首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the vitality and viability of the probiotic yeast Saccharomyces boulardii after freezing/thawing and the physiological preconditioning effect on these properties. The results indicate that the specific growth rate (0.3/h?1) and biomass (2-3 × 108 cells/ml) of S. boulardii obtained in flasks shaken at 28 °C and at 37 °C were similar. Batch cultures of the yeast in bioreactors using glucose or sugar-cane molasses as carbon sources, reached yields of 0.28 g biomass/g sugar consumed, after 10 h incubation at 28 °C; the same results were obtained in fed batch fermentations. On the other hand, in batch cultures, the vitality of cells recovered during the exponential growth phase was greater than the vitality of cells from the stationary phase of growth. Vitality of cells from fed-batch fermentations was similar to that of stationary growing cells from batch fermentations. Survival to freezing at –20 °C and subsequent thawing of cells from batch cultures was 0.31% for cells in exponential phase of growth and 11.5% for cells in stationary phase. Pre-treatment of this yeast in media with water activity (aw) 0.98 increased the survival to freezing of S. boulardii cells stored at –20 °C for 2 months by 10 fold. Exposure of the yeast to media of reduced aw and/or freezing/thawing process negatively affected cell vitality. It was concluded that stress conditions studied herein decrease vitality of S. boulardii. Besides, the yeast strain studied presented good tolerance to bile salts even at low pH values.  相似文献   

2.
For this study, 2,3-butanediol (BD) fermentation from pure and biomass-derived sugar were optimized in shake-flask and 5-L bioreactor levels using Klebsiella oxytoca ATCC 8724. The results showed that 70 g/L of single sugar (glucose or xylose) and 90 g/L of mixed-sugar (glucose:xylose = 2:1) were optimum concentrations for efficient 2,3-BD fermentation. At optimum sugar concentrations, 2,3-BD productivities were 1.03, 0.64 and 0.50 gL−1 h−1, and yields were 0.43, 0.36 and 0.35 g/g in glucose, xylose and mixed-sugar medium, respectively. The lack of simultaneous utilization of glucose and xylose led to the lowest productivity in the mixed-sugar medium. Detoxification of biomass hydrolyzates was necessary for efficient 2,3-BD fermentation when sugar concentrations in the medium was 90 g/L or higher, but not with sugar concentrations of 30 g/L or less. A fed-batch fermentation using glucose medium led to an increase 2,3-BD titer to 79.4 g/L and yields 0.47 g/g, while productivity decreased to 0.79 gL−1 h−1. However, the fed-batch process was inefficient using mixed-sugar and biomass hydrolyzates because of poor xylose utilization. These results indicated that appropriate biomass processing technologies must be developed to generate separate glucose and xylose streams to produce high 2,3-BD titer from biomass-derived sugar using a fed-batch process.  相似文献   

3.
The extensive prospects of violacein in the pharmaceutical industry have attracted increasing interest. However, the fermentation levels of violacein are currently inadequate to meet the demands of industrial production. This study was undertaken to develop an efficient process for the production of violacein by recombinant Citrobacter freundii. The effects of dissolved oxygen (DO) and pH on cell growth and violacein production in batch cultures were investigated first. When the DO and pH of the medium were controlled at around 25% and 7.0, respectively, the biomass and concentration of violacein were maximized. Based on the consumption of nutrients in the medium observed during batch culture, a fed-batch fermentation strategy with controlled DO and pH was implemented. By continuously feeding glycerol, NH4Cl, and l-tryptophan at a constant feeding rate of 16 mL h−1, the final concentration of violacein reached 4.13 g L−1, which was 4.09-fold higher than the corresponding batch culture, and the maximal dry cell weight (DCW) and average violacein productivity obtained for the fed-batch culture were 3.34 g DCW L−1 and 82.6 mg L−1 h−1, respectively. To date, this is the first report on the efficient production of violacein by genetically engineered strains in a fermentor.  相似文献   

4.
A perfluoropolymer (PFP) membrane has been prepared for use in vapor permeation to separate aqueous ethanol mixtures produced from rice straw with xylose-assimilating recombinant Saccharomyces cerevisiae. PFP membranes commonly have been used for dehydration process and possess good selectivity and high permeances. The effects of by-products during dilute acid pretreatment, addition of yeast extract, and ethanol fermentation on PFP membrane performance were investigated. While feeding mixtures of ethanol (90 wt%) in water, to which individual by-products (0.1–2 g/L) were added, the PFP membrane demonstrated no clear change in permeation rate (439–507 g m−2 h−1) or separation factor (14.9–23.5) from 2 to 4 h of the process. The PFP membrane also showed no clear change in permeation rate (751–859 g m−2 h−1) or separation factor (12.5–13.8) while feeding the mixture (final ethanol conc.: 61 wt%) of ethanol and distillation of the fermentation broth using a suspended fraction of dilute acid-pretreated rice straw for 20 h. These results suggest that the PFP membrane can tolerate actual distillation liquids from ethanol fermentation broth obtained from lignocellulosic biomass pretreated with dilute acid.  相似文献   

5.
A mixed fermentation strategy based on exponentially fed-batch cultures (EFBC) and nutrient pulses with sucrose and yeast extract was developed to achieve a high concentration of PHB by Azotobacter vinelandii OPNA, which carries a mutation on the regulatory systems PTSNtr and RsmA-RsmZ/Y, that negatively regulate the synthesis of PHB. Culture of the OPNA strain in shake flaks containing PY-sucrose medium significantly improved growth and PHB production with respect to the results obtained from the cultures with the parental strain (OP). When the OPNA strain was cultured in a batch fermentation keeping constant the DOT at 4%, the maximal growth rate (0.16 h−1) and PHB yield (0.30 gPHB gSuc−1) were reached. Later, in EFBC, the OPNA strain increased three fold the biomass and 2.2 fold the PHB concentration in relation to the values obtained from the batch cultures. Finally, using a strategy of exponential feeding coupled with nutrient pulses (with sucrose and yeast extract) the production of PHB increased 7-fold to reach a maximal PHB concentration of 27.3 ± 3.2 g L−1 at 60 h of fermentation. Overall, the use of the mutant of A. vinelandii OPNA, impaired in the PHB regulatory systems, in combination with a mixed fermentation strategy could be a feasible strategy to optimize the PHB production at industrial level.  相似文献   

6.
Cheese whey powder (CWP) solution with different CWP or sugar concentrations was fermented to ethanol in a continuous fermenter using pure culture of Kluyveromyces marxianus (DSMZ 7239). Sugar concentration of the feed CWP solution varied between 55 and 200 g l−1 while the hydraulic residence time (HRT) was kept constant at 54 h. Ethanol formation, sugar utilization and biomass formation were investigated as functions of the feed sugar concentration. Percent sugar utilization and biomass concentrations decreased and the effluent sugar concentration increased with increasing feed sugar concentrations especially for the feed sugar contents above 100 g l−1. Ethanol concentration and productivity (DP) increased with increasing feed sugar up to 100 g l−1 and then decreased with further increases in the feed sugar content. The highest ethanol concentration (3.7%, v v−1) and productivity (0.54 gE l−1 h−1) were obtained with the feed sugar content of 100 g l−1 or 125 g l−1. The ethanol yield coefficient (YP/S) was also maximum (0.49 gE gS−1) when the feed sugar was between 100 and 125 g l−1. The growth yield coefficient (YX/S) decreased steadily from 0.123 to 0.063 gX gS−1 when the feed sugar increased from 55 to 200 g l−1 due to adverse effects of high sugar contents on yeast growth. The optimal feed sugar concentration maximizing the ethanol productivity and sugar utilization was between 100 and 125 g l−1 under the specified experimental conditions.  相似文献   

7.
S-licarbazepine was synthesized by asymmetric reduction of oxcarbazepine with CGMCC No. 2266. The optimum batch reduction conditions were found to consist of a reaction time of 36 h, temperature of 30 °C, and initial pH value of 7.0. The optimum concentration of the glucose co-substrate was found to be 0.3 mol L−1. The addition of glucose contributed to in situ regeneration of NADPH in cells and improved conversion. Conversion increased with the addition of more biomass and with a decrease in the initial concentration of substrate. Within the membrane reactor, a continuous reduction process was used to improve production efficiency and reduce the inhibition of high-concentration substrate upon reduction. The optimum flux was found to be 20 ml h−1. S-licarbazepine yield was 3.7678 mmol L−1 d−1 in continuous reduction over four days. The enantiometric excess of S-licarbazepine was 100% for both batch and continuous reduction processes.  相似文献   

8.
《Process Biochemistry》2007,42(1):112-117
A simple fed-batch process was developed using a modified variable specific growth rate feeding strategy for high cell density cultivation of Escherichia coli BL21 (DE3) expressing human interferon-gamma (hIFN-γ). The feeding rate was adjusted to achieve the maximum attainable specific growth rate during fed-batch cultivation. In this method, specific growth rate was changed from a maximum value of 0.55 h−1 at the beginning of feeding and then it was reduced to 0.4 h−1 at induction time.The final concentration of biomass and IFN-γ was reached to ∼115 g l−1 (DCW) and 42.5 g(hIFN-γ) l−1 after 16.5 h, also the final specific yield and overall productivity of recombinant hIFN-γ (rhIFN-γ) were obtained 0.37 g(hIFN-γ) g−1 DCW and 2.57 g(hIFN-γ) l−1 h−1, respectively. According to available data this is the highest specific yield and productivity that has been reported for recombinant proteins production yet.  相似文献   

9.
An experimental method for producing ethanol continuously was designed and tested with a cell-recycling two-tank system, which was composed of two fermentors, each of which was individually equipped with a settler for recycling flocculent yeast. This system was effective for the continuous fermentation of ethanol from sucrose at high cell-recycling (r = 0.8–0.9) and dilution (up to 0.48 h?1) rates. The system has several advantages; the high cell concentration in the fermentors and relief of substrate and product inhibition. Thus, the enhanced productivity using this continuous fermentation with the two-tank cell-recycling system was significantly higher compared with that of the batch fermentation. The results indicate that increased recycling ratios caused an increase in biomass concentration and subsequently, product concentration in the tank. The ethanol productivity increased with the dilution rate, but higher dilution rates could render increasing amounts of sugar unconverted. Continuous fermentation with the sugar feed concentration of 160 g/l at r = 0.9 and dilution rate of 0.2 h?1 achieved the highest productivity with less than 2% of the unconverted sugar in the product steam. Under the same cell recycling ratios a productivity range of 6.9–7.5 g/l h?1 could be achieved with feeding concentrations of 80–200 g/l, while batch fermentation at these sugar concentrations led to productivities of 3.85–4.48 g/l h?1.  相似文献   

10.
《Process Biochemistry》2007,42(5):873-877
The present work reports the effect of simple feeding strategies to obtain high-cell-density cultures of Kluyveromyces marxianus maximizing β-galactosidase productivity using cheese whey as basic medium. Linear and exponential feeding strategies, with feeding times of 20, 25 and 35 h, and three different feeding media concentrations (140 g/L, 210 g/L, and 280 g/L lactose concentration), were tested. Final biomass concentration reached 35 g cells dry weight/L and our results showed that continuous lactose addition to culture were able to produce high specific enzyme activities, consequently improving volumetric activities of β-galactosidase when compared to batch cultivations. The best fed-batch strategy, which was the feeding of three-fold lactose concentration in the cheese whey-medium during 25 h, resulted in β-galactosidase productivity of 291 U/L h, representing an increase of more than 50% compared to batch cultivations.  相似文献   

11.
《Process Biochemistry》2007,42(6):934-942
Pseudomonas luteola was immobilized by entrapment in alginate–silicate sol–gel beads for decolorization of the azo dye, Reactive Red 22. The influences of biomass loading and operating conditions on specific decolorization rate and dye removal efficiency were studied in details. The immobilized cells were found to be less sensitive to changes in agitation rates (dissolved oxygen levels) and pH values. Michaelis–Menten kinetics could be used to describe the decolorization kinetics with the kinetic parameters being 36.5 mg g−1 h−1, 300.1 mg l−1 and 18.2 mg g−1 h−1, 449.8 mg l−1 for free and immobilized cells, respectively. After five repeated batch cycles, the decolorization rate of the free cells decreased by nearly 54%, while immobilized cells still retained 82% of their original activity. The immobilized cells exhibited better thermal stability during storage and reaction when compared with free cells. From SEM observation, a dense silicate gel layer was found to surround the macroporous alginate–silicate core, which resulted in much improved mechanical stability over that of alginate beads when tested under shaking conditions. Alginate–silicate matrices appeared to be the best matrix for immobilization of P. luteola in decolorization of Reactive Red 22 when compared with previous results using synthetic or natural polymer matrices.  相似文献   

12.
《Process Biochemistry》2007,42(2):279-284
Cell immobilization techniques were adopted to biohydrogen production using immobilized anaerobic sludge as the seed culture. Sucrose-based synthetic wastewater was converted to H2 using batch and continuous cultures. A novel composite polymeric material comprising polymethyl methacrylate (PMMA), collagen, and activated carbon was used to entrap biomass for H2 production. Using the PMMA immobilized cells, the favorable conditions for batch H2 fermentation were 35 °C, pH 6.0, and an 20 g COD l−1 of sucrose, giving a H2 production rate of 238 ml h−1 l−1 and a H2 yield of 2.25 mol H2 mol sucrose−1. Under these optimal conditions, continuous H2 fermentation was conducted at a hydraulic retention time (HRT) of 4–8 h, giving the best H2-producing rate of 1.8 l h−1 l−1 (over seven-fold of the best batch result) at a HRT of 6 h and a H2 yield of 2.0 mol H2 mol sucrose−1. The sucrose conversion was essentially over 90% in all runs. The biogas consisted of only H2 and CO2. The major soluble metabolites were butyric acid, acetic acid, and 2,3-butandiol, while a small amount of ethanol also detected. The PMMA-immobilized-cell system developed in this work seems to be a promising H2-producing process due to the high stability in continuous operations and the capability of achieving a competitively high H2 production rate under a relatively low organic loading rate.  相似文献   

13.
We examined glucose 6-phosphate dehydrogenase (G6PD) production by fed-batch cultivation, using a recombinant strain of Saccharomyces cerevisiae W303-181 overexpressing this enzyme. The cultivations were carried out in a 3 L fermenter at pH 5.7, 30 °C, 2.0 vvm aeration, 200 rpm agitation and an inoculum concentration of 1.0 g/L. The volume of the culture medium in the fed-batch process varied from 1.333 to 2.0 L, due to the addition of 15.0 g/L glucose solution during 5 h. Different feeding rates were studied (exponentially increasing and decreasing feeding rates), and the feeding profile was determined by values of the parameter K (time constant), namely: 0.2, 0.5 and 0.8 h−1. The best enzyme production (847 U/L) was obtained with an exponentially increasing feeding rate and K = 0.2 h−1. The results attained also showed that this process is promising for G6PD production.  相似文献   

14.
Heterogeneities occur in various bioreactor designs including cell retention devices. Whereas in external devices changing environmental conditions cannot be prevented, cells are retained in their optimal environment in internal devices. Conventional reverse-flow diafiltration utilizes an internal membrane device, but pulsed feeding causes spatial heterogeneities. In this study, the influence of conventional reverse-flow diafiltration on the yeast Hansenula polymorpha is investigated. Alternating 180 s of feeding with 360 s of non-feeding at a dilution rate of 0.2 h−1 results in an oscillating DOT signal with an amplitude of 60%. Thereby, induced short-term oxygen limitations result in the formation of ethanol and a reduced product concentration of 25%. This effect is enforced at increased dilution rate. To overcome this cyclic problem, sequential operation of three membranes is introduced. Thus, quasi-continuous feeding is achieved reducing the oscillation of the DOT signal to an amplitude of 20% and 40% for a dilution rate of 0.2 h−1 and 0.5 h−1, respectively. Fermentation conditions characterized by complete absence of oxygen limitation and without formation of overflow metabolites could be obtained for dilution rates from 0.1 h−1 to 0.5 h−1. Thus, sequential operation of three membranes minimizes oscillations in the DOT signal providing a nearly homogenous culture over time.  相似文献   

15.
The entomogenous fungus Cordyceps taii, a traditional Chinese medicinal mushroom, exhibits potent important pharmacological effects and it has great potential for health foods and medicine. In this work, the effects of oxygen supply on production of biomass and bioactive helvolic acid were studied in shake-flask fermentation of C. taii mycelia. The value of initial volumetric oxygen transfer coefficient (KLa) within 10.1–33.8 h−1 affected the cell growth, helvolic acid production and expression levels of biosynthetic genes. The highest cell concentration of 17.2 g/L was obtained at 14.3 h−1 of initial KLa. The highest helvolic acid production was 9.6 mg/L at 10.1 h−1 of initial KLa. The expression levels of three genes encoding hydroxymethylglutaryl-CoA synthase, hydroxymethylglutaryl-CoA reductase and squalene synthase were down-regulated on day 2 and day 8 but up-regulated on day 14 at an initial KLa value of 10.1 h−1 vs. 33.8 h−1, which well corresponded to the helvolic acid biosynthesis in those conditions. The information obtained would be helpful for improving the biomass and helvolic acid production in large-scale fermentation of C. taii.  相似文献   

16.
Recently, a bubbleless membrane bioreactor (BMBR) has been successfully developed for biosurfactant production by Bacillus subtilis [1]. In this study, for the first time, continuous culture were carried out for the production of surfactin in a BMBR, both with or without a coupled microfiltration membrane. Results from continuous culture showed that a significant part of biomass was immobilized onto the air/liquid membrane contactor. Immobilized biomass activity onto the air/liquid membrane contactor was monitored using a respirometric analysis. Kinetics of growth, surfactin and primary metabolites production were investigated. Planktonic biomass, immobilized biomass and surfactin production and productivity obtained in batch culture (3 L) of 1.5 days of culture were 4.5 g DW, 1.3 g DW, 1.8 g and 17.4 mg L?1 h?1, respectively. In continuous culture without total cell recycling (TCR), the planktonic biomass was leached, but immobilized biomass reached a steady state at an estimated 6.6 g DW. 11.5 g of surfactin was produced after 3 days of culture, this gave an average surfactin productivity of 54.7 mg L?1 h?1 for the continuous culture, which presented a surfactin productivity of 30 mg L?1 h?1 at the steady state. TCR was then investigated for the continuous production, extraction and purification of surfactin using a coupled ultrafiltration step. In continuous culture with TCR at a dilution rate of 0.1 h?1, planktonic biomass, immobilized biomass, surfactin production and productivity reached 7.5 g DW, 5.5 g DW, 7.1 g and 41.6 mg L?1 h?1 respectively, after 2 days of culture. After this time, biomass and surfactin productions stopped. Increasing dilution rate to 0.2 h?1 led to the resumption of biomass and surfactin production and these values reached 11.1 g DW, 10.5 g DW, 7.9 g and 110.1 mg L?1 h?1, respectively, after 3 days of culture. This study has therefore shown that with this new integrated bioprocess, it was possible to continuously extract and purify several grams of biosurfactant, with purity up to 95%.  相似文献   

17.
Fermentations were performed in an external recycle bioreactor using CO2 and d-glucose at feed concentrations of 20 and 40 g L−1. Severe biofilm formation prevented kinetic analysis of suspended cell (‘chemostat’) fermentation, while perlite packing enhanced the volumetric productivity by increasing the amount of immobilised cells. The highest productivity of 6.35 g L−1 h−1 was achieved at a dilution rate of 0.56 h−1. A constant succinic acid yield of 0.69 ± 0.02 g/(g of glucose consumed) was obtained and found to be independent of the dilution rate, transient state and extent of biofilm build-up – approximately 56% of the carbon that formed phosphoenolpyruvate ended up as succinate. Byproduct analysis indicated that pyruvate oxidation proceeded solely via the formate-lyase pathway. Cell growth and corresponding biofilm formation were rapid at dilution rates higher than 0.35 h−1 when the product concentrations were low (succinic acid < 10 g L−1), while minimal growth was observed at succinic acid concentrations above this threshold.  相似文献   

18.
Carbon limited continuous cultures of Lactobacillus rhamnosus ATCC 7469 were grown at dilution rates between 0.1 h−1 and 0.6 h−1. At 0.45 h−1, oxygen uptake decreases producing a deficiency in the production of cell energy, lowering the concentration of biomass and finally accumulating glucose in the broth. Under the lack of energy pressure, L. rhamnosus ATCC 7469 triggers the production of lactic acid from pyruvate freeing NAD+ and stimulates glycolysis to continue, producing extra ATP from substrate-level phosphorylation. The 12-fold growing concentration of lactic acid and the 2-fold increase of succinic acid are in parallel with the steep 4-fold decrease of acetic acid production and small concentration changes of formic and propionic acids.The way the cells balance the available energy between the growing dilution rate and detoxification produces a stress within the culture, detected and described by flow cytometry. As the dilution rate increased, the proportion of L. rhamnosus ATCC 7469 cells with depolarized membrane steadily increased (1% at D = 0.20 h−1, 8% at D = 0.30 h−1, 14% at D = 0.45 h−1 and 26% for D = 0.62 h−1, respectively). Only a low level of 3.7% of the population did not recover from the demanding growth rates in the acidic environment.  相似文献   

19.
Chlorella vulgaris was cultivated in two different 2.0 L-helicoidal and horizontal photobioreactors at 5 klux using the bicarbonate contained in the medium and ambient air as the main CO2 sources. The influence of bicarbonate concentration on biomass growth as well as lipid content and profile was first investigated in shake flasks, where the stationary phase was achieved in about one half the time required by the control. The best NaHCO3 concentration (0.2 g L−1) was then used in both photobioreactors. While the fed-batch run performed in the helicoidal photobioreactor provided the best result in terms of biomass productivity, which was (84.8 mg L−1 d−1) about 2.5-fold that of the batch run, the horizontal configuration ensured the highest lipid productivity (10.3 mg L−1 d−1) because of a higher lipid content of biomass (22.8%). These preliminary results suggest that the photobioreactor configuration is a key factor either for the growth or the composition of this microalga. The lipid quality of C. vulgaris biomass grown in both photobioreactors is expected to meet the standards for biodiesel, especially in the case of the helicoidal configuration, provided that further efforts will be made to optimize the conditions for its production as a biodiesel source.  相似文献   

20.
The relationship between light intensity, nitrogen availability and pigmentation was investigated in mixotrophic and heterotrophic cultures of the unicellular red alga Galdieria sulphuraria 074G, a potential host for production of the blue pigment, phycocyanin (PC). During the exponential growth phase of batch cultures, G. sulphuraria 074G contained 2–4 mg phycocyanin per g dry weight. In carbon-limited and nitrogen-sufficient batch cultures grown in darkness, this value increased to 8–12 mg g−1 dry weight during the stationary phase, whereas the phycocyanin content in nitrogen-deficient cells decreased to values below 1 mg g−1 dry weight during stationary phase. Light intensities between 0 and 100 μmol photons m−2 s−1 had no influence on phycocyanin accumulation in mixotrophic cultures grown on glucose or fructose, while light stimulated phycocyanin synthesis in cultures grown on glycerol, in which the phycocyanin content in stationary phase was increased from 10 mg g−1 dry weight in darkness to 20 mg g−1 dry weight at a light intensity of 80 μmol photons m−2 s−1. At higher light intensities, less phycocyanin accumulated than at lower intensities, irrespective of the carbon substrate used. In carbon-limited continuous flow cultures grown on glucose or glycerol at a dilution rate of 0.63 day−1, corresponding to 50% of the maximum specific growth rate, the highest steady-state phycocyanin content of 15–28 mg g−1 dry weight was found at 65 μmol photons m−2 s−1. In contrast to the apparent glucose repression of light-induced PC synthesis observed in batch cultures, no glucose repression of the light stimulation was observed in continuous flow cultures because the glucose concentration in the culture supernatant always remained at limiting levels. Despite the fact that G. sulphuraria 074G contains less phycocyanin than some other microalgae and cyanobacteria, the ability of G. sulphuraria 074G to grow and synthesize phycocyanin in heterotrophic or mixotrophic cultures makes it an interesting alternative to the cyanobacterium, Spirulina platensis presently used for synthesis of phycocyanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号