首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five belugas, or white whales (Delphinapterus leucas), were tracked by satellite from Creswell Bay, Somerset Island, in the Canadian high Arctic towards West Greenland in autumn 2001. After 1 October, three of the whales stayed in the North Water polynya and the other two whales moved to West Greenland. One of the whales that moved to Greenland migrated south along the west coast, following a route and timing similar to another beluga tracked in 1996. The belugas that moved towards West Greenland from Canada did so before or near 1 October. The movements of both these whales followed a similar timing and assumed migratory route of belugas hunted in autumn in West Greenland. In Greenland, the hunt begins in September, where the first whales are taken in the northernmost community of Qaanaaq. Hunting takes place farther south in Upernavik in October, and finally in November and December, belugas are taken even farther south in Uummannaq and Disko Bay. The whales that remain in the North Water after 1 October most likely do not contribute to the harvest in West Greenland. Based on the total number of belugas satellite-tracked in Canada between 1995 and 2001 with tags that lasted beyond 1 October, approximately 0.15 (95% CI 0.06-0.35; n=26) of the summering stock of belugas in the Canadian high Arctic move to West Greenland for the winter. Genetic studies have indicated that belugas moving east through Lancaster Sound are significantly differentiated from belugas taken in the autumn hunt in West Greenland. These conflicting results suggest molecular genetics cannot be solely relied on to reveal the stock identity of these belugas.  相似文献   

2.
Migrations are often influenced by seasonal environmental gradients that are increasingly being altered by climate change. The consequences of rapid changes in Arctic sea ice have the potential to affect migrations of a number of marine species whose timing is temporally matched to seasonal sea ice cover. This topic has not been investigated for Pacific Arctic beluga whales (Delphinapterus leucas) that follow matrilineally maintained autumn migrations in the waters around Alaska and Russia. For the sympatric Eastern Chukchi Sea (‘Chukchi’) and Eastern Beaufort Sea (‘Beaufort’) beluga populations, we examined changes in autumn migration timing as related to delayed regional sea ice freeze‐up since the 1990s, using two independent data sources (satellite telemetry data and passive acoustics) for both populations. We compared dates of migration between ‘early’ (1993–2002) and ‘late’ (2004–2012) tagging periods. During the late tagging period, Chukchi belugas had significantly delayed migrations (by 2 to >4 weeks, depending on location) from the Beaufort and Chukchi seas. Spatial analyses also revealed that departure from Beaufort Sea foraging regions by Chukchi whales was postponed in the late period. Chukchi beluga autumn migration timing occurred significantly later as regional sea ice freeze‐up timing became later in the Beaufort, Chukchi, and Bering seas. In contrast, Beaufort belugas did not shift migration timing between periods, nor was migration timing related to freeze‐up timing, other than for southward migration at the Bering Strait. Passive acoustic data from 2008 to 2014 provided independent and supplementary support for delayed migration from the Beaufort Sea (4 day yr?1) by Chukchi belugas. Here, we report the first phenological study examining beluga whale migrations within the context of their rapidly transforming Pacific Arctic ecosystem, suggesting flexible responses that may enable their persistence yet also complicate predictions of how belugas may fare in the future.  相似文献   

3.
This paper compares the behavior of bowhead whales of the Davis Strait/Baffin Bay stock, as observed along the east coast of Baffin Island in 1979–1986, with behavior of the Bering/Chukchi/Beaufort Sea stock observed in the Beaufort Sea in 1980–1986. All data used here were collected during late summer and early autumn in the absence of acute human disturbance. The behavioral repertoires of the two populations were similar. However, quantitative differences were found for whales engaged in all three activities studied: (1) Bowheads feeding in deep water off Isabella Bay, Baffin Island, had longer dives and surfacings, on average, than noted for bowheads feeding in the Beaufort Sea. (2) Among whales socializing in shallow water, we saw sexual interactions more often at Isabella Bay than in the Beaufort Sea. Calls emitted by socializing whales off Baffin Island were similar to those heard in the Chukchi and Beaufort Seas. However, pulsed tonal calls were longer off Baffin Island, and previously undescribed mechanical "crunch" sounds were recorded there near socializing bowheads. (3) During autumn migration, "fluke-out" dives were less common, and dive durations were longer, in the Beaufort Sea than off Baffin Island (P<0.001). Multivariate and other analyses indicated that some but not all differences can be ascribed to regional differences in the natural environment or in whale activities, However, during 1974–1986, Bering/Chukchi/Beaufort bowheads were exposed to more industrial, hunting and other human activity than Davis Strait/Baffin Bay bowheads. The "inconspicuous" behavior during autumn migration in the Beaufort may have been attributable to human activities, but causative links cannot be isolated.  相似文献   

4.
At least five populations (stocks) of beluga whales (Delphinapterus leucas) are thought to winter in the Being Sea, including the Bristol Bay, Eastern Bering Sea (Norton Sound), Anadyr, Eastern Chukchi Sea, and Eastern Beaufort Sea (Mackenzie) populations. Belugas from each population have been tagged with satellite‐linked transmitters, allowing us to describe their winter (January–March) distribution. The objectives of this paper were to determine: (1) If each population winters in the Bering Sea, and if so, where? (2) Do populations return to the same area each year (i.e., are wintering areas traditional)? (3) To what extent do the winter ranges of different populations overlap? Tagged belugas from all five populations either remained in, or moved into, the Bering Sea and spent the winter there. Each population wintered in a different part of the Bering Sea and populations with multiple years of data (four of five) returned to the same regions in multiple years. When data were available from two populations that overlapped in the same year, they did not occupy the shared area at the same time. Although our sample sizes were small, the evidence suggests belugas from different populations have traditional winter ranges that are mostly exclusive to each population.  相似文献   

5.
We describe the annual distribution of beluga whales (Delphinapterus leucas) in Bristol Bay, Alaska, using data from 31 satellite‐linked transmitters during 2002–2011. Bristol Bay has one of the largest and best studied Pacific salmon (Oncorhynchus spp.) fisheries in the world, allowing us to link the seasonal distribution of belugas to that of salmon. During salmon migrations, beluga movements were restricted to river entrances. Belugas generally did not relocate to different river entrances or change bays during peak salmon periods. However, the location of belugas was not related to the number of salmon passing counting towers, suggesting that belugas were either selecting locations that were good for catching salmon or there were simply more salmon than belugas needed to supply their nutritional needs. The distribution of belugas expanded after salmon runs ended, and was greatest in winter when belugas ranged beyond the inner bays, traveling as far west as Cape Constantine. Belugas continued to frequent the inner bays in winter whenever sea ice conditions allowed, e.g., when winds moved sea ice offshore; however, they were never located south of the southern ice edge in open water or outside of Bristol Bay.  相似文献   

6.
Based on satellite tracking of eight beluga whale males in the White Sea, their habitats in the autumn, winter, and spring periods have been identified. A correlation between the distribution of beluga whales, ice dynamics, and migration of Atlantic salmon has been revealed. It has been found than beluga whale males do not leave the White Sea during the entire ice period. The results obtained confirm the hypothesis that the White Sea population of beluga whales is isolated.  相似文献   

7.
Data on the distribution of marine mammals, including beluga whales (Delphinapterus leucas Pallas, 1766), in the Arctic are scarce because of various causes and conditions, including the vast expanses of the region, its poor accessibility, severe climate, long polar night, and high cost of research. Nevertheless, the results of aerial observations during ice reconnaissance and onboard observations during sea voyages (Kleinenberg et al., 1964; Geptner et al., 1976; Belikov, Boltunov, and Gorbunov, 2002; Belikov and Boltunov, 2002; Ezhov, 2005; Matishov and Ognetov, 2006; Biologiya i okeanografiya??, 2007; Lukin and Ognetov, 2009) have provided a general idea of the distribution pattern of beluga whales in the Russian Arctic seas. More detailed data concern the distribution of these whales in the White Sea, where aerial surveys of the water area were performed previously and have been resumed in recent years (Nazarenko et al., 2008; Glazov et al., 2010, 2011). The relevant data on the Barents, Kara, Laptev, and East Siberian seas are much poorer. In the summer (ice-free) period, beluga whales concentrate in coastal waters. They have been recorded most frequently off Franz Josef Land, Novaya Zemlya, Vaygach Island, and in Czech Bay in the Barents Sea; in Baydaratskaya Bay, Gulf of Ob, and Yenisei Gulf in the Kara Sea; off the northeastern coast of Taimyr and in estuaries of the Anabar, Olenyok, and Lena rivers in the Laptev Sea; and in the estuaries of the Indigirka (where the whales come from the west) and the Kolyma and Ked??ma rivers (where they come from the east) in the East Siberian Sea. The amount of information obtained in other seasons is very limited. In autumn, mass migration of beluga whales from the Kara Sea to the Barents Sea have been recorded in the Karskie Vorota Strait and off Cape Zhelaniya in the north of Novaya Zemlya. In winter, almost no records of these whales have been made in the Kara, Laptev, and East Siberian seas. These data are based on previous observations and have practically not been complemented in recent years.  相似文献   

8.
Twenty-one narwhals tagged in 2003 and 2004 in Admiralty Inlet showed a different summer distributional pattern than previous narwhal-tracking studies from Somerset Island, Eclipse Sound and Melville Bay. The migration of the narwhals tracked from Admiralty Inlet moved out through Lancaster Sound 15 days earlier (P < 0.0001) than the narwhals summering around Eclipse Sound, whereas the Admiralty Inlet narwhals reached the mouths of Eclipse Sound 18 days later (P < 0.0001) than the Eclipse Sound summering population. The winter range of the Admiralty Inlet narwhals overlapped with the winter range of narwhals from Melville Bay and Eclipse Sound in central southern Baffin Bay and Northern Davis Strait, but not with the winter range of narwhals from Somerset Island that wintered further north. Distribution size of range, and population size did not appear to be related. An example of considerable year to year variation between area of summer and winter distribution in the 2 years was believed to be related to the sample size and number of pods of whales tagged, rather than to differences in sex or age classes.  相似文献   

9.
Two populations of beluga whales (Delphinapterus leucas), the Eastern Beaufort Sea (BS) and Eastern Chukchi Sea (ECS), make extensive seasonal migrations into the Pacific Arctic. However, the extent to which these populations overlap in time and space is not known. We quantified distribution and migration patterns for BS and ECS belugas using daily locations from whales tracked with satellite-linked transmitters. Home ranges and core areas in summer (July and August) and in each month (July–November), daily displacement, dispersal from core areas, and autumn migration timing were estimated. Distinct summer and fall distribution patterns and staggered autumn migration timing were identified for BS and ECS whales. Summer home ranges for each population had less than 10 % overlap. Monthly home ranges were also relatively distinct between populations except in September (up to 88 % home range overlap). A distinct east–west shift in focal area use occurred in September that persisted into October, with the two populations essentially switching longitudinal positions. Highest daily displacements occurred during the migratory period in September for BS whales and October for ECS whales, further indicating westward fall migration was offset between populations. Sexual segregation of males and females within a population also varied monthly. Autumn migration timing as well as differences in spatial and temporal segregation between BS and ECS beluga populations may be a result of maternally driven philopatry and population-specific adaptations to dynamically available resources. Our results contribute to the management of these populations by identifying seasonal area use and differences in migration patterns.  相似文献   

10.
An unusual number of killer whales appeared in inshore waters of the southeastern Bering Sea in summer 1989 and 1990. Multiple sightings occurred in Bristol and Kuskokwim bays where killer whales had been seen only rarely in previous years. Three animals became stranded on mud flats in Kuskokwim Bay but were able to free themselves on a high tide. Killer whales were observed interacting with salmon, harbor seals, Steller sea lions, walruses, and beluga whales. Detailed observations were made of killer whales attacking belugas in the Naknek River. Local conditions and behavioral adaptations may reduce the susceptibility of belugas to killer whale predation. Continued killer whale activity in this area would be unlikely to affect fish resources, but might have some influence on beluga whales.  相似文献   

11.
The Bristol Bay stock of beluga whales (Delphinapterus leucas) is genetically distinct and resides in Bristol Bay year‐round. We estimated the abundance of this population using genetic mark‐recapture, whereby genetic markers from skin biopsies, collected between 2002 and 2011, were used to identify individuals. We identified 516 individual belugas in two inner bays, 468 from Kvichak Bay and 48 from Nushagak Bay, and recaptured 75 belugas in separate years. Using a POPAN Jolly‐Seber model, abundance was estimated at 1,928 belugas (95% CI = 1,611–2,337), not including calves, which were not sampled. Most belugas were sampled in Kvichak Bay at a time when belugas are also known to occur in Nushagak Bay. The pattern of genetic recaptures and data from belugas with satellite transmitters suggested that belugas in the two bays regularly mix. Hence, the estimate of abundance likely applies to all belugas within Bristol Bay. Simulations suggested that POPAN estimates of abundance are robust to most forms of emigration, but that emigration causes negative bias in both capture and survival probabilities. Because it is likely that some belugas do not enter the sampling area during sampling, our estimate of abundance is best considered a minimum population size.  相似文献   

12.
Seven narwhals (Monodon monoceros) were instrumented with satellite transmitters in Tremblay Sound, northeast Canada in August 1999. The whales were tracked for 5-218 days with positions received until 17 March 2000. All whales stayed in the fjord system where they were tagged until the end of August. Three whales went northwest visiting adjacent fjords before moving south, together with the three other whales, along the east coast of Baffin Island. The narwhals arrived on the wintering ground in northern Davis Strait in late October. Speed and range of movements declined once the wintering ground was reached. Dive depths increased from summer to autumn, and reached at least 1,500 m. Late summer and winter kernel home ranges were approximately 3,400 km2 and 12,000 km2, respectively. The relative abundance of whales on the wintering ground was 936 narwhals. Assuming that the home range defines the winter distribution of the stock, an estimated 5,348 narwhals (corrected for perception and availability bias) were present in this area.  相似文献   

13.
  • 1 Little is known about the endangered population of bowhead whales Balaena mysticetus in the Okhotsk Sea (OS). Here, we review existing information about this stock, including much material published in Russian.
  • 2 Whaling for OS bowheads began around 1846, was pursued intensively for two decades and continued sporadically until about 1913. Beginning in 1967, whalers from the USSR killed bowheads illegally, although the number of whales taken remains unknown. Estimates of the pre‐exploitation population size have ranged from 3000 to 20000 whales, but all such estimates are based upon untested assumptions and incomplete data.
  • 3 Information on historical and current distribution of bowheads comes from whaling records (notably Townsend 1935 ) and from modern (notably Russian/Soviet) marine mammal surveys. Little is known about winter distribution. During spring and summer, known bowhead concentrations occur in Shelikhov Bay and at Shantar. Although historical whaling data show bowheads in Shelikhov Bay during summer and early autumn, there have been no recent sightings later than June. However, extensive 19th century catches were made over much of the northern OS, and the present range and habitat use of the population is probably broader than existing data suggest. There is evidence for age or maturational class segregation between Shantar and Shelikhov Bay; the former hosts immature whales and lactating females, and the latter hosts adults.
  • 4 Genetic data indicate that the OS bowhead stock is separate from the Bering‐Chukchi‐Beaufort population, but that the two populations share a common ancestry. There is no evidence that bowheads ever leave the OS.
  • 5 Russian observers have put the current size of the OS stock in the low hundreds, but this is not based on quantitative analysis. Overall, the OS bowhead population is very likely to be relatively small; it did not recover from the intensive whaling in the 19th century, and the illegal Soviet catches of the 1960s have further set back its recovery. Dedicated surveys and other research are required to assess the status and conservation needs of the population.
  相似文献   

14.
Bowhead whales (Balaena mysticetus) of the western Arctic stock winter in ice‐covered continental shelf regions of the Bering Sea, where pot fisheries for crabs (Paralithodes and Chionoecetes spp.) and Pacific cod (Gadus macrocephalus) pose a risk of entanglement. In the winter of 2008–2009 and 2009–2010 the spatial distribution of 21 satellite tagged bowhead whales partially overlapped areas in which pot fisheries for cod and blue king crab (Paralithodes platypus) occurred. However, these fisheries ended before whales entered the fishing areas, thus avoiding temporal overlap. A fishery for snow crab (Chionoecetes opilio) typically runs from January to May and provides the greatest potential for bowhead whales to encounter active pot gear. Tagged whales did not enter the area of the snow crab fishery during this study and generally remained in areas with >90% sea ice concentration, which is too concentrated for crab boats to penetrate. Pack ice sometimes overruns active fishing areas, resulting in lost gear, which is the most likely source of entanglement. The western Arctic stock of bowhead whales was increasing as of 2004; as such, incidental mortality from commercial pot fisheries is probably negligible at this time. Regardless, entanglement may increase over time and should be monitored.  相似文献   

15.
The results of observations on the distribution of beluga whales, Delphinapterus leucas (Pallas, 1776), in three large rivers of western Kamchatka in the summer and autumn seasons are discussed. In the summer, the number of beluga whales in the Khairyuzova, Belogolovaya, and Moroshechnaya rivers reaches 111–250 individuals. Most of the belugas enter the rivers during the flood tidal phase: the number of animals in the estuaries increases along with the rising water level to the maximum value at spring tide. The belugas do not move upstream out of the estuaries and tend to remain in the zone of mixing riverine and marine waters, where 20 species of fish and three species of invertebrates have been identified. At ebb tide, the belugas leave for the sea; however, during a large run of salmon some individuals remain in the estuaries and continue hunting in deep-water areas. The main issue that causes beluga whales to form summer aggregations in Kamchatkan rivers is the hunt for salmon. The distribution of beluga whales in river estuaries is defined by the dynamics and intensity of salmon spawning runs. The preference of beluga whales for these rivers can be explained by the channel type of their estuaries.  相似文献   

16.
Almost three-quarters of the 46 young adult and sub-adult striped bass Morone saxatilis that were acoustically tagged in Plum Island Estuary, Massachusetts, U.S.A., in the summer of 2006 were detected in one or more southern coastal arrays during their autumn migration. On the basis of the trajectories along which these M. saxatilis moved from feeding to overwintering areas, three migratory groups emerged. After leaving Plum Island Estuary, about half of the fish were detected only in a mid-latitude array, Long Island Sound. The other half of the tagged fish were detected during autumn and winter in a more southern array, the Delaware Estuary. This latter group of fish may have used two routes. Some travelled to the Delaware Estuary through Long Island Sound while other fish may have taken a second, more direct, coastal route that did not include Long Island Sound. Consequently, a seemingly homogeneous group of fish tagged at the same time in the same non-natal feeding location exhibited a diversity of southward movement patterns that could affect population-level processes. These three groups that differed in overwintering location and migration route could be movement contingents with migratory connectivity.  相似文献   

17.
Nine bowhead whales (Balaena mysticetus) were instrumented with satellite transmitters in West Greenland in May 2002 and 2003. Transmitters were either encased in steel cans or imbedded in floats attached to wires. Transmitters mounted in steel cans had a high initial failure rate, yet those that were successful provided tracking durations up to seven months. Float tags had a low initial failure rate and initially provided large numbers of positions; however, they had deployment durations of only 2–33 d. All tracked whales departed from West Greenland and headed northwest towards Lancaster Sound in the end of May. Three tags with long tracking durations (197–217 d) recorded movements of whales (1 ♂, 2 ♀) into December in 2002 and 2003. All of these individuals remained within the Canadian High Arctic or along the east coast of Baffin Island in summer and early fall. By the end of October, all three whales moved rapidly south along the east coast of Baffin Island and entered Hudson Strait, an apparent wintering ground for the population. One of the whales did not visit Isabella Bay on east Baffin Island, the locality used for abundance estimation from photographic reidentification of individuals. The movements of whales tagged in this study raise critical questions about the assumed stock discreteness of bowhead whales in Foxe Basin, Hudson Strait, and Davis Strait and indicate current estimates of abundance are negatively biased.  相似文献   

18.
White sharks (Carcharodon carcharias) are threatened apex predators and identification of their critical habitats and how these are used are essential to ensuring improved local and ultimately global white shark protection. In this study we investigated habitat use by white sharks in False Bay, South Africa, using acoustic telemetry. 56 sharks (39 female, 17 male), ranging in size from 1.7–5 m TL, were tagged with acoustic transmitters and monitored on an array of 30 receivers for 975 days. To investigate the effects of season, sex and size on habitat use we used a generalized linear mixed effects model. Tagged sharks were detected in the Bay in all months and across all years, but their use of the Bay varied significantly with the season and the sex of the shark. In autumn and winter males and females aggregated around the Cape fur seal colony at Seal Island, where they fed predominantly on young of the year seals. In spring and summer there was marked sexual segregation, with females frequenting the Inshore areas and males seldom being detected. The shift from the Island in autumn and winter to the Inshore region in spring and summer by females mirrors the seasonal peak in abundance of juvenile seals and of migratory teleost and elasmobranch species respectively. This study provides the first evidence of sexual segregation at a fine spatial scale and demonstrates that sexual segregation in white sharks is not restricted to adults, but is apparent for juveniles and sub-adults too. Overall, the results confirm False Bay as a critical area for white shark conservation as both sexes, across a range of sizes, frequent the Bay on an annual basis. The finding that female sharks aggregate in the Inshore regions when recreational use peaks highlights the need for ongoing shark-human conflict mitigation strategies.  相似文献   

19.
Leopard seals are distributed around the Antarctic continent principally between 50°S and 80°S though they are known to wander even farther north, particularly to Australia, New Zealand, South America, and South Africa, and several sub-Antarctic Islands. Seasonal movements of leopard seals have been correlated with seasonal changes in the distribution of sea ice with seals moving north as sea ice develops in spring and winter and southward toward the Antarctic continent as it melts in late autumn and winter. On August 9, 2013, an emaciated juvenile male leopard seal was observed swimming in Bounty Bay at Pitcairn Island (25°4′S, 130°6′W). It was found ashore at a boat ramp in the bay the next day. Because of the seal’s apparent distress, it was promptly shot and killed humanely by an island police officer and then dumped at sea before any measurements or additional observations could be made. We estimated the seal to be a 10-month-old pup, about 1.8–2 m long. The appearance of this leopard seal at Pitcairn Island is only slightly farther south than the most northern record (the Cook Islands, 21°25′S, 159°8′W) for the species, but it is the most remote occurrence yet documented worldwide and correlates with the all-time record for sea ice coverage in the Antarctic in winter 2013.  相似文献   

20.
Satellite-linked tags were attached to 12 spotted seals (Phoca largha) captured at a coastal lagoon in the eastern Chukchi Sea during August 1991–1993. Movements of seals were tracked for 32–298 days using the Argos system. Of 9,651 total location records obtained, 7,268 were usable. Individual seals were located on 41–96% of the days that tags were operational. During August–November, tagged seals alternated haul-outs at coastal sites lasting 1–304 h with trips to sea of 14–901 h. Coastal haul-outs occurred at 14 sites in western Alaska and eastern Russia. On several trips to sea, seals covered distances of more than 1,000 km. Movement southward from the Chukchi Sea generally began in October, with most of the seals passing through the Bering Strait during November. Seals first hauled out on sea ice in October (Chukchi Sea) or November (Bering Sea), and generally moved southward during October–December as sea-ice coverage increased. Seven seals, whose transmitters were still operating, spent December to June in the Bering Sea region between Kuskokwim Bay and Anadyr Gulf, which corresponded to the location of the ice front. The seals made active east-west movements within the ice front. Spotted seals are unlike other ice-breeding seals in that they regularly use coastal haul-outs during summer and autumn. Compared to the closely related Pacific harbor seal (Phoca vitulina richardsi), spotted seals make much longer trips to sea and spend longer continuous periods at their haul-outs during summer and autumn. Received: 9 April 1997 / Accepted: 30 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号