首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Epoxyeicosatrienoic acids (EETs) are synthesized from arachidonic acid by cytochrome P450 epoxygenases in endothelial cells. It has previously been shown that EETs activate K(+) channels, which are important for the hyperpolarization and dilation of blood vessels. However, the effects of EETs on other ion channels have been less well studied. We investigated the effects of EETs on volume-activated Cl(-) channels (VACCs) in rat mesenteric arterial smooth muscle cells. Whole-cell patch clamp recording demonstrated that hypotonic solution and guanosine 5'-[gamma-thio]triphosphate (GTPgammaS) induced a 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB)- and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS)-sensitive VACC current in the primary cultured rat mesenteric arterial smooth muscle cells. The VACC current was inhibited by EETs and the order of potency was 8,9-EET>5,6-EET>11,12-EET>14,15-EET. The inhibitory effects of EETs could be reversed by 14,15 epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, an EET analog), Rp-cGMP and KT-5823 (protein kinase G inhibitors). Interestingly, the inhibitory effects of EETs on VACCs were not influenced by Rp-cAMP (a protein kinase A antagonist) but it could be abolished by NF-449 (a Gs protein inhibitor), indicating the involvement of cAMP but not protein kinase A. In conclusion, our results demonstrate that EETs inhibit VACCs in rat mesenteric arterial smooth muscle cells through a cGMP-dependent pathway, which is probably due to the cross-activation by cAMP. This mechanism may be involved in the regulation of cell volume and membrane potential.  相似文献   

2.
The influence of intracellular renin on the inward calcium current in isolated smooth muscle cells from SHR mesenteric arteries was investigated. Measurements of calcium current were performed using the whole cell configuration of pCLAMP. The results indicated that: 1) renin (100 nM) dialyzed into smooth muscle cells, increased the inward calcium current; 2) verapamil (10–9 M) administered to the bath inhibited the effect of renin on the inward calcium current; 3) concurrently with the increase of calcium current a depolarization of 6.8 +/− 2.1 mV (n = 16)(P < 0.05) was found in cells dialyzed with renin; 4) intracellular dialysis of renin (100 nM) into smooth muscle cells isolated from mesenteric arteries of normal Wystar Kyoto rats showed no significant change on calcium current; 5) aliskiren (10–9 M) dialyzed into the cell together with renin (100 nM) abolished the effect of the enzyme on the calcium current in SHR; 6) Ang II (100 nM) dialyzed into the smooth muscle cell from mesenteric artery of SHR in absence of renin, decreased the calcium current-an effect greatly reduced by valsartan (10–9 M) added to the cytosol; 7) administration of renin (100 nM) plus angiotensinogen (100 nM) into the cytosol of muscles cells from SHR rats reduced the inward calcium current; 8) extracellular administration of Ang II (100 nM) increased the inward calcium current in mesenteric arteries of SHR. Conclusions: intracellular renin in vascular resistance vessels from SHR due to internalization or expression, contributes to the regulation of vascular tone and control of peripheral resistance-an effect independently of Ang II. Implications for hypertension and vascular remodeling are discussed.  相似文献   

3.
Thiazides block Na+ reabsorption while enhancing Ca2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl channels, however the nature of these Cl channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl current at extracellular pH 7.4. This constitutive Cl current was more permeable to larger anions (Eisenman sequence I; I > Br  Cl) and was substantially inhibited by > 100 mM [Ca2+]o, which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl current was blocked by NPPB, along with other Cl channel inhibitors (4,4′-diisothiocyanatostilbene-2,2′-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH < 5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl current. This acid-induced Cl current was also anion permeable (I > Br > Cl), but was distinguished from the constitutive Cl current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl current would be particularly relevant in the acidic IMCD (pH < 5.5). To our knowledge, the properties of these Cl currents are unique and provide the mechanisms to account for the Cl efflux previously speculated to be present in MDCT cells.  相似文献   

4.
《Phytomedicine》2013,21(14):1272-1279
This study aimed to investigate the effect of magnolol (5,5′-diallyl-2,2′-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca2+ currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3–100 μM). In the presence of Bay K8644 (100 nM), magnolol (10–100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-l-arginine methyl ester (l-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3–100 μM) inhibited the L-type Ca2+ currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca2+ channel activity.  相似文献   

5.
We investigated the effects of curcumin, the principal active compound of turmeric, on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using the voltage-clamp technique. Curcumin reduced the Kv current in a dose-dependent manner with an apparent Kd value of 1.07 ± 0.03 μM. Although curcumin did not alter the kinetics of Kv current activation, it predominantly accelerated the decay rate of channel inactivation. The association and dissociation rate constants of curcumin were 1.35 ± 0.05 μM?1 s?1 and 1.47 ± 0.17 s?1, respectively. Curcumin did not alter the steady-state activation or inactivation curves. Application of train pulses (1 or 2 Hz) increased curcumin-induced blockade of the Kv current, and the recovery time constant also increased in the presence of curcumin suggesting, that the inhibitory action of Kv currents by curcumin was use-dependent. From these results, we concluded that curcumin inhibited vascular Kv current in a state-, time-, and use-dependent manner.  相似文献   

6.
Excessive energy intake leads to fat overload and the formation of lipotoxic compounds mainly derived from the saturated fatty acid palmitate (PAL), thus promoting insulin resistance (IR) in skeletal muscle. N  3 polyunsaturated fatty acids (n  3PUFA) may prevent lipotoxicity and IR. The purpose of this study was to examine the differential effects of n  3PUFA on fatty acid metabolism and insulin sensitivity in muscle cells. C2C12 myotubes were treated with 500 μM of PAL without or with 50 μM of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 16 h. PAL decreased insulin-dependent AKT activation and glucose uptake and increased the synthesis of ceramides and diglycerides (DG) derivatives, leading to protein kinase Cθ activation. EPA and DHA, but not ALA, prevented PAL-decreased AKT activation but glucose uptake was restored to control values by all n  3PUFA vs. PAL. Total DG and ceramide contents were decreased by all n  3PUFA, but only EPA and DHA increased PAL β-oxidation, decreased PAL incorporation into DG and reduced protein kinase Cθ activation. EPA and DHA emerge as better candidates than ALA to improve fatty acid metabolism in skeletal muscle cells, notably via their ability to increase mitochondrial β-oxidation.  相似文献   

7.
《Peptides》2012,33(12):2452-2458
Recent studies suggest that both osteopontin and urotensin II (UII) play critical roles in vascular remodeling. We previously showed that UII could stimulate the migration of aortic adventitial fibroblasts. In this study, we examined whether osteopontin is involved in UII-induced migration of rat aortic adventitial fibroblasts and examined the effects and mechanisms of UII on osteopontin expression in adventitial fibroblasts. Migration of adventitial fibroblasts induced by UII could be inhibited significantly by osteopontin antisense oligonucleotide (P < 0.01) but not sense or mismatch oligonucleotides (P > 0.05). Moreover, UII dose- and time-dependently promoted osteopontin mRNA expression and protein secretion in the cells, with maximal effect at 10−8 mol/l at 3 h for mRNA expression or at 12 h for protein secretion (both P < 0.01). Furthermore, the UII effects were significantly inhibited by its receptor antagonist SB710411 (10−6 mol/l), and Ca2+ channel blocker nicardipine (10−5 mol/l), protein kinase C (PKC) inhibitor H7 (10−5 mol/l), calcineurin inhibitor cyclosporine A (10−5 mol/l), mitogen-activated protein kinase (MAPK) inhibitor PD98059 (10−5 mol/l) and Rho kinase inhibitor Y-27632 (10−5 mol/l). Thus, osteopontin is involved in the UII-induced migration of adventitial fibroblasts, and UII could upregulate osteopontin gene expression and protein synthesis in rat aortic adventitial fibroblasts by activating its receptor and the Ca2+ channel, PKC, calcineurin, MAPK and Rho kinase signal transduction pathways.  相似文献   

8.
9.
The effect of water-soluble pristine C60 fullerene nanoparticles (C60NPs) on receptor-operated cation channels formed by TRPC4/C6 proteins in ileal smooth muscle cells was investigated for the first time. Activation of these channels subsequent to acetylcholine binding to the expressed in these cells M2 and M3 muscarinic receptors represents the key event in the parasympathetic control of gastrointestinal smooth muscle motility and cholinergic excitation-contraction coupling. Experiments were performed on single collagenase-dispersed mouse ileal myocytes using patch-clamp techniques with symmetrical 125 mM Cs+ solutions and [Ca2 +]i ‘clamped’ at 100 nM in order to isolate the muscarinic cation current (mICAT). The current was induced by intracellular infusion of 200 μM GTPγS, which activates G-proteins directly, i.e. bypassing the muscarinic receptors. C60NPs applied at 10 6 M at peak response to activation of G-proteins caused mICAT inhibition by 47.0 ± 3.5% (n = 9). The inhibition developed rather slowly, with the time constant of 119 ± 16 s, was voltage-independent and irreversible. Thus, C60NPs are unlikely to cause any direct block of TRPC4/C6 channels; rather, they may accumulate in the membrane and disrupt G-protein signalling leading to mICAT generation. C60NPs may represent a novel class of biocompatible molecules for the treatment of disorders associated with enhanced gastrointestinal motility.  相似文献   

10.
AimsWe examined the effect of LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, on voltage-dependent K+ (Kv) channels.Main methodsElectrophysiological recordings were performed in freshly isolated rabbit coronary arterial smooth muscle cells.Key findingsThe Kv current amplitude was inhibited by LY294002 in a dose-dependent manner, with a Kd value of 1.48 μM. Without alteration of the kinetics of activation, LY294002 accelerated the decay rate of Kv channel inactivation. The rate constants of association and dissociation for LY294002 were 1.83 ± 0.01 μM? 1 s? 1 and 2.59 ± 0.14 s? 1, respectively. Application of LY294002 had no significant impact on the steady-state activation or inactivation curves. In the presence of LY294002, the recovery time constant from inactivation was increased, and Kv channel inhibition increased under train pulses (1 or 2 Hz). This indicates that LY294002-induced Kv channel inhibition is use-dependent. Furthermore, pretreatment with another PI3K inhibitor, wortmannin (10 μM), did not affect the Kv current, and did not change the inhibitory effect of LY294002.SignificanceBased on these results, we suggest that LY294002 directly blocks Kv current irrespective of PI3K inhibition.  相似文献   

11.
《Phytomedicine》2014,21(6):787-792
Tetra-acetylajugasterone C (TAAC) was found to be one of the naturally occurring compounds of the Cameroonian medicinal plant Vitex cienkowskii which is responsible for a vasorelaxant activity of an extract of this plant. The evaluation of the underlying mechanisms for the relaxing effect of TAAC was determined using aortic rings of rats and mice. TAAC produced a concentration-dependent relaxation in rat artery rings pre-contracted with 1 μM noradrenaline (IC50: 8.40 μM) or 60 mM KCl (IC50: 36.30 μM). The nitric oxide synthase inhibitor l-NAME (100 μM) and the soluble guanylate cyclase inhibitor ODQ (10 μM) significantly attenuated the vasodilatory effect of TAAC. TAAC also exerted a relaxing effect in aorta of wild-type mice (cGKI+/+; IC50 = 13.04 μM) but a weaker effect in aorta of mice lacking cGMP-dependent protein kinase I (cGKI−/−; IC50 = 36.12 μM). The involvement of calcium channels was studied in rings pre-incubated in calcium-free buffer and primed with 1 μM noradrenaline prior to addition of calcium to elicit contraction. TAAC (100 μM) completely inhibited the resulting calcium-induced vasoconstriction. The same concentration of TAAC showed a stronger effect on the tonic than on the phasic component of noradrenaline-induced contraction. This study shows that TAAC, a newly detected constituent of Vitex cienkowskii contributes to the relaxing effect of an extract of the plant. The effect is partially mediated by the involvement of the NO/cGMP pathway of the smooth muscle but additionally inhibition of calcium influx into the cell may play a role.  相似文献   

12.
13.
The binding between [24-3H]okadaic acid (OA) and a recombinant OA binding protein OABP2.1 was examined using various OA analog, including methyl okadaate, norokadanone, 7-deoxy OA, and 14,15-dihydro OA, 7-O-palmitoyl DTX1, to investigate the structure activity relationship. Among them, 7-O-palmitoyl DTX1, which is one of the diarrhetic shellfish poisoning (DSP) toxins identified in shellfish, displayed an IC50 for [24-3H]OA binding at 51 ± 6.3 nM (Mean ± SD). In addition, a synthetic compound, N-pyrenylmethyl okadamide, exhibited its IC50 at 10 ± 2.9 nM (Mean ± SD). These results suggested that the recombinant OABP2.1 and the N-pyrenylmethyl okadamide might be core substances in a novel assay for the DSP toxins.  相似文献   

14.
《FEBS letters》2014,588(9):1571-1579
Membrane androgen receptors (mAR) are expressed in several tumors. mAR activation by testosterone albumin conjugates (TAC) suppresses tumor growth and migration. mAR signaling involves phosphoinositide-3-kinase (PI3K) and Rho-associated protein kinase (ROCK). PI3K stimulates serum- and glucocorticoid-inducible kinase SGK1, which in turn activates Na+/H+-exchangers (NHE). In prostate cancer cells cytosolic pH (pHi) was determined utilizing 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-fluorescence and NHE-activity utilizing Na+-dependent cytosolic realkalinization following an ammonium pulse. TAC (100 nM) significantly increased pHi and NHE-activity, effects abrogated by NHE1-inhibitor cariporide (10 μM), SGK1-inhibitors EMD638683 (50 μM) and GSK650349 (10 μM) and ROCK-inhibitors Y-27632 (10 μM) and fasudil (100 μM). TAC treatment rapidly and significantly increased cell volume and actin polymerization, effects abolished in the presence of cariporide. Thus, mAR-activation activates cariporide-sensitive Na+/H+-exchangers, an effect requiring SGK1 and ROCK activity.  相似文献   

15.
Three new oleanane-type saponins, leptocarposide B-D (13), were isolated from the whole plant of Ludwigia leptocarpa (Nutt.) Hara, together with ten known compounds 4–13.The structures of these compounds were determined by interpretation of their spectral data, mainly HR-TOFESIMS, 1D-NMR (1H, 13C) and 2D-NMR (1H–1H COSY, HSQC, HMBC, and NOESY), and by comparison with the literature data. The structures of the new compounds were established as 28-O-β-d-xylopyranosyl-(1  4)-α-l-rhamnopyranosyl-(1  2)-[α-l-arabinopyranosyl-(1  3)]-4-O-(3′-hydroxybutanoyloxy-3-hydroxybutanoyloxy)-β-d-fucopyranosyl zanhic acid (1); 3-O-β-d-glucopyranosyl-28-O-β-d-xylopyranosyl-(1  4)-α-l-rhamnopyranosyl-(1  2)-4-O-(3′-hydroxybutanoyloxy-3-hydroxybutanoyloxy)-β-d-fucopyranosyl medicagenic acid (2); 3-O-β-d-glucopyranosyl-(1  4)-β-d-glucopyranosyl-28-O-β-d-xylopyranosyl-(1  4)-α-l-rhamnopyranosyl-(1  2)-[α-l- arabinopyranosyl-(1  3)]-4-O-(3′-hydroxybutanoyloxy-3-hydroxybutanoyloxy)-β-d-fucopyranosyl zanhic acid (3).  相似文献   

16.
Recently, we reported that 11,12-epoxyeicosatrienoic acid (11,12-EET) potently activates rat mesenteric arterial ATP-sensitive K(+) (K(ATP)) channels and produces significant vasodilation through protein kinase A-dependent mechanisms. In this study, we tried to further delineate the signaling steps involved in the activation of vascular K(ATP) channels by EETs. Whole cell patch-clamp recordings [0.1 mM ATP in the pipette, holding potential (HP) = 0 mV and testing potential (TP) = -100 mV] in freshly isolated rat mesenteric smooth muscle cells showed small glibenclamide-sensitive K(ATP) currents (19.0 +/- 7.9 pA, n = 5) that increased 6.9-fold on exposure to 5 microM 14,15-EET (132.0 +/- 29.0 pA, n = 7, P < 0.05 vs. control). With 1 mM ATP in the pipette solution, K(ATP) currents (HP = 0 mV and TP = -100 mV) were increased 3.5-fold on exposure to 1 microM 14,15-EET (57.5 +/- 14.3 pA, n = 9, P < 0.05 vs. baseline). In the presence of 100 nM iberiotoxin, 1 microM 14,15-EET hyperpolarized the membrane potential from -20.5 +/- 0.9 mV at baseline to -27.1 +/- 3.0 mV (n = 6 for both, P < 0.05 vs. baseline), and the EET effects were significantly reversed by 10 microM glibenclamide (-21.8 +/- 1.4 mV, n = 6, P < 0.05 vs. EET). Incubation with 5 microM 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), a 14,15-EET antagonist, abolished the 14,15-EET effects (31.0 +/- 11.8 pA, n = 5, P < 0.05 vs. 14,15-EET, P = not significant vs. control). The 14,15-EET effects were inhibited by inclusion of anti-G(s)alpha antibody (1:500 dilution) but not by control IgG in the pipette solution. The effects of 14,15-EET were mimicked by cholera toxin (100 ng/ml), an exogenous ADP-ribosyltransferase. Treatment with the ADP-ribosyltransferase inhibitors 3-aminobenzamide (1 mM) or m-iodobenzylguanidine (100 microM) abrogated the effects of 14,15-EET on K(ATP) currents. These results were corroborated by vasodilation studies. 14,15-EET dose-dependently dilated isolated small mesenteric arteries, and this was significantly attenuated by treatment with 14,15-EEZE or 3-aminobenzamide. These results suggest that 14,15-EET activates vascular K(ATP) channels through ADP-ribosylation of G(s)alpha.  相似文献   

17.
Epoxyeicosatrienoic acids (EETs) cause vascular relaxation by activating smooth muscle large conductance Ca(2+)-activated K(+) (K(Ca)) channels. EETs are metabolized to dihydroxyeicosatrienoic acids (DHETs) by epoxide hydrolase. We examined the contribution of 14,15-DHET to 14,15-EET-induced relaxations and characterized its mechanism of action. 14,15-DHET relaxed U-46619-precontracted bovine coronary artery rings but was approximately fivefold less potent than 14,15-EET. The relaxations were inhibited by charybdotoxin, iberiotoxin, and increasing extracellular K(+) to 20 mM. In isolated smooth muscle cells, 14,15-DHET increased an iberiotoxin-sensitive, outward K(+) current and increased K(Ca) channel activity in cell-attached patches and inside-out patches only when GTP was present. 14,15-[(14)C]EET methyl ester (Me) was converted to 14,15-[(14)C]DHET-Me, 14,15-[(14)C]DHET, and 14,15-[(14)C]EET by coronary arterial rings and endothelial cells but not by smooth muscle cells. The metabolism to 14,15-DHET was inhibited by the epoxide hydrolase inhibitors 4-phenylchalcone oxide (4-PCO) and BIRD-0826. Neither inhibitor altered relaxations to acetylcholine, whereas relaxations to 14,15-EET-Me were increased slightly by BIRD-0826 but not by 4-PCO. 14,15-DHET relaxes coronary arteries through activation of K(Ca) channels. Endothelial cells, but not smooth muscle cells, convert EETs to DHETs, and this conversion results in a loss of vasodilator activity.  相似文献   

18.
19.
Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca2 + signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca2 + entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP–BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20 ng/ml, 48 h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10 μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca2 + (EGTA; 1 mM) or intracellular Ca2 + (BAPTA; 5 μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca2 + influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca2 + and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.  相似文献   

20.
《Cell calcium》2011,49(6):352-357
The purpose of this study was to invent an extracellular inhibitor selective for the plasma membrane Ca2+ pump(s) (PMCA) isoform 1. PMCA extrude Ca2+ from cells during signalling and homeostasis. PMCA isoforms are encoded by 4 genes (PMCA1–4). Pig coronary artery endothelium and smooth muscle express the genes PMCA1 and 4. We showed that the endothelial cells contained mostly PMCA1 protein while smooth muscle cells had mostly PMCA4. A random peptide phage display library was screened for binding to synthetic extracellular domain 1 of PMCA1. The selected phage population was screened further by affinity chromatography using PMCA from rabbit duodenal mucosa which expressed mostly PMCA1. The peptide displayed by the selected phage was termed caloxin 1b3. Caloxin 1b3 inhibited PMCA Ca2+–Mg2+-ATPase in the rabbit duodenal mucosa (PMCA1) with a greater affinity (inhibition constant = 17 ± 2 μM) than the PMCA in the human erythrocyte ghosts (PMCA4, inhibition constant = 45 ± 4 μM). The affinity of caloxin 1b3 was also higher for PMCA1 than for PMCA2 and 3 indicating its selectivity for PMCA1. Consistent with an inhibition of PMCA1, caloxin 1b3 addition to the medium increased cytosolic Ca2+ concentration in endothelial cells. Caloxin 1b3 is the first known PMCA1 selective inhibitor. We anticipate caloxin 1b3 to aid in understanding PMCA physiology in endothelium and other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号