demonstrate their advantages and unique properties, and point out opportunities for new applications. Most examples involve hydrolases, but oxidoreductases and even whole cell reactions have been reported in ionic liquids.  相似文献   

18.
The synthesis of N-acetyl tryptophan phenylethyl ester in organic media is catalyzed by suspended agarose beads with multipoint covalently attached chymotrypsin. A dilute aqueous phase is trapped within the gel beads and may be manipulated separately from the organic phase. The equilibrium position becomes more favorable as the solvent polarity decreases, with K(eq) increasing 38 times between 2-butanone and 1,1,1-trichloroethane. The more apolar solvents also give faster kinetics. Addition of cosolvents (up to 10% dimethylformamide or 20% acetonitrile) does not affect the rate but does substantially reduce the equilibrium yield, presumably also by making the organic phase more polar. With trichloroethane as solvent the enzyme appears to be kinetically saturated with 1M phenylethanol. Doubling this concentration also does not cause the expected increase in equilibrium conversion, probably again because K(eq) is reduced in the more polar organic phase. Increased temperature raises the reaction rate as expected but has little effect on the equilibrium. (c) 1992 John Wiley & Sons, Inc.  相似文献   

19.
Lipase (EC 3.1.1.3) from Pseudomonas fragi 22.39B was modified with polyethylene glycol. The modified lipase was soluble in organic solvents such as benzene and chlorinated hydrocarbons, and catalyzed the synthesis of esters from fatty acids and alcohols in these solvents. The longer the chain length of fatty acid, the higher the ester synthesis activity. A similar specificity was not observed with other substrates like alcohol. Values of Km and Vmax were revealed by kinetic study on the ester synthesis reaction with the modified lipase in benzene. Fatty acids with branched carbon chain at the position neighboring the carboxyl group did not serve as substrates of ester synthesis.  相似文献   

20.
Polymerization of glycine methyl ester catalyzed by cupric ions in organic solvents yields oligoglycines with a degree of polymerization up to none. With a trifunctional amino acid, the yield and degree of polymerization were much lower. Extension of this reaction to an aqueous medium was not successful even when copper ions were complexed with substances like montmorillonite or fatty acids. The prebiotic significance of this reaction is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号