首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolutionarily conserved DnaJ proteins are essential components of Hsp70 chaperone systems. The DnaJ homologue of Escherichia coli associates with chaperone substrates and mediates their ATP hydrolysis-dependent locking into the binding cavity of its Hsp70 partner, DnaK. To determine the substrate specificity of DnaJ proteins, we screened 1633 peptides derived from 14 protein sequences for binding to E.coli DnaJ. The binding motif of DnaJ consists of a hydrophobic core of approximately eight residues enriched for aromatic and large aliphatic hydrophobic residues and arginine. The hydrophobicity of this motif explains why DnaJ itself can prevent protein aggregation. Although this motif shows differences from DnaK's binding motif, DnaJ and DnaK share the majority of binding peptides. In contrast to DnaK, DnaJ binds peptides consisting of L- and D-amino acids, and therefore is not restricted by backbone contacts. These features allow DnaJ to scan hydrophobic protein surfaces and initiate the functional cycle of the DnaK system by associating with hydrophobic exposed patches and subsequent targeting of DnaK to these or to hydrophobic patches in spatial neighbourhood.  相似文献   

2.
DnaK, an Hsp70 molecular chaperone, processes its substrates in an ATP-driven cycle, which is controlled by the co-chaperones DnaJ and GrpE. The kinetic analysis of substrate binding and release has as yet been limited to fluorescence-labeled peptides. Here, we report a comprehensive kinetic analysis of the chaperone action with protein substrates. The kinetic partitioning of the (ATP x DnaK) x substrate complexes between dissociation and conversion into stable (ADP x DnaK) x substrate complexes is determined by DnaJ. In the case of substrates that allow the formation of ternary (ATP x DnaK) x substrate x DnaJ complexes, the cis-effect of DnaJ markedly accelerates ATP hydrolysis. This triage mechanism efficiently selects from the (ATP x DnaK) x substrate complexes those to be processed in the chaperone cycle; at 45 degrees C, the fraction of protein complexes fed into the cycle is 20 times higher than that of peptide complexes. The thermosensor effect of the ADP/ATP exchange factor GrpE retards the release of substrate from the cycle at higher temperatures; the fraction of total DnaK in stable (ADP x DnaK) x substrate complexes is 2 times higher at 45 degrees C than at 25 degrees C. Monitoring the cellular situation by DnaJ as nonnative protein sensor and GrpE as thermosensor thus directly adapts the operational mode of the DnaK system to heat shock conditions.  相似文献   

3.
Peptidyl prolyl cis-trans isomerases can enzymatically assist protein folding, but these enzymes exclusively target the peptide bond preceding proline residues. Here we report the identification of the Hsp70 chaperone DnaK as the first member of a novel enzyme class of secondary amide peptide bond cis-trans isomerases (APIases). APIases selectively accelerate the cis-trans isomerization of nonprolyl peptide bonds. Results from independent experiments support the APIase activity of DnaK: (i) exchange crosspeaks between the cis-trans conformers appear in 2D (1)H NMR exchange spectra of oligopeptides (ii) the rate constants for the cis-trans isomerization of various dipeptides increase and (iii) refolding of the RNase T1 P39A variant is catalyzed. The APIase activity shows both regio and stereo selectivity and is stimulated two-fold in the presence of the complete DnaK/GrpE/DnaJ/ATP refolding system. Moreover, known DnaK-binding oligopeptides simultaneously affect the APIase activity of DnaK and the refolding yield of denatured firefly luciferase in the presence of DnaK/GrpE/DnaJ/ATP. These results suggest a new role for the chaperone as a regioselective catalyst for bond rotation in polypeptides.  相似文献   

4.
Hsp70 chaperones assist protein folding through ATP-regulated transient association with substrates. Substrate binding by Hsp70 is controlled by DnaJ co-chaperones which stimulate Hsp70 to hydrolyze ATP and, consequently, to close its substrate binding cavity allowing trapping of substrates. We analyzed the interaction of the Escherichia coli Hsp70 homologue, DnaK, with DnaJ using surface plasmon resonance (SPR) spectroscopy. Resonance signals of complex kinetic characteristics were detected when DnaK was passed over a sensor chip with coupled DnaJ. This interaction was specific as it was not detected with a functionally defective DnaJ mutant protein, DnaJ259, that carries a mutation in the HPD signature motif of the conserved J-domain. Detectable DnaK-DnaJ interaction required ATP hydrolysis by DnaK and was competitively inhibited by chaperone substrates of DnaK. For DnaK mutant proteins with amino acid substitutions in the substrate binding cavity that affect substrate binding, the strength of detected interaction with DnaJ decreased proportionally with increased strength of the substrate binding defects. These findings indicate that the detected response signals resulted from DnaJ and ATP hydrolysis-dependent association of DnaJ as substrate for DnaK. Although not considered as physiologically relevant, this association allowed us to experimentally unravel the mechanism of DnaJ action. Accordingly, DnaJ stimulates ATP hydrolysis only after association of a substrate with the substrate binding cavity of DnaK. Further analysis revealed that this coupling mechanism required the J-domain of DnaJ and was also functional for natural DnaK substrates, and thus is central to the mechanism of action of the DnaK chaperone system.  相似文献   

5.
We have developed a multiwell-based protein aggregation assay to study the kinetics of insulin adsorption and aggregation on hydrophobic surfaces and to investigate the molecular mechanisms involved. Protein-surface interaction progresses in two phases: (1) a lag phase during which proteins adsorb and prefibrillar aggregates form on the material surface and (2) a growth phase during which amyloid fibers form and then are progressively released into solution. We studied the effect of three bacterial chaperones, DnaK, DnaJ, and ClpB, on insulin aggregation kinetics. In the presence of ATP, the simultaneous presence of DnaK, DnaJ, and ClpB allows good protection of insulin against aggregation. In the absence of ATP, DnaK alone is able to prevent insulin aggregation. Furthermore, DnaK binds to insulin adsorbed on hydrophobic surfaces. This process is slowed in the presence of ATP and can be enhanced by the cochaperone DnaJ. The peptide LVEALYL, derived from the insulin B chain, is known to promote fast aggregation in a concentration- and pH-dependent manner in solution. We show that it also shortens the lag phase for insulin aggregation on hydrophobic surfaces. As this peptide is also a known DnaK substrate, our data indicate that the peptide and the chaperone might compete for a common site during the process of insulin aggregation on hydrophobic surfaces.  相似文献   

6.
Hsp70 chaperones assist protein folding by ATP-dependent association with linear peptide segments of a large variety of folding intermediates. The molecular basis for this ability to differentiate between native and non-native conformers was investigated for the DnaK homolog of Escherichia coli. We identified binding sites and the recognition motif in substrates by screening 4360 cellulose-bound peptides scanning the sequences of 37 biologically relevant proteins. DnaK binding sites in protein sequences occurred statistically every 36 residues. In the folded proteins these sites are mostly buried and in the majority found in beta-sheet elements. The binding motif consists of a hydrophobic core of four to five residues enriched particularly in Leu, but also in Ile, Val, Phe and Tyr, and two flanking regions enriched in basic residues. Acidic residues are excluded from the core and disfavored in flanking regions. The energetic contribution of all 20 amino acids for DnaK binding was determined. On the basis of these data an algorithm was established that predicts DnaK binding sites in protein sequences with high accuracy.  相似文献   

7.
DnaK, the Hsp70 chaperone of Escherichia coli interacts with protein substrates in an ATP-dependent manner, in conjunction with DnaJ and GrpE co-chaperones, to carry out protein folding, protein remodeling, and assembly and disassembly of multisubunit protein complexes. To understand how DnaJ targets specific proteins for recognition by the DnaK chaperone system, we investigated the interaction of DnaJ and DnaK with a known natural substrate, bacteriophage P1 RepA protein. By characterizing RepA deletion derivatives, we found that DnaJ interacts with a region of RepA located between amino acids 180 and 200 of the 286-amino acid protein. A peptide corresponding to amino acids 180-195 inhibited the interaction of RepA and DnaJ. Two site-directed RepA mutants with alanine substitutions in this region were about 4-fold less efficiently activated for oriP1 DNA binding by DnaJ and DnaK than wild type RepA. We also identified by deletion analysis a site in RepA, in the region of amino acids 35-49, which interacts with DnaK. An alanine substitution mutant in amino acids 36-39 was constructed and found defective in activation by DnaJ and DnaK. Taken together the results suggest that DnaJ and DnaK interact with separate sites on RepA.  相似文献   

8.
In the DnaK (Hsp70) molecular chaperone system of Escherichia coli, the substrate polypeptide is fed into the chaperone cycle by association with the fast-binding, ATP-liganded form of the DnaK. The substrate binding properties of DnaK are controlled by its two cochaperones DnaJ (Hsp40) and GrpE. DnaJ stimulates the hydrolysis of DnaK-bound ATP, and GrpE accelerates ADP/ATP exchange. DnaJ has been described as targeting the substrate to DnaK, a concept that has remained rather obscure. Based on binding experiments with peptides and polypeptides we propose here a novel mechanism for the targeting action of DnaJ: ATP.DnaK and DnaJ with its substrate-binding domain bind to different segments of one and the same polypeptide chain forming (ATP.DnaK)m.substrate.DnaJn complexes; in these ternary complexes efficient cis-interaction of the J-domain of DnaJ with DnaK is favored by their propinquity and triggers the hydrolysis of DnaK-bound ATP, converting DnaK to its ADP-liganded high affinity state and thus locking it onto the substrate polypeptide.  相似文献   

9.
Hsp70-class molecular chaperones interact with diverse polypeptide substrates, but there is limited information on the structures of different Hsp70-peptide complexes. We have used a site-directed fluorescence labeling and quenching strategy to investigate the orientation of different peptides bound to DnaK from Escherichia coli. DnaK was selectively labeled on opposite sides of the substrate-binding domain (SBD) with the fluorescent probe bimane, and the ability of peptides containing N- or C-terminal tryptophan residues to quench bimane fluorescence was measured. Tryptophan-labeled derivatives of the model peptide NRLLLTG bound with the same forward orientation previously observed in the crystal structure of the DnaK(SBD)-NRLLLTG complex. Derivatives of this peptide containing arginine in the C-terminal rather than N-terminal region, NTLLLRG, also bound in the forward direction indicating that charged residues in the flanking regions of the peptide are not the major determinant of peptide binding orientation. We also tested peptides having proline in one (ELPLVKI) or two (ELPPVKI) central positions. Tryptophan derivatives of each of these peptides bound with a strong preference for the reverse direction relative to that observed for the NRLLLTG and NTLLLRG peptides. Computer modeling the peptides NRLLLTG and ELPPVKI in both the forward and reverse orientations into the DnaK(SBD) indicated that differential hydrogen-bonding patterns and steric constraints of the central peptide residues are likely causes for differences in their binding orientations. These findings establish that DnaK is able to bind substrates in both forward and reverse orientations and suggest that the central residues of the peptide are the major determinants of directional preference.  相似文献   

10.
Most, if not all, of the cellular functions of Hsp70 proteins require the assistance of a DnaJ homologue, which accelerates the weak intrinsic ATPase activity of Hsp70 and serves as a specificity factor by binding and targeting specific polypeptide substrates for Hsp70 action. We have used pre-steady-state kinetics to investigate the interaction of the Escherichia coli DnaJ and DnaK proteins, and the effects of DnaJ on the ATPase reaction of DnaK. DnaJ accelerates hydrolysis of ATP by DnaK to such an extent that ATP binding by DnaK becomes rate-limiting for hydrolysis. At high concentrations of DnaK under single-turnover conditions, the rate-limiting step is a first-order process, apparently a change of DnaK conformation, that accompanies ATP binding and proceeds at 12-15 min-1 at 25 degrees C and 1-1.5 min-1 at 5 degrees C. By prebinding ATP to DnaK and subsequently adding DnaJ, the effects of this slow step may be bypassed, and the maximal rate-enhancement of DnaJ on the hydrolysis step is approximately 15 000-fold at 5 degrees C. The interaction of DnaJ with DnaK.ATP is likely a rapid equilibrium relative to ATP hydrolysis, and is relatively weak, with a KD of approximately 20 microM at 5 degrees C, and weaker still at 25 degrees C. In the presence of saturating DnaJ, the maximal rate of ATP hydrolysis by DnaK is similar to previously reported rates for peptide release from DnaK.ATP. This suggests that when DnaK encounters a DnaJ-bound polypeptide or protein complex, a significant fraction of such events result in ATP hydrolysis by DnaK and concomitant capture of the polypeptide substrate in a tight complex with DnaK.ADP. Furthermore, a broadly applicable kinetic mechanism for DnaJ-mediated specificity of Hsp70 action arises from these observations, in which the specificity arises largely from the acceleration of the hydrolysis step itself, rather than by DnaJ-dependent modulation of the affinity of Hsp70 for substrate polypeptides.  相似文献   

11.
To perform effectively as a molecular chaperone, DnaK (Hsp70) necessitates the assistance of its DnaJ (Hsp40) co-chaperone partner, which efficiently stimulates its intrinsically weak ATPase activity and facilitates its interaction with polypeptide substrates. In this study, we address the function of the conserved glycine- and phenylalanine-rich (G/F-rich) region of the Escherichia coli DnaJ in the DnaK chaperone cycle. We show that the G/F-rich region is critical for DnaJ co-chaperone functions in vivo and that despite a significant degree of sequence conservation among the G/F-rich regions of Hsp40 homologs from bacteria, yeast, or humans, functional complementation in the context of the E. coli DnaJ is limited. Furthermore, we found that the deletion of the whole G/F-rich region is mirrored by mutations in the conserved Asp-Ile/Val-Phe (DIF) motif contained in this region. Further genetic and biochemical analyses revealed that this amino acid triplet plays a critical role in regulation of the DnaK chaperone cycle, possibly by modulating a crucial step subsequent to DnaK-mediated ATP hydrolysis.  相似文献   

12.
Chloroplast transit peptides have been proposed to function as substrates for Hsp70 molecular chaperones. Many models of chloroplast protein import depict Hsp70s as the translocation motors that drive protein import into the organelle, but to our knowledge, no direct evidence has demonstrated that transit peptides function either in vivo or in vitro as substrates for the chaperone. In this report, we demonstrate that DnaK binds SStp (the full-length transit peptide for the precursor to the small subunit of Rubisco) in vivo when fused to either glutathione-S-transferase (GST) or to an His6-S-peptide tag (His-S) via an ATP-dependent mechanism. Three independent biophysical and biochemical assays confirm the ability of DnaK and SStp to interact in vitro. The cochaperones, DnaJ and GrpE, were also associated with the DnaK/SStp complex. Therefore, both GST-SStp and His-S-SStp can be used as affinity-tagged substrates to study prokaryotic chaperone/transit peptide interactions as well as to provide a novel functional probe to study the dynamics of DnaK/DnaJ/GrpE interactions in vivo. The combination of these results provides the first experimental support for a transit peptide-dependent interaction between a chloroplast precursor and Hsp70. These results are discussed in light of a general mechanism for protein translocation into chloroplasts and mitochondria.  相似文献   

13.
Chesnokova LS  Witt SN 《Biochemistry》2005,44(33):11224-11233
Hsp70 chaperones are heterotropic allosteric systems in which ATP and misfolded or aggregated polypeptides are the activating ligands. To gain insight into the mechanism by which ATP and polypeptides regulate Hsp70 chaperone activity, the effect of a short peptide on the K(M) for ATP was analyzed using the Escherichia coli Hsp70 called DnaK. In the absence of peptide, the K(-P)(M) for ATP is 52 +/- 11 nM, whereas this value jumps to 14.6 +/- 1.6 microM in the presence of saturating peptide. This finding supports a mechanism in which ATP binding drives the chaperone in one direction and peptide binding pushes the chaperone back in the opposite direction (and thus increases K(M)), according to ATP + DnaK.P <==> ATP.DnaK.P <==> ATP.DnaK* + P, where ATP.DnaK.P is an intermediate from which competing ATP hydrolysis occurs (ATP.DnaK.P --> ADP.DnaK.P). We show that this branched mechanism can even explain how DnaK hydrolyzes ATP in the absence of peptide and that the true rate constant for DnaK-mediated ATP hydrolysis (k(hy)) in the absence of peptide may be as high as 0.5 s(-)(1) (rather than 5 x 10(-)(4) s(-)(1) as often stated in the literature). What happens is that a conformational equilibrium outcompetes ATP hydrolysis and effectively reduces the concentration of the intermediate by a factor of a thousand, resulting in the following relation: k(cat) = k(hy)/1000 = 5 x 10(-)(4) s(-)(1). How polypeptide substrates and the co-chaperone DnaJ modulate DnaK to achieve its theoretical maximal rate of ATP hydrolysis, which we suggest is 0.5 s(-)(1), is discussed.  相似文献   

14.
15.
Mitochondrial heat shock protein 70 (mt-hsp70) functions as a molecular chaperone in mitochondrial biogenesis. The chaperone in co-operation with its co-proteins acts as a translocation motor pulling the mitochondrial precursor into the matrix. Mt-hsp70s are highly conserved when compared to the bacterial hsp70 homologue, DnaK. Here we have used DnaK as a model to study the interaction of mitochondrial presequences with mt-hsp70 applying a DnaK-binding algorithm, computer modeling and biochemical investigations. DnaK-binding motifs have been analysed on all available, statistically relevant mitochondrial presequences found in the OWL database by running the algorithm. A total of 87 % of mammalian, 97 % of plant, 71 % of yeast and 100 % of Neurospora crassa presequences had at least one DnaK binding site. Based on the prediction, five 13-mer presequence peptides have been synthesized and their inhibitory effect on the molecular chaperone (DnaK/DnaJ/GrpE) assisted refolding of luciferase has been analysed. The peptide with the highest predicted binding likelihood showed the strongest inhibitory effect, whereas the peptide with no predicted binding capacity showed no inhibitory effect. A 3D structure of the pea mt-hsp70 has been constructed using homology modeling. The binding affinities of the 13-mer presequence peptides and additional control peptides to DnaK and pea mt-hsp70 have been theoretically estimated by calculating the buried hydrophobic surface area of the peptides docked to DnaK and to the mt-hsp70 structural model. These results suggest that mitochondrial presequences interact with the mt-hsp70 during or after mitochondrial protein import.  相似文献   

16.
Both prokaryotic and eukaryotic cells contain multiple heat shock protein 40 (Hsp40) and heat shock protein 70 (Hsp70) proteins, which cooperate as molecular chaperones to ensure fidelity at all stages of protein biogenesis. The Hsp40 signature domain, the J-domain, is required for binding of an Hsp40 to a partner Hsp70, and may also play a role in the specificity of the association. Through the creation of chimeric Hsp40 proteins by the replacement of the J-domain of a prokaryotic Hsp40 (DnaJ), we have tested the functional equivalence of J-domains from a number of divergent Hsp40s of mammalian and parasitic origin (malarial Pfj1 and Pfj4, trypanosomal Tcj3, human ERj3, ERj5, and Hsj1, and murine ERj1). An in vivo functional assay was used to test the functionality of the chimeric proteins on the basis of their ability to reverse the thermosensitivity of a dnaJ cbpA mutant Escherichia coli strain (OD259). The Hsp40 chimeras containing J-domains originating from soluble (cytosolic or endoplasmic reticulum (ER)-lumenal) Hsp40s were able to reverse the thermosensitivity of E. coli OD259. In all cases, modified derivatives of these chimeric proteins containing an His to Gln substitution in the HPD motif of the J-domain were unable to reverse the thermosensitivity of E. coli OD259. This suggested that these J-domains exerted their in vivo functionality through a specific interaction with E. coli Hsp70, DnaK. Interestingly, a Hsp40 chimera containing the J-domain of ERj1, an integral membrane-bound ER Hsp40, was unable to reverse the thermosensitivity of E. coli OD259, suggesting that this J-domain was unable to functionally interact with DnaK. Substitutions of conserved amino acid residues and motifs were made in all four helices (I-IV) and the loop regions of the J-domains, and the modified chimeric Hsp40s were tested for functionality using the in vivo assay. Substitution of a highly conserved basic residue in helix II of the J-domain was found to disrupt in vivo functionality for all the J-domains tested. We propose that helix II and the HPD motif of the J-domain represent the fundamental elements of a binding surface required for the interaction of Hsp40s with Hsp70s, and that this surface has been conserved in mammalian, parasitic and bacterial systems.  相似文献   

17.
P Blum  J Ory  J Bauernfeind    J Krska 《Journal of bacteriology》1992,174(22):7436-7444
The physiological consequences of molecular chaperone overproduction in Escherichia coli are presented. Constitutive overproduction of DnaK from a multicopy plasmid containing large chromosomal fragments spanning the dnaK region resulted in plasmid instability. Co-overproduction of DnaJ with DnaK stabilized plasmid levels. To examine the effects of altered levels of DnaK and DnaJ in a more specific manner, an inducible expression system for dnaK and dnaJ was constructed and characterized. Differential rates of DnaK synthesis were determined by quantitative Western blot (immunoblot) analysis. Moderate levels of DnaK overproduction resulted in a defect in cell septation and formation of cell filaments, but co-overproduction of DnaJ overcame this effect. Further increases in the level of DnaK terminated culture growth despite increased levels of DnaJ. DnaK overproduction was found to be bacteriocidal, and this effect was also partially suppressed by DnaJ. The bacteriocidal effect was apparent only with cultures which were allowed to enter stationary phase, indicating that DnaK toxicity is growth phase dependent.  相似文献   

18.
The C-terminal domain of the molecular chaperone DnaK is a compact lid-like structure made up of five alpha-helices (alphaA-alphaE) (residues 508-608) that is followed by a 30-residue disordered, flexible region (609-638). The lid encapsulates the peptide molecule bound in the substrate-binding domain, whereas the function of the 30-residue disordered region is not known. By sequentially deleting the flexible subdomain and the individual lid helices, we deduced the importance of each structural unit to creating long-lived DnaK-peptide complexes. Here we report that (i) the alphaD helix is essential for long-lived DnaK-peptide complexes. For example, ATP triggers the dissociation of a acrylodan-labeled p5 peptide (ap5, a-CLLLSAPRR) from wtDnaK and DnaK595(A-D) with k(off) equal to 7.6 and 8.9 s(-1), respectively, whereas when the D-helix is deleted, creating DnaK578(A-C), k(off) jumps to 207 s(-1). (ii) The presence of the alphaB helix impacts the rate of the ATP-induced high-to-low affinity conformational change. For example, ATP induces this conformational change in a lidless variant, DnaK517(1/2A), with a rate constant of 442 s(-1), whereas, after adding back the B-helix (residues 518-554), ATP induces this conformational change in DnaK554(A-B) with a rate constant of 2.5 s(-1). Our interpretation is that this large decrease occurs because the B-helix of the DnaK554(A-B) is bound in the substrate-binding site. (iii) The deletion analysis also revealed that residues 596-638, which comprise the alphaE helix and the flexible subdomain, affect ATP binding. Our results are consistent with this part of the lid producing conformational heterogeneity, perhaps by binding to the ATPase domain.  相似文献   

19.
The cochaperone GrpE functions as a nucleotide exchange factor to promote dissociation of adenosine 5'-diphosphate (ADP) from the nucleotide-binding cleft of DnaK. GrpE and the DnaJ cochaperone act in concert to control the flux of unfolded polypeptides into and out of the substrate-binding domain of DnaK by regulating the nucleotide-bound state of DnaK. DnaJ stimulates nucleotide hydrolysis, and GrpE promotes the exchange of ADP for adenosine triphosphate (ATP) and also augments peptide release from the DnaK substrate-binding domain in an ATP-independent manner. The eukaryotic cytosol does not contain GrpE per se because GrpE-like function is provided by the BAG1 protein, which acts as a nucleotide exchange factor for cytosolic Hsp70s. GrpE, which plays a prominent role in mitochondria, chloroplasts, and bacterial cytoplasms, is a fascinating molecule with an unusual quaternary structure. The long alpha-helices of GrpE have been hypothesized to act as a thermosensor and to be involved in the decrease in GrpE-dependent nucleotide exchange that is observed in vitro at temperatures relevant to heat shock. This review describes the molecular biology of GrpE and focuses on the structural and kinetic aspects of nucleotide exchange, peptide release, and the thermosensor hypothesis.  相似文献   

20.
Ribosome-associated Trigger Factor (TF) and the DnaK chaperone system assist the folding of newly synthesized proteins in Escherichia coli. Here, we show that DnaK and TF share a common substrate pool in vivo. In TF-deficient cells, deltatig, depleted for DnaK and DnaJ the amount of aggregated proteins increases with increasing temperature, amounting to 10% of total soluble protein (approximately 340 protein species) at 37 degrees C. A similar population of proteins aggregated in DnaK depleted tig+ cells, albeit to a much lower extent. Ninety-four aggregated proteins isolated from DnaK- and DnaJ-depleted deltatig cells were identified by mass spectrometry and found to include essential cytosolic proteins. Four potential in vivo substrates were screened for chaperone binding sites using peptide libraries. Although TF and DnaK recognize different binding motifs, 77% of TF binding peptides also associated with DnaK. In the case of the nascent polypeptides TF and DnaK competed for binding, however, with competitive advantage for TF. In vivo, the loss of TF is compensated by the induction of the heat shock response and thus enhanced levels of DnaK. In summary, our results demonstrate that the co-operation of the two mechanistically distinct chaperones in protein folding is based on their overlap in substrate specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号