首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
BACKGROUND: ESR1 mutation in circulating cell-free DNA (cfDNA) is emerging as a noninvasive biomarker of acquired resistance to endocrine therapy, but there is a paucity of data comparing the status of ESR1 gene in cfDNA with that in its corresponding tumor tissue. The objective of this study is to validate the degree of concordance of ESR1 mutations between plasma and tumor tissue. METHODS: ESR1 ligand-binding domain mutations Y537S, Y537N, Y537C, and D538G were analyzed using droplet digital PCR in 35 patients with metastatic breast cancer (MBC) (35 tumor tissue samples and 67 plasma samples). RESULTS: Of the 35 paired samples, 26 (74.3%) were concordant: one patient had detectable ESR1 mutations both plasma (ESR1 Y537S/Y537N) and tumor tissue (ESR1 Y537S/Y537C), and 25 had WT ESR1 alleles in both. Nine (25.7%) had discordance between the plasma and tissue results: five had mutations detected only in their tumor tissue (two Y537S, one Y537C, one D538G, and one Y537S/Y537N/D538G), and four had mutations detected only in their plasma (one Y537S, one Y537N, and two Y537S/Y537N/D538G). Furthermore, longitudinal plasma samples from 19 patients were used to assess changes in the presence of ESR1 mutations during treatment. Eleven patients had cfDNA ESR1 mutations over the course of treatment. A total of eight of 11 patients with MBC with cfDNA ESR1 mutations (72.7%) had the polyclonal mutations. CONCLUSION: We have shown the independent distribution of ESR1 mutations between plasma and tumor tissue in 35 patients with MBC.  相似文献   

2.
The Yersinia pestis adhesin Ail mediates host cell binding and facilitates delivery of cytotoxic Yop proteins. Ail from Y. pestis and Y. pseudotuberculosis is identical except for one or two amino acids at positions 43 and 126 depending on the Y. pseudotuberculosis strain. Ail from Y. pseudotuberculosis strain YPIII has been reported to lack host cell binding ability, thus we sought to determine which amino acid difference(s) are responsible for the difference in cell adhesion. Y. pseudotuberculosis YPIII Ail expressed in Escherichia coli bound host cells, albeit at ∼50% the capacity of Y. pestis Ail. Y. pestis Ail single mutants, Ail-E43D and Ail-F126V, both have decreased adhesion and invasion in E. coli when compared to wild-type Y. pestis Ail. Y. pseudotuberculosis YPIII Ail also had decreased binding to the Ail substrate fibronectin, relative to Y. pestis Ail in E. coli. When expressed in Y. pestis, there was a 30–50% decrease in adhesion and invasion depending on the substitution. Ail-mediated Yop delivery by both Y. pestis Ail and Y. pseudotuberculosis Ail were similar when expressed in Y. pestis, with only Ail-F126V giving a statistically significant reduction in Yop delivery of 25%. In contrast to results in E. coli and Y. pestis, expression of Ail in Y. pseudotuberculosis led to no measurable adhesion or invasion, suggesting the longer LPS of Y. pseudotuberculosis interferes with Ail cell-binding activity. Thus, host context affects the binding activities of Ail and both Y. pestis and Y. pseudotuberculosis Ail can mediate cell binding, cell invasion and facilitate Yop delivery.  相似文献   

3.
We have developed a rapid procedure for the detection of virulent Yersinia enterocolitica in ground pork by combining a previously described PCR with fluorescent dye technologies. The detection method, known as the fluorogenic 5′ nuclease assay (TaqMan), produces results by measuring the fluorescence produced during PCR amplification, requiring no post-PCR processing. The specificity of the chromosomal yst gene-based assay was tested with 28 bacterial isolates that included 7 pathogenic and 7 nonpathogenic serotypes of Y. enterocolitica, other species of Yersinia (Y. aldovae, Y. pseudotuberculosis, Y. mollaretti, Y. intermedia, Y. bercovieri, Y. ruckeri, Y. frederiksenii, and Y. kristensenii), and other enteric bacteria (Escherichia, Salmonella, Citrobacter, and Flavobacterium). The assay was 100% specific in identifying the pathogenic strains of Y. enterocolitica. The sensitivity of the assay was found to be ≥102 CFU/ml in pure cultures and ≥103 CFU/g in spiked ground pork samples. Results of the assay with food enrichments prespiked with Y. enterocolitica serotypes O:3 and O:9 were comparable to standard culture results. Of the 100 field samples (ground pork) tested, 35 were positive for virulent Y. enterocolitica with both 5′ nuclease assay and conventional virulence tests. After overnight enrichment the entire assay, including DNA extraction, amplification, and detection, could be completed within 5 h.  相似文献   

4.
Yellow mustard (Sinapis alba) has a sporophytic self-incompatibility reproduction system. Genetically stable self-incompatible (SI) and self-compatible (SC) inbred lines have recently been developed in this crop. Understanding the S haplotype of different inbred lines and the inheritance of the self-(in)compatibility (SI/SC) trait is very important for breeding purposes. In this study, we used the S-locus gene-specific primers in Brassica rapa and Brassica oleracea to clone yellow mustard S-locus genes of SI lines Y514 and Y1130 and SC lines Y1499 and Y1501. The PCR amplification results and DNA sequences of the S-locus genes revealed that Y514 carried the class I S haplotype, while Y1130, Y1499, and Y1501 had the class II S haplotype. The results of our genetic studies indicated that self-incompatibility was dominant over self-compatibility and controlled by a one-gene locus in the two crosses of Y514 × Y1499 and Y1130 × Y1501. Of the five S-locus gene polymorphic primer pairs, Sal-SLGI and Sal-SRKI each generated one dominant marker for the SI phenotype of Y514; Sal-SLGII and Sal-SRKII produced dominant marker(s) for the SC phenotype of Y1501 and Y1499; Sal-SP11II generated one dominant marker for Y1130. These markers co-segregated with the SI/SC phenotype in the F2 populations of the two crosses. In addition, co-dominant markers were developed by mixing the two polymorphic primer pairs specific for each parent in the multiplex PCR, which allowed zygosity to be determined in the F2 populations. The SI/SC allele-specific markers have proven to be very useful for the selection of the desirable SC genotypes in our yellow mustard breeding program.  相似文献   

5.
During spring and autumn migrations, 468 fecal samples from 57 different species of migratory birds were collected in Sweden. In total, Yersinia spp. were isolated from 12.8% of collected samples. The most commonly found species was Yersinia enterocolitica, which was isolated from 5.6% of all collected samples, followed by Y. intermedia (3.8%), Y. frederiksenii (3.0%), Y. kristensenii (0.9%), Y. pseudotuberculosis (0.6%), and Y. rohdei (0.4%). The pathogenic, virF-positive Y. pseudotuberculosis strains were recovered from three thrushes. These strains belonged to the same bioserotype, 1/O:2, but had two different profiles as determined by pulsed-field gel electrophoresis with NotI and SpeI enzymes. In addition, 10 Y. enterocolitica strains, all from barnacle geese, belonged to bioserotype 3/O:3, which is associated with human disease. Two of the strains were pathogenic, carrying the virF gene on their plasmids. All pathogenic Y. pseudotuberculosis and Y. enterocolitica strains were recovered during the spring, and as the birds were caught during active migration they likely became infected at an earlier stage of the migration, thus potentially transporting these bacterial pathogens over long geographical distances.  相似文献   

6.
Y chromosome diversity and paternal origin of Chinese cattle   总被引:2,自引:0,他引:2  
To determine the Y chromosome genetic diversity and paternal origin of Chinese cattle, 369 bulls from 17 Chinese native cattle breeds and 30 bulls from Holstein and four bulls from Burma were analyzed using a recently discovered USP9Y marker that could distinguish between taurine and indicine cattle more efficiently. In total, the taurine Y1, Y2 haplogroup and indicine Y3 haplogroup were detected in 7 (1.9 %), 193 (52.3 %) and 169 (45.8 %) individuals of 17 Chinese native breeds, respectively, although these frequencies varied amongst the Chinese native cattle breeds examined. Y2 dominates in northern China (91.4 %), while Y3 dominates in southern China (81.2 %). Central China is an admixture zone with Y2 predominating overall (72.0 %). Our results demonstrate that Chinese cattle have two paternal origins, one from B. taurus (Y2) and the other from B. indicus (Y3). The Y1 haplogroup may originate from the imported beef cattle breeds in western countries. The geographical distributions of the Y2 and Y3 haplogroup frequencies reveal a pattern of male indicine introgression from south to north China, and male taurine introgression from north to south China.  相似文献   

7.
Y. enterocolitica and Y. pseudotuberculosis are important food borne pathogens. However, the presence of competitive microbiota makes the isolation of Y. enterocolitica and Y. pseudotuberculosis from naturally contaminated foods difficult. We attempted to evaluate the performance of a modified Cefsulodin-Irgasan-Novobiocin (CIN) agar in the differentiation of Y. enterocolitica from non-Yersinia species, particularly the natural intestinal microbiota. The modified CIN enabled the growth of Y. enterocolitica colonies with the same efficiency as CIN and Luria-Bertani agar. The detection limits of the modified CIN for Y. enterocolitica in culture medium (10 cfu/ml) and in artificially contaminated pork (104 cfu/ml) were also comparable to those of CIN. However, the modified CIN provided a better discrimination of Yersinia colonies from other bacteria exhibiting Yersinia-like colonies on CIN (H2S-producing Citrobacter freundii, C. braakii, Enterobacter cloacae, Aeromonas hydrophila, Providencia rettgeri, and Morganella morganii). The modified CIN exhibited a higher recovery rate of Y. enterocolitica from artificially prepared bacterial cultures and naturally contaminated samples compared with CIN. Our results thus demonstrated that the use of modified CIN may be a valuable means to increase the recovery rate of food borne Yersinia from natural samples, which are usually contaminated by multiple types of bacteria.  相似文献   

8.
Two new species of Yushania (Poaceae, Bambusoideae, Arundinarieae) are described and illustrated from Hunan, China. Yushania longshanensis D.Z. Li & X.Y. Ye is distinguished from related species (Y. confusa, Y. angustifolia and Y. pachyclada) by having a thinner culm (0.2–0.3 cm in diameter), glabrous sheath scar, no oral setae, a large glabrous leaf blade (10–20 × 0.9–1.3 cm) and 3–4 pairs of secondary veins. Yushania stoloniforma D.Z. Li & X.Y. Ye has a distinctive scrambling habit, which differs from its putative close allies. Both of these two new species have a solitary branch at the basal nodes and can be assigned to Yushania sect. Yushania based on morphological features. Additionally, we treated Yushania gigantea T.P. Yi & L. Yang as a new synonym of Y. elevata T.P. Yi and renamed Y. microphylla T.P. Yi & L. Yang as Y. weiningensis D.Z. Li & X.Y. Ye.  相似文献   

9.
Bambuterol is a chiral carbamate known as selective inhibitor of butyrylcholinesterase (BChE). In order to relate bambuterol selectivity and stereoselectivity of cholinesterases to the active site residues, we studied the inhibition of recombinant mouse BChE, acetylcholinesterase (AChE) and six AChE mutants, employed to mimic BChE active site residues, by bambuterol enantiomers. Both enantiomers selectively inhibited BChE about 8000 times faster than AChE. The largest inhibition rate increase in comparison to AChE w.t. was observed with the F295L/Y337A mutant, showing that leucine 295 and alanine 337 are crucial residues in BChE for high bambuterol selectivity. All studied enzymes preferred inhibition by the R- over the S-bambuterol. The enlargement of the AChE choline binding site and of the acyl pocket by single or double mutations (Y337A, F295L/Y337A and F297I/Y337A) increased, in comparison to w.t. enzymes, inhibition rate constants of R- bambuterol more than that of S- bambuterol resulting in four times higher stereoselectivity. Peripheral site mutations (Y124Q and Y72N/Y124Q/Y337A) increased inhibition rate by S- more than R-bambuterol and consequently diminished the stereoselectivity.  相似文献   

10.
Bacterial identification on the basis of the highly conserved 16S rRNA (rrs) gene is limited by its presence in multiple copies and a very high level of similarity among them. The need is to look for other genes with unique characteristics to be used as biomarkers. Fifty-one sequenced genomes belonging to 10 different Yersinia species were used for searching genes common to all the genomes. Out of 304 common genes, 34 genes of sizes varying from 0.11 to 4.42 kb, were selected and subjected to in silico digestion with 10 different Restriction endonucleases (RE) (4–6 base cutters). Yersinia species have 6–7 copies of rrs per genome, which are difficult to distinguish by multiple sequence alignments or their RE digestion patterns. However, certain unique combinations of other common gene sequences—carB, fadJ, gluM, gltX, ileS, malE, nusA, ribD, and rlmL and their RE digestion patterns can be used as markers for identifying 21 strains belonging to 10 Yersinia species: Y. aldovae, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii, Y. pestis, Y. pseudotuberculosis, Y. rohdei, Y. ruckeri, and Y. similis. This approach can be applied for rapid diagnostic applications.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0552-6) contains supplementary material, which is available to authorized users.  相似文献   

11.
The nonrecombining Drosophila melanogaster Y chromosome is heterochromatic and has few genes. Despite these limitations, there remains ample opportunity for natural selection to act on the genes that are vital for male fertility and on Y factors that modulate gene expression elsewhere in the genome. Y chromosomes of many organisms have low levels of nucleotide variability, but a formal survey of D. melanogaster Y chromosome variation had yet to be performed. Here we surveyed Y-linked variation in six populations of D. melanogaster spread across the globe. We find surprisingly low levels of variability in African relative to Cosmopolitan (i.e., non-African) populations. While the low levels of Cosmopolitan Y chromosome polymorphism can be explained by the demographic histories of these populations, the staggeringly low polymorphism of African Y chromosomes cannot be explained by demographic history. An explanation that is entirely consistent with the data is that the Y chromosomes of Zimbabwe and Uganda populations have experienced recent selective sweeps. Interestingly, the Zimbabwe and Uganda Y chromosomes differ: in Zimbabwe, a European Y chromosome appears to have swept through the population.  相似文献   

12.
The ATP-binding cassette transporter G2/breast cancer resistance protein (ABCG2/BCRP) is an efflux protein involved in the bioavailability and milk secretion of endogenous and exogenous compounds, actively affecting milk composition. A limited number of physiological substrates have been identified. However, no studies have reported the specific effect of this polymorphism on the secretion into milk of compounds implicated in milk quality such as vitamins or endogenous compounds. The bovine ABCG2 Y581S polymorphism is described as a gain-of-function polymorphism that increases milk secretion and decreases plasma levels of its substrates. This work aims to study the impact of Y581S polymorphism on plasma disposition and milk secretion of compounds such as riboflavin (vitamin B2), enterolactone, a microbiota-derived metabolite from the dietary lignan secoisolariciresinol and uric acid. In vitro transport of these compounds was assessed in MDCK-II cells overexpressing the bovine ABCG2 (WT-bABCG2) and its Y581S variant (Y581S-bABCG2). Plasma and milk levels were obtained from Y/Y homozygous and Y/S heterozygous cows. The results show that riboflavin was more efficiently transported in vitro by the Y581S variant, although no differences were noted in vivo. Both uric acid and enterolactone were substrates in vitro of the bovine ABCG2 variants and were actively secreted into milk with a two-fold increase in the milk/plasma ratio for Y/S with respect to Y/Y cows. The in vitro ABCG2-mediated transport of the drug mitoxantrone, as a model substrate, was inhibited by enterolactone in both variants, suggesting the possible in vivo use of this enterolignan to reduce ABCG2-mediated milk drug transfer in cows. The Y581S variant was inhibited to a lesser extent probably due to its higher transport capacity. All these findings point to a significant role of the ABCG2 Y581S polymorphism in the milk disposition of enterolactone and the endogenous molecules riboflavin and uric acid, which could affect both milk quality and functionality.  相似文献   

13.
Chemical and ultrastructural studies of the cell walls of the yeastlike (Y) and mycelial (M) forms ofHistoplasma capsulatum G-184B revealed that the Y form contained about 46.5% ofα-glucan, 31.0% ofβ-glucan, 7.7% of galactomannan and 11.5% of chitin, whereas the M form cell wall contained about 18.8% ofβ-glucan, 24.7% of galactomannan, 25.8% of chitin, and essentially noα-glucan. Theα-glucan of the Y form contained mainly anα-(1 → 3)-linkage. Theβ-glucans of both forms may have mainly aβ-(1 → 3)-linkage. Chitin microfibrils were located mainly in the inner portion of the cell walls of the Y and M forms, whereas theα-glucan fibers were observed only in the outer portion of the Y form cell wall.  相似文献   

14.
To gain insights into the origin and genome evolution of the plague bacterium Yersinia pestis, we have sequenced the deep-rooted strain Angola, a virulent Pestoides isolate. Its ancient nature makes this atypical isolate of particular importance in understanding the evolution of plague pathogenicity. Its chromosome features a unique genetic make-up intermediate between modern Y. pestis isolates and its evolutionary ancestor, Y. pseudotuberculosis. Our genotypic and phenotypic analyses led us to conclude that Angola belongs to one of the most ancient Y. pestis lineages thus far sequenced. The mobilome carries the first reported chimeric plasmid combining the two species-specific virulence plasmids. Genomic findings were validated in virulence assays demonstrating that its pathogenic potential is distinct from modern Y. pestis isolates. Human infection with this particular isolate would not be diagnosed by the standard clinical tests, as Angola lacks the plasmid-borne capsule, and a possible emergence of this genotype raises major public health concerns. To assess the genomic plasticity in Y. pestis, we investigated the global gene reservoir and estimated the pangenome at 4,844 unique protein-coding genes. As shown by the genomic analysis of this evolutionary key isolate, we found that the genomic plasticity within Y. pestis clearly was not as limited as previously thought, which is strengthened by the detection of the largest number of isolate-specific single-nucleotide polymorphisms (SNPs) currently reported in the species. This study identified numerous novel genetic signatures, some of which seem to be intimately associated with plague virulence. These markers are valuable in the development of a robust typing system critical for forensic, diagnostic, and epidemiological studies.Yersinia pestis, the causative agent of plague, is a nonmotile Gram-negative bacterial pathogen. The genus Yersinia comprises two other pathogens that cause worldwide infections in humans and animals: Y. pseudotuberculosis and Y. enterocolitica (11, 12, 22, 61, 71). Despite their genetic relationship, these species differ radically in their pathogenicity and transmission. Plague is primarily a disease of wild rodents that is transmitted to other mammals through flea bites. In humans it produces the bubonic form of plague. Y. pestis also can be transmitted from human to human by aerosol, especially during pandemics, causing primarily pneumonic plague. Evolutionarily, it is estimated that Y. pestis diverged from the enteric pathogen Y. pseudotuberculosis within the last 20,000 years, while Y. pseudotuberculosis and Y. enterocolitica lineages separated 0.4 to 1.9 million years ago (2). Y. pestis inhabits a distinct ecological niche, and its transmission is anchored in its unique plasmid inventory: the murine toxin (pMT) and plasminogen activator (pPCP) plasmids. In addition, Y. pestis harbors the low-calcium-response plasmid pCD, which it inherited from its closest relative, Y. pseudotuberculosis (pYV) (12), and it also is found in the more distantly related Y. enterocolitica (71). So-called cryptic plasmids have been described in the literature as part of the Y. pestis mobilome (71), but no sequence data are available to decipher the nature and impact of such plasmids in the epidemiology and pathogenicity of Y. pestis (14). Y. pestis isolates have been historically grouped into the biovars Antiqua (ANT), Medievalis (MED), and Orientalis (ORI), based on metabolic properties such as nitrate reduction and fermentation patterns (72). However, we will use the population-based nomenclature for Y. pestis introduced by Achtman et al. (1), as we believe it better reflects the true evolutionary relationship. Due to its young evolutionary age, only a few genetic polymorphisms have been identified within the Y. pestis genomes sequenced to date (1). Here, we report the comparative analysis of the virulent Y. pestis strain Angola, a representative of one of the most ancient Y. pestis lineages thus far sequenced. We studied adaptive microevolutionary traits Y. pestis has acquired and predicted the global Yersinia pangenome. By comparing the genomes of the three human pathogenic Yersinia species (12, 22), we investigated the global- and species-specific gene reservoir, the genome dynamics, and the degree of genetic diversity that is found within these species. Our genotypic and phenotypic analyses, as well as the refined single-nucleotide polymorphism (SNP)-based phylogeny of Y. pestis, indicate that Angola is a deep-rooted isolate with unique genome characteristics intermediate between modern Y. pestis isolates and Y. pseudotuberculosis.  相似文献   

15.
A T Branco  Y Tao  D L Hartl  B Lemos 《Heredity》2013,111(1):8-15
X-linked sex-ratio distorters that disrupt spermatogenesis can cause a deficiency in functional Y-bearing sperm and a female-biased sex ratio. Y-linked modifiers that restore a normal sex ratio might be abundant and favored when a X-linked distorter is present. Here we investigated natural variation of Y-linked suppressors of sex-ratio in the Winters systems and the ability of these chromosomes to modulate gene expression in Drosophila simulans. Seventy-eight Y chromosomes of worldwide origin were assayed for their resistance to the X-linked sex-ratio distorter gene Dox. Y chromosome diversity caused males to sire ∼63% to ∼98% female progeny. Genome-wide gene expression analysis revealed hundreds of genes differentially expressed between isogenic males with sensitive (high sex ratio) and resistant (low sex ratio) Y chromosomes from the same population. Although the expression of about 75% of all testis-specific genes remained unchanged across Y chromosomes, a subset of post-meiotic genes was upregulated by resistant Y chromosomes. Conversely, a set of accessory gland-specific genes and mitochondrial genes were downregulated in males with resistant Y chromosomes. The D. simulans Y chromosome also modulated gene expression in XXY females in which the Y-linked protein-coding genes are not transcribed. The data suggest that the Y chromosome might exert its regulatory functions through epigenetic mechanisms that do not require the expression of protein-coding genes. The gene network that modulates sex ratio distortion by the Y chromosome is poorly understood, other than that it might include interactions with mitochondria and enriched for genes expressed in post-meiotic stages of spermatogenesis.  相似文献   

16.

Background

New DNA sequencing technologies have enabled detailed comparative genomic analyses of entire genera of bacterial pathogens. Prior to this study, three species of the enterobacterial genus Yersinia that cause invasive human diseases (Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica) had been sequenced. However, there were no genomic data on the Yersinia species with more limited virulence potential, frequently found in soil and water environments.

Results

We used high-throughput sequencing-by-synthesis instruments to obtain 25- to 42-fold average redundancy, whole-genome shotgun data from the type strains of eight species: Y. aldovae, Y. bercovieri, Y. frederiksenii, Y. kristensenii, Y. intermedia, Y. mollaretii, Y. rohdei, and Y. ruckeri. The deepest branching species in the genus, Y. ruckeri, causative agent of red mouth disease in fish, has the smallest genome (3.7 Mb), although it shares the same core set of approximately 2,500 genes as the other members of the species, whose genomes range in size from 4.3 to 4.8 Mb. Yersinia genomes had a similar global partition of protein functions, as measured by the distribution of Cluster of Orthologous Groups families. Genome to genome variation in islands with genes encoding functions such as ureases, hydrogeneases and B-12 cofactor metabolite reactions may reflect adaptations to colonizing specific host habitats.

Conclusions

Rapid high-quality draft sequencing was used successfully to compare pathogenic and non-pathogenic members of the Yersinia genus. This work underscores the importance of the acquisition of horizontally transferred genes in the evolution of Y. pestis and points to virulence determinants that have been gained and lost on multiple occasions in the history of the genus.  相似文献   

17.
Uracil DNA glycosylase (UDG), a ubiquitous and highly specific enzyme, commences the uracil excision repair pathway. Structural studies have shown that the tyrosine in a highly conserved GQDPY water-activating loop of UDGs blocks the entry of thymine or purines into the active site pocket. To further understand the role of this tyrosine (Y66 in Escherichia coli UDG), we have overproduced and characterized Y66F, Y66H, Y66L and Y66W mutants. The complexes of the wild-type, Y66F, Y66H and Y66L UDGs with uracil DNA glycosylase inhibitor (Ugi) (a proteinaceous substrate mimic) were stable to 8 M urea. However, some dissociation of the complex involving the Y66W UDG occurred at this concentration of urea. The catalytic efficiencies (Vmax / Km) of the Y66L and Y66F mutants were similar to those of the wild-type UDG. However, the Y66W and Y66H mutants were ~7- and ~173-fold compromised, respectively, in their activities. Interestingly, the Y66W mutation has resulted in an enzyme which is resistant to product inhibition. Preferential utilization of a substrate enabling a long range contact between the –5 phosphate (upstream to the scissile uracil) and the enzyme, and the results of modeling studies showing that the uracil-binding cavity of Y66W is wider than those of the wild type and other mutant UDGs, suggest a weaker interaction between uracil and the Y66W mutant. Furthermore, the fluorescence spectroscopy of UDGs and their complexes with Ugi, in the presence of uracil or its analog, 5-bromouracil, suggests compromised binding of uracil in the active site pocket of the Y66W mutant. Lack of inhibition of the Y66W UDG by apyrimidinic DNA (AP-DNA) is discussed to highlight a potential additional role of Y66 in shielding the toxic effects of AP-DNA, by lowering the rate of its release for subsequent recognition by an AP endonuclease.  相似文献   

18.
Li Y  Dai E  Cui Y  Li M  Zhang Y  Wu M  Zhou D  Guo Z  Dai X  Cui B  Qi Z  Wang Z  Wang H  Dong X  Song Z  Zhai J  Song Y  Yang R 《PloS one》2008,3(5):e2166

Background

DFR (different region) analysis has been developed for typing Yesinia pestis in our previous study, and in this study, we extended this method by using 23 DFRs to investigate 909 Chinese Y. pestis strains for validating DFR-based genotyping method and better understanding adaptive microevolution of Y. pestis.

Methodology/Principal Findings

On the basis of PCR and Bionumerics data analysis, 909 Y. pestis strains were genotyped into 32 genomovars according to their DFR profiles. New terms, Major genomovar and Minor genomovar, were coined for illustrating evolutionary relationship between Y. pestis strains from different plague foci and different hosts. In silico DFR profiling of the completed or draft genomes shed lights on the evolutionary scenario of Y. pestis from Y. pseudotuberculosis. Notably, several sequenced Y. pestis strains share the same DFR profiles with Chinese strains, providing data for revealing the global plague foci expansion.

Conclusions/significance

Distribution of Y. pestis genomovars is plague focus-specific. Microevolution of biovar Orientalis was deduced according to DFR profiles. DFR analysis turns to be an efficient and inexpensive method to portrait the genome plasticity of Y. pestis based on horizontal gene transfer (HGT). DFR analysis can also be used as a tool in comparative and evolutionary genomic research for other bacteria with similar genome plasticity.  相似文献   

19.
Identifying new target molecules through which eosinophils secrete their stored proteins may reveal new therapeutic approaches for the control of eosinophilic disorders such as host immune responses to parasites. We have recently reported the expression of the purinergic P2Y12 receptor (P2Y12R) in human eosinophils; however, its functional role in this cell type and its involvement in eosinophilic inflammation remain unknown. Here, we investigated functional roles of P2Y12R in isolated human eosinophils and in a murine model of eosinophilic inflammation induced by Schistosoma mansoni (S. mansoni) infection. We found that adenosine 5’-diphosphate (ADP) induced human eosinophils to secrete eosinophil peroxidase (EPO) in a P2Y12R dependent manner. However, ADP did not interfere with human eosinophil apoptosis or chemotaxis in vitro. In vivo, C57Bl/6 mice were infected with cercariae of the Belo Horizonte strain of S. mansoni. Analyses performed 55 days post infection revealed that P2Y12R blockade reduced the granulomatous hepatic area and the eosinophilic infiltrate, collagen deposition and IL-13/IL-4 production in the liver without affecting the parasite oviposition. As found for humans, murine eosinophils also express the P2Y12R. P2Y12R inhibition increased blood eosinophilia, whereas it decreased the bone marrow eosinophil count. Our results suggest that P2Y12R has an important role in eosinophil EPO secretion and in establishing the inflammatory response in the course of a S. mansoni infection.  相似文献   

20.
Citrobacter amalonaticus Y19 (Y19) was isolated because of its ability for carbon monoxide-dependent hydrogen production (water–gas shift reaction). This paper reports the assimilation of glycerol and the production of 1,3-propanediol (1,3-PDO) by Y19. Genome sequencing revealed that Y19 contained the genes for the utilization of glycerol and 1,2-propanediol (pdu operon) along with those for the synthesis of coenzyme B12 (cob operon). On the other hand, it did not possess the genes for the fermentative metabolism of glycerol of Klebsiella pneumoniae, which consists of both the oxidative (dhaD and dhaK) and reductive (dhaB and dhaT) pathways. In shake-flask cultivation under aerobic conditions, Y19 could grow well with glycerol as the sole carbon source and produced 1,3-PDO. The level of 1,3-PDO production was improved when vitamin B12 was added to the culture medium under aerobic conditions. Under anaerobic conditions, cell growth and 1,3-PDO production on glycerol was also possible, but only when an exogenous electron acceptor, such as nitrate or fumarate, was added. This is the first report of the glycerol metabolism and 1,3-PDO production by C. amalonaticus Y19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号