首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gum arabic coated magnetic Fe3O4 nanoparticles (GAMNP) were prepared by chemical co-precipitation method and their surface morphology, particle size and presence of polymer-coating was confirmed by various measurements, including transmission electron microscopy (TEM), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and Fourier transform infra red (FTIR) analysis. Magnetic particles were employed for their potential application as a support material for lipase immobilization. Glutaraldehyde was used as a coupling agent for efficient binding of lipase onto the magnetic carrier. For this purpose, the surface of a Candida rugosa lipase was initially coated with various surfactants, to stabilize enzyme in its open form, and then immobilized on to the support. This immobilized system was used as a biocatalyst for ethyl isovalerate, a flavor ester, production. The influence of various factors such as type of surfactant, optimum temperature and pH requirement, organic solvent used, amount of surfactant in coating lipase and effect of enzyme loadings on the esterification reaction were systematically studied. Different surfactants were used amongst which non-ionic surfactant performed better, showing about 80% esterification yield in 48 h as compared to cationic/anionic surfactants. Enhanced activity due to interfacial activation was observed for immobilized non-ionic surfactant–lipase complex. The immobilized surfactant coated lipase activity was retained after reusing seven times.  相似文献   

2.
《Process Biochemistry》2014,49(9):1488-1496
Finishing of silk fabric was achieved by using amino-functional polydimethylsiloxane (PDMS) and lipase from Candida sp. 99-125 was immobilized on the treated silk fabrics. Hydrophobic fabrics were obtained by dipping the native fabric in 0.125–0.25% (w/v) PDMS solution and dried at 70 °C. The direct adsorption on PDMS-treated fabric was verified to be a better strategy for lipase immobilization than that by covalent binding. Compared to unfinished fabrics, the hydrolytic activity of immobilized enzyme on the finished fabric was improved by 1.6 times. Moreover, the activity of immobilized enzymes on hydrophobic fabrics was significantly improved in different concentrations of strong polar solvents such as methanol and ethanol, and in common organic solvents with different octanol–water partition coefficients (Log P). Enzymatic activity and stability in 15% water content system (added water accounted for the total reaction mixtures, v/v) showed more than 30% improvement in each batch. The amino–silicone finished fabric surface was investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. The hydrophobic fabric immobilized enzyme could be recycled for more than 80 times with no significant decrease in esterification activity. PDMS-treated woven silk fabrics could be a potential support for lipase immobilization in catalytic esterification processes.  相似文献   

3.
An industrial enzyme, alkaline serine endopeptidase, was immobilized on surface modified SBA-15 and MCF materials by amide bond formation using carbodiimide as a coupling agent. The specific activities of free enzyme and enzyme immobilized on SBA-15 and MCF were studied using casein (soluble milk protein) as a substrate. The highest activity of free enzyme was obtained at pH 9.5 while this value shifted to pH 10 for SBA-15 and MCF immobilized enzyme. The highest activity of immobilized enzymes was obtained at higher temperature (60 °C) than that of the free enzyme (55 °C). Kinetic parameters, Michaelis–Menten constant (Km) and maximum reaction velocity (Vmax), were calculated as Km = 13.375, 11.956, and 8.698 × 10?4 mg/ml and Vmax = 0.156, 0.163 and 0.17 × 10?3 U/mg for the free enzyme and enzyme immobilized on SBA-15 and MCF, respectively. The reusability of immobilized enzyme showed 80% of the activity retained even after 15 cycles. Large pore sized MCF immobilized enzyme was found to be more promising than the SBA-15 immobilized enzyme due to the availability of larger pores of MCF, which offer facile diffusion of substrate and product molecules.  相似文献   

4.
An organic–inorganic nanocomposite which combined mesoporous silica SBA-15 and chitosan using a carboxyl functionalized ionic liquid as the bridging agent (SBA@CS) was successfully fabricated, and was used to immobilize porcine pancreas lipase (PPL) by physical adsorption, cross-linking and metal–organic coordination, respectively. The as-prepared carriers were characterized by scanning electron microscopy, Fourier transform infrared and energy-dispersive X-ray spectroscopy. Compared with immobilization onto the pure mesoporous silicon material SBA-15, all the batches of PPL immobilized onto organic–inorganic nanocomposites showed higher activity, improved stability and reusability as well as better resistance to pH and temperature changes. Among the immobilized PPLs, immobilization based on Co2+ coordination (SBA@CS-Co-PPL) produced the best enzymatic properties. The maximum immobilization efficiency and specific activity of 79.6% and 1975.8 U g−1 were obtained with SBA@CS-Co, separately. More importantly, the activity of immobilized enzyme can still maintain 84.0% after 10 times of reuse. These results demonstrated that thus prepared organic–inorganic nanocomposite could be an ideal carrier for enzyme immobilization by metal–organic coordination.  相似文献   

5.
In the present study, silicate mesoporous materials (MCM-41), MCM-41-grafted polyethylenimine (MCM-41@PEI), and succinated PEI containing amine, amide, and acid groups were successfully synthesized and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis, and X-ray photoelectron spectroscopy. Thermomyces lanuginosa lipase (TLL) was then immobilized onto MCM-41 and polymer-grafted MCM-41 by physical adsorption. Besides, for enzyme immobilization via covalent bonding, glutaraldehyde (GLU), and hexamethylene diisocyanate (HMDI) were used as the bridges for binding the enzyme to supports. The best result was obtained with the immobilized lipase on MCM-41@PEI-GLU. In the study of the enzyme reusability, it was shown that about 83% of the initial activity could be retained after 12 cycles of uses. The immobilized lipase on the selected support was also applied for the synthesis of ethyl valerate. Following 24 h incubation in n-hexane and solvent free media, the esterification percentages were 79% and 67%, respectively.  相似文献   

6.
In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified by ordered mesoporous silica-SBA-15 and Nafion. The sorption behavior of GOD immobilized on SBA-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet–visible (UV–vis), FTIR, respectively, which demonstrated that SBA-15 can facilitate the electron exchange between the electroactive center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and SBA-15 matrices displays direct, nearly reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 3.89 s−1 in 0.1 M phosphate buffer solution (PBS) (pH 7.12). Furthermore, it was also discovered that, in the absence of O2, GOD immobilized on Nafion and SBA-15 matrices can produce a wide linear response to glucose in the positive potential range. Thus, Nafion/GOD-SBA-15/GC electrode is hopeful to be used in the third non-mediator's glucose biosensor. In addition, GOD immobilized on SBA-15 and Nafion matrices possesses an excellent bioelectrocatalytic activity for the reduction of O2. The Nafion/GOD-SBA-15/GC electrode can be utilized as the cathode in biofuel cell.  相似文献   

7.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

8.
Mesoporous silica SBA-15 was modified by imidazole based ionic liquids (ILs) with various functional groups such as alkyl, amino, and carboxyl. Prepared supports (IL-SBA) were characterized by nitrogen adsorption–desorption (BET), small-angle X-ray diffraction (XRD), 13C solid-state nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), elemental analysis, and scanning electron microscopy (SEM), transmission electron microscope (TEM), and applied to immobilize Burkholderia cepacia lipase (BCL). Results revealed that modification of mesoporous material SBA-15 with ILs was a novel and efficient method to improve the properties of immobilized BCL (BCL-IL-SBA). Improved thermal stability, reusability, storage stability and stability in organic solvent of BCL-IL-SBA were obtained. BCL-IL-SBA was also less sensitive to temperature and low pH than BCL-SBA-15. Moreover, BCL-IL-SBA showed relatively high specific activity, thereinto, BCL-NH2-IL-SBA had the highest specific activity, which improved 12.39-folds compared with BCL-SBA-15. Additionally, Michaelis–Menten constant Km and the initial maximum reaction velocity Vmax of the immobilized BCLs were calculated by using Lineweaver–Burk plots and the results showed BCL-IL-SBA had better affinity towards the substrate. These improvements were associated with changes in pore structure and stronger enzyme–support surface interactions.  相似文献   

9.
Candida rugosa lipase was immobilized on magnetic nanoparticles supported ionic liquids having different cation chain length (C1, C4 and C8) and anions (Cl, BF4 and PF6). Magnetic nanoparticles supported ionic liquids were obtained by covalent bonding of ionic liquids–silane on magnetic silica nanoparticles. The particles are superparamagnetic with diameter of about 55 nm. Large amount of lipase (63.89 mg/(100 mg carrier)) was loaded on the support through ionic adsorption. Activity of the immobilized lipase was examined by the catalysis of esterification between oleic acid and butanol. The activity of bound lipase was 118.3% compared to that of the native lipase. Immobilized lipase maintained 60% of its initial activity even when the temperature was up to 80 °C. In addition, immobilized lipase retained 60% of its initial activity after 8 repeated batches reaction, while no activity was detected after 6 cycles for the free enzyme.  相似文献   

10.
The mesoporous silica SBA-15 was modified by carboxyl-functionalized ionic liquid (COOH-IL-SBA). The prepared support was used to immobilize porcine pancreatic lipase (PPL) by physical adsorption (PPL-COOH-IL-SBA) and covalent attachment (PPL-CON-IL-SBA). Enzymatic properties of the immobilized PPL were investigated in the triacetin hydrolysis reaction. It was found that carboxyl functionalized ionic liquid modification of the support surface was an effective method to improve the properties of immobilized PPL. Incorporating into the functionalized SBA-15 made PPL more resistant to temperature and pH changes, compared with PPL immobilized on parent SBA-15 (PPL-SBA). Especially, after the covalent attachment to a functionalized support, the stability of PPL was improved obviously, which retained 81.25% and 52.50% of the original activity after incubation for 20 days and four times recycling, respectively, whereas PPL-SBA exhibited only 58.80% and 27.78% of the original activity under the same conditions. In addition, physical and chemical properties of the supports and immobilized PPL were characterized by small-angle X-ray powder diffraction (SAXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), nitrogen adsorption, nuclear magnetic resonance (NMR) and thermogravimetry (TG). The images and data confirmed chemical modification in SBA-15 and PPL immobilization on the tested support.  相似文献   

11.
《Process Biochemistry》2014,49(2):244-249
The novel enzyme carrier, polyamidoamine (PAMAM) dendrimers modified macroporous polystyrene, has been synthesized by Michael addition and firstly used in the immobilization of porcine pancreas lipase (PPL) effectively by covalent attachment. The resulting carrier was characterized with the Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM), elemental analysis and thermogravimetric (TG) analysis. Meanwhile, the amount of immobilized lipase was up to 100 mg g−1 support and the factors related with the enzyme activity were investigated. The immobilization of the PPL improved their performance in wider ranges of pH and temperature. Thermal stability of the immobilized lipase also increased dramatically in comparison with the free ones and the immobilized lipase exhibited a favorable denaturant tolerance. As a biocatalyst, the immobilized lipase for batch hydrolysis of olive oil emulsion retained 85% activity after 10 times of recycling. This well-reusability of immobilized lipase was very valuable and meaningful in enzyme technology.  相似文献   

12.
Lipase (E.C.3.1.1.3) from Thermomyces lanuginosus (TL) was directly bonded, through multiple physical interactions, on citric acid functionalized monodispersed Fe3O4 nanoparticles (NPs) in presence of a small amount of hydrophobic functionalities. A very promising scalable synthetic approach ensuring high control and reproducibility of the results, and an easy and green immobilization procedure was chosen for NPs synthesis and lipase anchoring. The size and structure of magnetic nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The samples at different degree of functionalization were analysed through thermogravimetric measurements. Lipase immobilization was further confirmed by enzymatic assay and Fourier transform infrared (FT-IR) spectra. Immobilized lipase showed a very high activity recovery up to 144% at pH = 7 and 323% at pH = 7.5 (activity of the immobilized enzyme compared to that of its free form). The enzyme, anchored to the Fe3O4 nanoparticles, to be easy recovered and reused, resulted more stable than the native counterpart and useful to produce banana flavour. The immobilized lipase results less sensitive to the temperature and pH, with the optimum temperature higher of 5 °C and optimum pH up shifted to 7.5 (free lipase optimum pH = 7.0). After 120 days, free and immobilized lipases retained 64% and 51% of their initial activity, respectively. Ester yield at 40 °C for immobilized lipase reached 88% and 100% selectivity.  相似文献   

13.
In this study, polyurethane foam (PUF) was used for immobilization of Yarrowia lipolytica lipase Lip2 via polyethyleneimine (PEI) coating and glutaraldehyde (GA) coupling. The activity of immobilized lipases was found to depend upon the size of the PEI polymers and the way of GA treatment, with best results obtained for covalent-bind enzyme on glutaraldehyde activated PEI-PUF (MW 70,000 Da), which was 1.7 time greater activity compared to the same enzyme immobilized without PEI and GA. Kinetic analysis shows the hydrolytic activity of both free and immobilized lipases on triolein substrate can be described by Michaelis–Menten model. The Km for the immobilized and free lipases on PEI-coated PUF was 58.9 and 9.73 mM, respectively. The Vmax values of free and immobilized enzymes on PEI-coated PUF were calculated as 102 and 48.6 U/mg enzyme, respectively. Thermal stability for the immobilization preparations was enhanced compared with that for free preparations. At 50 °C, the free enzyme lost most of its initial activity after a 30 min of heat treatment, while the immobilized enzymes showed significant resistance to thermal inactivation (retaining about 70% of its initial activity). Finally, the immobilized lipase was used for the production of lauryl laurate in hexane medium. Lipase immobilization on the PEI support exhibited a significantly improved operational stability in esterification system. After re-use in 30 successive batches, a high ester yield (88%) was maintained. These results indicate that PEI, a polymeric bed, could not only bridge support and immobilized enzymes but also create a favorable micro-environment for lipase. This study provides a simple, efficient protocol for the immobilization of Y. lipolytica lipase Lip2 using PUF as a cheap and effective material.  相似文献   

14.
The Talaromyces thermophilus lipase (TTL) was immobilized by different methods namely adsorption, ionic binding and covalent coupling, using various carriers. Chitosan, pre-treated with glutaraldehyde, was selected as the most suitable support material preserving the catalytic activity almost intact and offering maximum immobilization capacity (76% and 91%, respectively). The chitosan-immobilized lipase could be reputably used for ten cycles with more than 80% of its initial hydrolytic activity. Shift in the optimal temperature from 50 to 60 °C and in the pH from 9.5 to 10, were observed for the immobilized lipase when compared to the free enzyme.The catalytic esterification of oleic acid with 1-butanol has been carried out using hexane as organic solvent. A high performance synthesis of 1-butyl oleate was obtained (95% of conversion yield) at 60 °C with a molar ratio of 1:1 oleic acid to butanol and using 100 U (0.2 g) of immobilized lipase. The esterification product is analysed by GC/MS to confirm the conversion percentage calculated by titration.  相似文献   

15.
A novel and simple method was developed for the preparation of magnetic Fe3O4 nanoparticles by chemical co-precipitation method and subsequent coating with 3-aminopropyltrimethoxysilane (APTMS) through silanization process. Magnetic Fe3O4-chitosan particles were prepared by the suspension cross-linking and covalent technique to be used in the application of magnetic carrier technology. The synthesized immobilization supports were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). Using glutaraldehyde as the coupling agent, the lipase from R. oryzae was successfully immobilized onto the functionalized magnetic Fe3O4-chitosan beads. The results showed that 86.60% of R. oryzae lipase was bound on the synthesized immobilization support. This immobilized lipase was successfully used for the esterification of phenolic acid which resulted in esterification of phenolic acid in isooctane solvent reaction system for 8 consecutive cycles (totally 384 h), 72.6% of its initial activity was retained, indicating a high stability in pharmaceutical and industrial applications.  相似文献   

16.
The conventional deacidification method is difficult to achieve a better refining effect due to the high acid value in the rice bran crude oil, and the enzymatic esterification deacidification method can effectively reduce the acid value without generating chemical waste. In this study, the free lipase was immobilized on a magnetic polymer carrier Fe3O4/SiOx-g-P (GMA: glycidyl methacrylate) to obtain a immobilized lipase with a particle size of 105.30 ± 1.1 nm and an enzyme activity of 6580 ± 9.6 PLU/g (PLU: enzyme activity unit). Based on the batch deacidification process parameters, a multi-stage magnetic fluidized bed continuous circulation deacidification system was designed, and then the motion law of nanomagnetic immobilized lipase particles in liquid–solid magnetic fluidized bed was simulated by computer. When the iterative step was 5 × 10−5 s, the open porosity of the porous plate was 35.0%, the rice bran oil flow rate was 3.0 mm/s, and the magnetic field strength was 25.0 mT, which was beneficial to the deacidification reaction of rice bran oil. Under the conditions of magnetic immobilized lipase dosage of 4.0%, the phytosterol dosage of 22.0%, the molecular sieve dosage of 10%, the esterification temperature of 78.0 °C and the FFA (free fatty acid) content in rice bran oil decreased to 1.5%, after 48 h of reaction. The conversion rate is 92.8%, which provides a theoretical basis for the subsequent guidance of magnetic fluidized bed enzymatic continuous deacidification.  相似文献   

17.
The present work investigates the influence of the support surface on the loading and the enzymatic activity of the immobilized Pseudomonas fluorescens lipase. Different porous materials, polypropylene (Accurel), polymethacrylate (Sepabeads EC-EP), silica (SBA-15 and surface modified SBA-15), and an organosilicate (MSE), were used as supports. The immobilized biocatalysts were compared towards sunflower oil ethanolysis for the sustainable production of biodiesel. Since the supports have very different structural (ordered hexagonal and disordered) and textural features (surface area, pore size, and total pore volume), in order to consider only the effect of the support surface, experiments were performed at low surface coverage. The different functional groups occurring on the support surface allowed either physical (Accurel, MSE, and SBA-15) or chemical adsorption (Sepabeads EC-EP and SBA-15–R-CHO). The surface-modified SBA-15 (SBA-15–R-CHO) allowed the highest loading. The lipase immobilized on the MSE was the most active biocatalyst. However, in terms of catalytic efficiency (activity/loading) the lipase immobilized on the SBA-15, the support that allowed the lowest loading, was the most efficient.  相似文献   

18.
Fibrous poly(styrene-b-glycidylmethacrylate) brushes were grafted on poly(styrene–divinylbenzene) (P(S–DVB)) beads using surface-initiated atom transfer radical polymerization. Tetraethyldiethylenetriamine (TEDETA) ligand was incorporated on P(GMA) block. The ligand attached beads were used for reversible immobilization of lipase. The influences of pH, ionic strength, and initial lipase concentration on the immobilization capacities of the beads have been investigated. Lipase adsorption capacity of the beads was about 78.1 mg/g beads at pH 6.0. The K m value for immobilized lipase was about 2.1-fold higher than that of free enzyme. The thermal, and storage stability of the immobilized lipase also was increased compared to the native lipase. It was observed that the same support enzyme could be repeatedly used for immobilization of lipase after regeneration without significant loss in adsorption capacity or enzyme activity. A lipase from Mucor miehei immobilized on styrene–divinylbenzene copolymer was used to catalyze the direct esterification of butyl alcohol and butyric acid.  相似文献   

19.
《Process Biochemistry》2014,49(8):1304-1313
Pseudomonas cepacia lipase (PCL) was immobilized on ternary blend biodegradable polymer made up of polylactic acid (PLA), chitosan (CH), and polyvinyl alcohol (PVA). Immobilized biocatalyst was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), % water content, protein and lipase activity assay. The lipase activity assay showed enhanced activity of immobilized lipase than crude lipase. Higher half life time (t1/2) and lower deactivation rate constant (Kd) was found for the n-hexane among various tested solvent. Influence of various reaction parameters on enzyme activity were studied in detail. When geraniol (1 mmol) and vinyl acetate (4 mmol) in toluene (3 mL) were reacted with 50 mg immobilized lipase at 55 °C; then 99% geraniol was converted to geranyl acetate after 3 h. Various kinetic parameters such as rmax, Ki(A), Km(A), Km(B) were determined using non-linear regression analysis for ternary-complex and Bi–Bi ping-pong mechanism. The kinetic study showed that reaction followed ternary-complex mechanism with inhibition by geraniol. Activation energy (Ea) was found to be lower for immobilized lipase (13.76 kCal/mol) than crude lipase (19.9 kCal/mol) indicating better catalytic efficiency of immobilized lipase. Immobilized biocatalyst demonstrated 4 fold increased catalytic activity than crude lipase and recycled five times.  相似文献   

20.
Magnetic Fe3O4 nanoparticles were prepared by chemical coprecipitation method and subsequently coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction. The synthesized materials were characterized by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With glutaraldehyde as the coupling agent, the lipase from Serratia marcescens ECU1010 (SmL) was successfully immobilized onto the amino-functionalized magnetic nanoparticles. The results showed that the immobilized protein load could reach as high as 35.2 mg protein g−1 support and the activity recovery was up to 62.0%. The immobilized lipase demonstrated a high enantioselectivity toward (+)-MPGM (with an E-value of 122) and it also displayed the improved thermal stability as compared to the free lipase. When the immobilized lipase was employed to enantioselectively hydrolyze (±)-trans-3-(4-methoxyphenyl)glycidic acid methyl ester [(±)-MPGM] in water/toluene biphasic reaction system for 11 consecutive cycles (totally 105 h), still 59.6% of its initial activity was retained, indicating a high stability in practical operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号